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Abstract— Ever since the completion of the Human Genome 
Project in 2003, the human genome has been represented as a 
linear sequence of 3.2 billion base pairs and is referred to as 
the “Reference Genome”. Since then it has become easier to 
sequence genomes of individuals due to rapid advancements in 
technology, which in turn has created a need to represent the 
new information using a different representation. Several 
attempts have been made to represent the genome sequence as 
a graph albeit for different purposes. Here we take a look at 
the Variant Calling Format (VCF) file which carries 
information about variations within genomes and is the 
primary format of choice for genome analysis tools. This short 
paper aims to motivate work in representing the VCF file as 
Directed Acyclic Graphs (DAGs) to run on a cloud in order to 
exploit the high performance capabilities provided by cloud 
computing.  
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I.  INTRODUCTION 
The Human Genome Project, started in 1990 and 

concluded in 2003, aimed to sequence the entire human 
genome. It resulted in an official gene map, also known as 
the “reference genome” which consists of 3.2 billion base 
pairs present in a human genome [1]. Although this boosted 
genomics in unimaginable ways, the existing linear gene 
map looks at only one way the human genome could be 
viewed. The current research in genomics demands a “map” 
or arrangement of the genome such that thousands of 
genomes may be combined to effectively solve multiple 
types of research problems. The scientific community has 
come to an understanding that the best way round it is to 
map a “pan genome” [18] which represents all the variations 
in genomes with respect to the reference genome. This 
would help give the larger picture of genomes with respect to 
each other as compared to the traditional view of looking at 
genome variations with respect to their nucleotide positions 
mapped to a reference genome. 

The stage has been set by initiatives such as 1000 
Genomes Project [2] and The 100,000 Genomes Project [3] 
along with an advancement of sequencing technologies. 
Companies like Illumina [4] use Next-Generation 
Sequencing (NGS) to sequence genomes in a cost- and time-

effective manner. The NGS information is distributed in 
Variant Calling Format (VCF) [5], [25]. The VCF files are 
used for diagnosing genetic disorders by running the 
variations through a series of analysis in addition to clinical 
annotations to bring out meaningful insights [6]. There are 
different platforms available such as the Omacia Platform [6] 
and CAPER 3.0 [7], which address data-intensive analysis 
on a cloud-based environment. 

As a standard introduced by 1000 Genomes Project [2], 
the Variant Calling Format (VCF) [5], [25] stores small-scale 
variant information such as that about SNPs, insertions and 
deletions. In other words, the VCF file contains genetic 
variation data/DNA polymorphism data. The VCF file has 
many advantages, the most important of which is that it is 
standardized [5]. The VCF stores only the variations along 
with the reference genome, eliminating redundancy of data 
by not storing the portions of the genome which are the same 
as the reference genome.  At the same time, it is flexible 
enough to contain structural variants. The variations are 
listed along with the reference haplotype allowing VCF to 
express any type of variation. It explicitly states the type of 
variation along with the sequence of variation, as well as the 
genotypes of multiple samples, if they are available, for the 
particular variation. Since VCF is usually associated with 
Next-Generation Sequencing data (such as that generated 
from the 1000 Genomes Project [2]), it is, therefore, the 
primary format choice for genome analysis tools. 

However, the VCF is a plain text file containing highly 
detailed information. It is somewhere between human 
readable and machine readable [25] and, therefore, 
understanding the data that a VCF file contains is in itself a 
challenge. Usually, genome analysis requires looking at 
more than one VCF file whereby a personal computer may 
struggle to load and process the data in its memory which is 
why, analysis tools like Omicia [6] and CAPER 3.0 [7] turn 
to cloud computing. 

Here, we explore the possibility of representing the VCF 
files as a graph model, thus making it easy to move the data 
in memory and, thus, eliminating the need to load and read 
VCF files every time analysis is to be done. It will also make 
possible to represent every possible path within a genome in 
memory, making analysis faster, less expensive, and more 
accurate. 
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II. TYPES OF GRAPHS 
Different types of graph representations of the genome 

can be found in literature. Listed below are some of these 
genome graphs and the data they represent. 

A. Sequence Graphs 
A Sequence Graph allows representation of different 

orientations of homology of a genome [26]. It lets a multiple 
sequence alignment capture structural variations which may 
go undetected in a matrix representation. Currently, the main 
application of sequence graphs is in multiple sequence 
alignment where each genome is represented as acyclic 
breakpoint graph [8]. 

B. Population Graphs 
A Population graph captures variations between many 

individuals. Multiple sequences are represented as a graph 
[27] which is aligned to new reads containing variations. 
Since coordinates have to be extracted from a reference 
genome to get an alignment, the reference coordinates are 
carried to the graph. This type of graph may miss structural 
variations such as novel insertions in a reference genome. 

C. Assembly Graphs 
A set of unaligned sequences can be represented as an 

assembly graph. [28]. Assembly graphs are popularly used to 
assemble fragments of a single genome to get the original 
sequence in sequence technology. de Bruijn graphs have also 
been used for sequence assembly. 

D. Variation Graphs 
A Variation Graph (VG) is able to represent many 

genomes in the same context by aligning a sequence graph of 
a genome to the variations. The principle of Variation 
Graphs is same as Sequence Graphs, as they also look to link 
successive sequences through directed edges while 
representing the sequence as nodes. 

E. Compressed de Bruijn Graphs 
The relationship between genomes is graphically 

represented using maximal exact matches (MEMs) using 
compressed de Bruijn Graphs [9]. It helps reveal highly 
conserved or segregated sequences across a population 
which play an important role in determining phenotypical 
roles. 

III. REPRESENTING THE VARIANT CALLING FORMAT AS A 
DIRECTED ACYCLIC GRAPH (DAG) 

 
Cloud computing is being used to solve large-scale 

problems in science [16]. With exabytes of data being 
generated by genomics, researchers are turning towards 
cloud computing to answer important biological questions. 
Applications which are run on clouds can be modeled by 
Directed Acyclic Graphs (DAGs) representing workflows 
[19] of tasks to be run on the cloud [16]. A DAG uses its 
vertices to represent the number of jobs that need to be 
processed in order to complete a task, while its edges are 
used to define the precedence constraints. This model of 

workflow works well for High Performance Computing [17]. 
There are a number of studies available [9], [10], [11] which 
show that high performance can be achieved when executing 
DAG-based workflows on parallel clusters [12], [19].  

The challenge here is to represent the VCF files as a 
graph model which can be converted to DAG so that high 
performance may be achieved for genome analysis using 
cloud computing. De Bruijn graphs have been used in 
genome assembly as well as in population studies to 
represent overlapping information. The de Bruijn graph is a 
directed graph which is able to capture variations as disjoint 
cycles in the graph. Assembly graphs can be represented as 
variation graphs, by converting a de Bruijn graph to a 
variation graph. Since, one way or another, it is possible to 
represent the different types of genome graphs as variation 
graphs, the question arises whether it is possible to represent 
a VCF as a variation graph, and then convert the variation 
graph to a directed acyclic graph? 

Given the information present in a VCF, it cannot be 
directly converted to variation graph. However, it is possible 
to map a VCF file to a reference genome, which, together 
will make a variation graph. The reference genome is 
available as a FAST-All (FASTA) sequence format (which is 
a text file representing the nucleotide or protein sequence). 
The VCF file does not contain sequences which are same as 
the reference genome, but only those sequences which are 
different along with the position information of this 
occurrence. This means that the variations must be aligned to 
the genome. 

The reference genome is first converted to a sequence 
graph. To convert a sequence graph to a variation graph, the 
variations need to be incorporated. To do this, the sequence 
graph is cut where a variation occurs (this information is 
picked from the VCF file) generating an alternative graph 
with the variant sequence known as the variation graph. To 
know where to cut the sequence graph, the VCF is aligned to 
the sequence graph through partial order alignment [14]. 
Figure 1 below shows a partial order alignment of two 
sequences. 

 

 
Figure 1.  Sequence Alignment in the Partial Order Alignment (POA) 
representation (a) Row-Column Alignment representation of a pairwise 

protein sequence. (b) Partial Order alignment of a pairwise protein 
sequence alignment [14]. 

The basic data structure of a variation graph will contain 
nodes, edges and paths (Figure 2). Each variation will follow 
a different path within the graph. Once the variation graph is 
constructed, each variation path can be treated as a sub-
graph. Since the path will traverse each node once, the 
subgraph can be now treated as a Directed Acyclic Graph or 
DAG. The DAGs consisting of nodes, edges and one path 
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can now be moved in memory. These subgraphs can be 
reassembled when required because the path is now known. 

 

 
Figure 2.  The data structure of a Variation Graph showing nodes, edges 

and paths. 

The subgraphs are basically representing the variations 
that occur in different genomes with respect to the reference 
genome. Figure 3 shows the different paths a variation graph 
can take (which are also the subsequent subgraphs (or 
DAGs) of the variation graph). 

 

 
Figure 3.   (a) Variation Graph of two sequences [14]. (b) Variation graph 

broken down to subgraphs. Each graph contains nodes, edges and paths. 
The subgraphs are constructed as DAGs to be run in memory within a 

cloud environment. 

Using the VG tool by VGteam [15], the reference 
sequence hs37d.fa and VCF file for phase 3 of the 1000 
Genomes Project [5] generates VG by cutting the reference 
genome at the variation and adding the alternate sequence to 
it. It indexes the sequence as a key-value store. For this step, 
64GB of RAM or more are required. It then constructs the 
VG by aligning one chromosome at a time and takes half an 
hour when using 24 cores. It is at this stage that the VG is 
producing many partially ordered subgraphs. These can be 
interpreted as DAGs. Intoducing a workflow at this stage 

will allow the DAGs to move in memory [13]. The 
workflow will be able to coordinate the DAGs and 
reconstruct the variation graph, if required. 

The DAGs can be processed in memory to exploit the 
high performance of cloud computing. DAGs have been 
used in the past to harness the power of multicore and 
hybrid platforms [21], [22], [23], [24]. DAGs allow 
processing to be broken down to parallel tasks which can 
then be assigned to different kernels. Communication 
between tasks is implicit, allowing the use of data 
dependecies of DAG. This means that global 
synchronization of tasks can be avoided, and in turn, this 
increases scalability [20]. 

IV. CONCLUSION 

The VCF file is the standard starting point of genome 
analysis. Since it represents a huge amount of data, and 
more than one VCF file is required during the analysis, it 
makes sense to shift the analysis process to a cloud. This 
enables the genome analysis to make use of high 
performance computing to generate analysis efficiently and 
in almost real time. But in order to further facilitate this, 
taking a step back and representing the VCF files as DAGs 
will enhance the analysis by shifting the data on to a cloud 
from almost the beginning of the process. 
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