
High Performance Dynamic Graph Model for Consistent Data
Integration

Bilal Arshad
Ashiq Anjum

b.arshad@derby.ac.uk
a.anjum@derby.ac.uk
University of Derby

Derby, Derbyshire, UK

ABSTRACT
In a distributed environment, data from heterogeneous sources are
brought together in a unified and consistent manner for analytics
and insights. Inconsistencies arising due to the dynamic nature of
sources such as addition/deletion of column or merging of columns
can compromise the consistency of the distributed system. This can
lead to the linking of inaccurate records and faulty data entries. Re-
sulting in false reports and erroneous analyses. Furthermore, issues
such as performance guarantees and scalability fuel the existing
challenges. We have proposed an alternate graph-based approach
to integrate data using an in-memory environment. The central
idea of the approach is the use of graphs to integrate heterogeneous
data sources in a distributed environment. The underlying approach
provides both high-performance and scalability to address changes
in a dynamic system for data integration. This allows the genera-
tion of graphs from individual source data and modifications in a
consistent manner so that the state of the overall distributed system
always remains coherent. It provides a novel way of combining
consistent data integration and performance in a distributed sys-
tem. Our system performs better than existing graph systems for
dynamic graph evolution ensuring consistency and provides the
necessary scalability guarantees as the size of the data increases.
Results also show the correctness of the approach when integrating
disparate data-sets.

KEYWORDS
data integration, graphs, dynamic graphs, consistency, scalability,
performance

ACM Reference Format:
Bilal Arshad and Ashiq Anjum. 2019. High Performance Dynamic Graph
Model for Consistent Data Integration. In Proceedings of the IEEE/ACM
12th International Conference on Utility and Cloud Computing (UCC ’19),
December 2–5, 2019, Auckland, New Zealand. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3344341.3368806

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368806

1 INTRODUCTION
Data integration is the process of bringing together data from het-
erogeneous sources with a multitude of data types (not limited
to CSV, relational and XML etc.) in a consolidated and consistent
manner [18]. Usually, these sources are both high in volume and
velocity of change [6]. Inconsistencies can stem promptly if sources
evolve, addition/deletion of a column, change in the column name,
merging of columns for instance. The consequence of inconsisten-
cies is startling for data integration: linking of inaccurate records
or faulty associations between data entries. This deluge of actions
leads to false reports and analyses. Coupled with the volume and
velocity of changes, the repercussions of inconsistencies can be
very detrimental to the overall distributed system. In addition to
these challenges, the dilemma of providing both performance and
scalability when integrating data in a distributed environment still
remains partially resolved.

In order to address the challenges of data integration in a dy-
namic environment, several approaches have been proposed. Louie
et al. [27], Seoane et al. [1], Lenzerini et al. [25], Ziegler et al. [43],
Subhani et al. [38], Subhani et al. [33] and Goble et al. [15] provide
a comprehensive and detailed review of various data integration
techniques for data integration such as link integration, ontologies,
federated integration approach and warehousing. Different tech-
niques explore the inherent trade-off between data consistency and
practical aspects such as scalability and performance. Some of these
techniques work well for static data or systems that can surren-
der high availability for performance but do not guarantee both.
On one end of the spectrum, ETL (Extract, Transform and Load)
tools used in Data Warehousing approaches provide consistency
but lack scalability both in terms of data integration and querying.
On the other end of the spectrum, NoSQL approaches [19] [41] pro-
vide scalability but grant a weak notion of consistency. Meanwhile,
ontologies [23] provide neither a strong sense of consistency nor
scalability.

Inconsistencies arising as a result of data integration in databases
have been studied in great depth, some approaches deal with the
means of transformation and cleaning processes when data is ac-
cessed by the sources [8] [14]. While others deal with inconsis-
tencies in cases where the database does not guarantee integrity
constraints e.g. see [9], [28], [29], [13] and [26]. One of the ap-
proaches to address these challenges is the use of Graphs. As links
are created between sources in order to integrate, it is intuitive to
rely on graph structures to represent the problems faced [10].

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

263

https://doi.org/10.1145/3344341.3368806
https://doi.org/10.1145/3344341.3368806


Figure 1: Sample Source Schema [24] and its associated Property Graph

The representation of data integration problem as graphs has
been established in prior research works (integration of hetero-
geneous data sources to generate knowledge graphs Singhal et
al. [7] and Bollacker et al. [6]). Graphs can be optimised for effi-
ciently processing interrelated data-sets [32]. Since it does not have
to take into account sets of unrelated data, much like the issue
with SQL [36], graphs allow for fast traversals. Their flexibility and
cost-effectiveness (in terms of computation), makes them an ideal
candidate for data integration in a distributed environment prone
to changes. In addition to these, graph models can handle high
volumes of data and can scale well over billions of nodes hence
making the solution scalable and improve the performance of the
overall system [32] [4].

For this paper graphs G = (V,E) are defined as objects that consist
of two sets: Vertices V and Edges E. Vertices or nodes are entities
or items of significance; edges serve as the links between them.
Both vertices and edges can have an arbitrary number of key/value
pairs called properties. Graphs having multiple edges i.e. having
parallel edges between the same two vertices are known as multi-
graphs. Directed graph orders the vertices of an edge to denote edge
orientation [35]. Property Graphs are directed, labelled, attributed
multi-graph. Property graphs [35] not only enable to label both
vertices and edges but also to attribute meta-data (i.e. properties)
to them. We have used Dynamic Property Graphs [20] [2] to create
our graph model. Dynamic Property Graphs allow changes such
as edge/vertex insertions (and deletions) to be incorporated within
property graphs. Dynamic graphs can be defined as a set of finite or
infinite ordered set of pairs (date,events) [2]. All sets of events may
tweak the graph structure/configuration/structure and/or attributes
of some graph aspects. Dynamic graph models allow querying and
updation of graphs as the sources evolve as quickly and efficiently
as possible [42]. Once the graph model is created and loaded to a
native graph system, data can be browsed and queried quickly and

iteratively using data optimisation approaches [21] [17] [5] and
distributed globally using high-performance computing, cloud and
grid-based approaches [39] [30] [22] [31].

In order to demonstrate the effectiveness of our approach, our re-
search endeavour aims to introduce a dynamic graph model which
integrates data from disparate sources to a data warehouse. This
work will use clinical data as a running example throughout the
paper for data integration. Figure 1 shows an excerpt from a clinical
data set to be integrated (Figure 1 (a) and the integrated graph rep-
resentation Figure 1 (b)). This work only explores inconsistencies
at a structural level. All other types of consistency checks are out
of the scope of this paper. Consistency is defined as maintaining
coherence between the structures in the source (source schema)
and structures in the data warehouse (warehouse schema). Some
of the contributions of this paper are representing source data as
dynamic graphs for integration; quick generation of graphs; mod-
elling changes to the integrated set of graphs (addition/deletion of
vertices/edges, updating properties of vertices/edges) and formalis-
ing; additionally, allowing integrated data to be inspected quickly,
helping to speed up the analytics process significantly.

This paper is organised as follows: Section 2 describes the dy-
namic graph model for data integration. It then explains how to
formally model changes in Section 3 and explains the implementa-
tion and experimental setup in Section 4 respectively. Results are
presented in Section 5 and in the end, Section 6 concludes this paper
by specifying some open problems and giving future directions.

2 RESEARCH APPROACH - DYNAMIC
GRAPH MODELLING AND GRAPH
GENERATION

In order to address the challenges associated with the dynamic
nature of data sources as discussed previously, we present an alter-
native data model which will allow for quick, efficient and iterative

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

264



Figure 2: System Architecture

data integration. A unified dynamic property graph is being gen-
erated from the meta-data schemas of the source data. Figure 2
shows the architecture of the proposed system. Integrated graphs
as shown in Figure 2 are generated using a modified approach from
[11]. Virgilio et al.’s approach converts source data to property
graphs. Our approach uses a modified version of this approach,
using metadata to extract schema paths instead of using schema
directly. This approach works well for our endeavour since schema
paths from metadata extract structures from source data and es-
sential details about sources that help to generate graphs in the
first instance and later populate these graphs. Virgilio’s approach
attempts to generate graphs only and does not provide any means
to update the graph once a change occurs. Our work extends their
approach by making the graph dynamic allowing for modifications
to the graph in a consistent manner. The first step is to create a
graph model to represent the sources as an integrated property
graph. Later these integrated graphs are populated using the open-
source clinical data sets as running examples. Once these graphs
have been populated they will be queried and tested for correctness,
scalability, performance and consistency. There are slight modifi-
cations to the algorithms employed by Virgilio et al.’s approach to
match our needs. Source schema is converted to graphs as follows:

Definition 1 (Schema Graph) Given a schema m, the dynamic
schema graph for m is a directed multi-graph ⟨V,E⟩ such that: (i)
there is a vertex A ∈ V for each attribute A of a relation in m and (ii)
there is an edge (Ai ,Aj ) ∈ V if one of the following holds:

(a) Ai belongs to a key of a relation m in m and Aj is a non-key
attribute of m;

(b) Ai ,Aj belong to a key of a relation m in m and

(c) Ai ,Aj belong tomi andmj respectively and there is a foreign
key betweenmi .Ai andmj .Aj

Given the meta-data schema m and set of full schema paths SP,
we generate integrated property graphs g = (V,E) using the modified
version of cases described in Virgilio et al.’s approach. Modifications
to the algorithms include the use of extracted metadata from source
schemas for structural details to construct graphs. Our model runs
repeatedly over all the elements of the schema path iterating and
analysing schema path from parent Ai to child Ak . Note: each
Ai of sp corresponds to an attribute in m. Given schema m
function getall(m,Ai ) returns all the values v associated to Ai
in m. Accordingly, when we combine the functioning domain of
attribute Ai in the vertices of g, we can add that Ai is inspected i.e.
Ai is added to the collection of VS of visited attributes.

3 FORMAL MODELLING FOR DYNAMIC
GRAPH EVOLUTION

In order to add dynamic changes to the integrated graph our work
employs Petri-nets to model the changes in the source schema.
Petri-nets enables us to describe state changes in a dynamic system
like ours with transitions. In a distributed environment, as the data
evolves, the state of the sources and the warehouse needs to be
captured and integrated. Formal modelling of these state changes
enable us to develop a precise specification of the evolving sources
and how they can accommodate changes such as an addition, dele-
tion or update.

Petri net elements can be defined as TGG (Triple Graph Gram-
mar) rules from project or object element [37]. This is a form of
formal mapping. Figure 3 shows the use of Petri-nets to model graph

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

265



Figure 3: Petri-nets for modelling changes

evolution (insertion, deletion and update). The integrated graph is
provided as in input to the Petri-net model. Based on the evolution
of the source it can be presented with the following scenarios:

• Vertex/Edge Insertion
• Vertex/Edge Deletion
• Update Properties

Places i.e. circles represent the conditions that are modelled
within the graph as mentioned above, while squares represent
the events occurring within the graph that may cause changes
in the state of the graph. Edges connect places to transitions and
transitions to places highlighting the flow of petri-net model. Petri-
nets are defined as bipartite graphs or a bipartite digraph that can be
represented as a five-tuple (R, T, I, O,Mo ), where P is a set of finite
set of places, T is a finite set of transitions, I ⊆ (PxT ) Input arcs,
and O ⊆ (TxP) Output arcs, P ∪ T , ϕ and P ∩T , ϕ,m0 represents
the initial marking. Petri-nets are closely associated with graphs
and graph theory and can serve well for visualisation purposes.
Control functions presented in red along with the places describe
the conditions required by these places tomove to transitionswithin
the petri-net model. The following section describes individual

places (scenarios) in detail, the petri-net model is broken down to
explain the individual places and transitions in detail.

3.1 Modelling changes to Dynamic Graphs -
Insertion

Dynamic graphs encode changes in sources to structural changes
in the graph. For the purpose of this paper, we have focused on
structural changes only. Here we talk about different types of events
(types of changes) and how to model them onto a graph.

Insertion: If a new column is added to one of the source’s schema
for instance “startTime” in the ‘Review Status’ table (Figure 1 (a)),
a new vertex needs to be created in this case. It is worthy to note if
the insertion is a new vertex (such as the example scenario) or a
new edge (for example relationship between two vertices is altered
in the source schema) integrated graph g (current state) needs to be
updated to g’ (modified state) in order to keep the graph consistent.
In situations where the newly added column is a foreign key to
another table, it is essential to create edges between the new vertex
and the corresponding vertex(-ices).

Figure 4 shows the insertion of a new vertex to the graph, the
box labelled NewNode(Ai ,m,g) describes the transition from the

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

266



Algorithm 1: Insertion in dynamic property graph
Input: Updated SP, graph g
Output: updated graph g’
VS← ∅;
g← (V , E);
foreach sp ∈ SP do

find vertex Ai ;
if Ai+1← ∅ then

add newNode(Ai ,m,д);

else if Ai+1 , ∅ then
add newNode(Ai ,m,д);
add newEdge(Ai−1, sp,m,д);
add newEdge(Ai+1, sp,m,д);

else
add newEdge(Ai , sp,m,д);

end
VS← VS ∪ {Ai };
return g’;

end

Figure 4: Insertion in Dynamic Property Graph

current state of the graph to the updated state of the graph once
a new vertex is added. Control function for this transition include
generation of both new vertex as defined by newNode(Ai ,m,g) and
newNodeEdge(Ai ,sp,m,g) to the newly generated vertex. Algorithm
1 checks for conditions if the vertex already exists, if not it adds
a new vertex and the associated edges to its parent vertex so the

vertex is not lost within the graph. Once the new vertex and edges
have been successfully updated, the output graph g is also updated
accordingly to the new state. Note: Ai−1 refers to the parent vertex
of the vertex under consideration and Ai+1 refers to the

3.2 Modelling changes to Dynamic Graphs -
Deletion

Deletion: If a column is removed from the schema for instance ‘con-
flict’ from the table ‘Review Status’ (Figure 1 (a)), the corresponding
vertex in g needs to be removed along with the edge that connects
it to g (current state). In such a scenario it is imperative to take
into account if other relationships (edges) exist to that vertex and
if that is the case, they need to be removed too. Figure 5 shows the
petri-net transition if there is a vertex to be deleted, the deleteNode
algorithm takes the current state of graph as the input, iterates to
the vertex to be deleted, generates new edges between the parent
vertex and the child vertex of the vertex under consideration Ai .
This is done under the condition thatAi has any child vertex linked
with itself. Once the edges have been created the vertex Ai and
the edges from Ai−1 are deleted from the graph. The updated set
of graph g’ (modified state) then represents its current state. Al-
gorithm 2 describes how the graph evolves when a vertex and its
associated edges are deleted from the graph.

Algorithm 2: Deletion in dynamic property graph
Input: Updated SP, graph g
Output: updated graph g’
VS← ∅;
g← (V , E);
foreach sp ∈ SP do

find vertex Ai ;
createAll NewEdge(Ai , sp,m,д) from Ai−1 to Ai+1;
delete vertex Ai ;
deleteEdge from Ai−1 to Ai and Ai to Ai+1;
VS← VS ∪ {Ai };
return g’;

end

3.3 Modelling changes to Dynamic Graphs -
Update

Update: If a column name is updated, the corresponding vertex
name and properties need to be updated in g accordingly. Updates
can also occur on edges or properties in scenarios where the associ-
ated relationships are updated in the source schema. Figure 6 shows
the petri-net model describing the formalisation of updating the
graph. The petri-net is provided with the existing graph as the input.
If the evolution of source involves creating new linkages i.e. creat-
ing new edges between existing nodes the newNodeEdge(Ai ,so,m,g)
function is called allowing new edges to be created as described
in algorithm 3. Similarly, if the property of any vertex or edge is
added during the evolution of sources, the newProperty(Ai ,sp,m,g)
function is used to add properties to the concerned vertex/edge.
Once the new edges have been created and properties added to
vertex/edges the graph g’ is brought to the current state of the
graph.

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

267



Figure 5: Deletion in Dynamic Property Graph

Algorithm 3: Update in dynamic property graph
Input: Updated SP, graph g
Output: updated graph g’
VS← ∅;
g← (V , E);
foreach sp ∈ SP do

find vertex Ai ;
create NewEdge(Ai , sp,m,д) from Ai−1 to Ai+1;
createAll NewProperty(Ai , sp,m,д);
VS← VS ∪ {Ai };
return g’;

end

4 IMPLEMENTATION AND EXPERIMENTAL
SETUP

Implementation: Property graph model was used to generate inte-
grated graphs from source meta-data schemas. The changes within
a source are then randomly created using a stream of modifica-
tions containing vertex/edge insertions, vertex/edge deletions and
property updates are implemented based on algorithms in Section
3. Scala Scripting was used to extract schema records to generate
Vertex and Edge RDDs in Spark using the GraphX API. Scala is
the general-purpose language to be used for distributed processing
systems such as Spark. Additionally, Spark uses the GraphX API to
process graphs.

We began with data-sets in two major formats; Relational and
XML. The relational data-sets were converted to the graph as ex-
plained in Section 3. XML data was ingested into Neo4j using

Figure 6: Update in Dynamic Property Graph

Integrated
Datasets Type No. of Vertices No. of Edges

DS1 Real World 350 2875
DS2 Real World 11600 65425
DS3 Real World 25767 98598
DS4 Real World 42494 109271
DS5 Synthetic 65821 2386981
DS6 Synthetic 79729 4857647

Table 1: Clinical Data-sets

‘apoc.load.xml’ provided by Neo4j to bulk load XML data for test-
ing against our proposed approach. In order to generate graphs
and ingest data, XML data from ClinVar [24] was used. ClinVar
is a freely available clinical repository of clinical data containing
human variations and phenotypes.

Evaluation Platform: Our proposed approach is evaluated on an
Intel Core i7 CPU running at 3.60 GHz with 16 GB RAM having
a Ubuntu 16.04 running on a Virtual Machine. We used GraphX
[16] as the underlying technology for our approach (referred to
as the proposed approach in the next section) and Neo4j [40] for
testing and comparison purposes (referred to as the test approach
in the next section). The next section details the results from our
experimentation.

Table 1 shows the integrated data-sets used to evaluate the sys-
tem. Data-sets DS1 to DS6 is an integrated set of data from source
schemas of varying size. Synthetic data-sets were generated using
DataSynth [3] and Graph500 RMAT data generator [34] due to the
limited size of clinical data being publicly available. The structures
within these synthetic graphs are similar to the ones present in
clinical data to ensure uniformity across the testbeds and results.

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

268



Figure 7: Graph Generation

Figure 8: Graph Loading

5 RESULTS
Our results are quite encouraging, we have been able to integrate
data-sets resulting in the largest integrated data-set containing ap-
proximately 80,000 nodes and close to 49,00,000 edges using ClinVar
[24] and synthetic data-sets. The initial effort required to generate
a graph and push the data to a graph system is costly, but once
it is in the graph system browsing and querying it iteratively is
cost-effective in terms of computation because it does not need to
be loaded every time there is a change in the source schema. Firstly,
we evaluate the two systems with respect to the time they take to
generate graphs from raw data-sets. The generation of graphs as
mentioned is a costly affair in terms of both time and computation
as they generated from scratch at this stage. Figure 7 describes
the comparison of graph generation using different techniques. Ex-
traction of metadata is done through the open-source tool (Apache

MetaModel [12]) which provides interfaces for various types of data
sources not limited to MySQL, CSX, XML files etc. While GraphX
and Neo4j have been used to generate graph structure within the
native systems.

Figure 9: Query Execution time cold cache

Figure 10: Query Execution time warm cache

Once the graphs have been generated the next stage is to pop-
ulate these graphs by ingesting data. We evaluate both systems
with respect to the time it takes to populate a graph from data
sources. We compared our approach against native data importers
of Neo4j. We have used a naive model to import a SQL dump in
order to populate graph i.e. one vertex for each tuple present in the
source data-set and one edge for each foreign key reference when
integrating these data-sets. Neo4j importer performed better than
our system (approx. two times better). This is because our approach
has to process the schema information of the relational database

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

269



Figure 11: Part of relational schema of integrated data-set DS1

Figure 12: Snippet from Schema of DS1 extracted by Scala
Query

(i.e. the schema graph), while the test system directly imports data
values from the SQL dump using Neo4j importer. As seen in Figure
8, the proposed approach takes almost twice as long as the test
approach to ingest data into the graphs.

We then evaluated these data-sets based on dynamic graph
queries. For each data-set we grouped the queries in five sets (i.e.
ten queries per set): each set is homogeneous with respect to its
complexity of the queries (e.g. number of connected components,

number of results and so on.). For instance, referring to integrated
ClinVar data-sets, the first set of queries searches information about
colorectal cancer while the second set of queries seeks information
about lung cancer. For each set, we ran the queries ten times and
measured the average response time. We performed cold-cache ex-
periments (i.e. by dropping all file-system caches before restarting
the VMs and running the queries) and warm-cache experiments
(i.e. without dropping the cache). Figure 9 shows the performance
for cold cache experiments. Due to space constraints, in the figure,
we report times only on ClinVar data-sets since the larger size of
synthetic data-sets poses more challenges. Our system performs
better consistently for most of the queries, significantly outperform-
ing the test approach in some cases (e.g. Figure 10). We highlight
how our dynamic evolution algorithms allow GraphX to perform
better than Neo4j in DS4 (having a more complex schema). This is
due to our strategy reducing space overhead and consequently the
time complexity of the overall process with respect to the test ap-
proach that spends much time traversing a large number of nodes.
Warm-cache experiments follow a similar trend as shown in Figure
10.

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

270



In order to test the correctness of the graph, we investigated if
the integrated schemas of data-sets match the integrated schemas
resulting from the relational model. We tested if integrated schema
of data-set 1 (DS1) could be reconstructed without any loss of data
by querying the graph in our proposed approach and the tested
approach. We then matched these schemas with the schema of the
same data-sets being integrated into a relational model. Figure 12
shows part of the schema from data-set 1, this matches the schema
obtained from data-set being integrated using a relational model
(Figure 11).

6 CONCLUSION AND FUTURE DIRECTIONS
Distributed environments require data from disparate sources to be
integrated in a consistent order for various reasons such as querying
across sources for interdependent thematics or analytics for reports.
These sources are prone to changes and can lead to inconsisten-
cies. Our paper introduces an alternate approach of representing
sources as graphs for integration. Representation of integrated data
as graphs allows for faster querying, ensures consistency when the
sources evolve and provides scalable storage. In addition to all this,
the approach provides provenance of changes in the sources and
the graph to keep track of all the changes that occur over time. This
traceability is important for trust within the sources as they evolve
and are used for reporting. Metadata was extracted from sources to
obtain structures to generate graphs and then later used to populate
graphs for testing purposes. Petri-nets (modelling technique) was
used to formalise the model for graph evolution, and algorithms
have been proposed for insertion, deletion and update. We then
implemented these in a distributed in-memory environment (Spark)
for high-performance integration and scalability. The results test
the approach by using various sets of queries on the integrated
data-sets to validate both correctness and the scalability of the ap-
proach. Results show that our approach has significant difference
in querying time as compared to the test approach using various
set of queries. Furthermore, the proposed system proved to be cor-
rect when integrating data from various sources. This was done
by matching the source schema to the integrated schema for any
differences. To our satisfaction, integrated schema from our graphs
was an exact match of the schema being independently integrated
at the source level. The proposed system makes it easier to analyse
the data since it eliminates the need to load data every time an
analysis needs to be performed. The use of in-memory processing
will make it easy to add changes to the integrated schema, updating
the graph in real-time and be more accurate. While the consistency
checks will ensure that the approach provides strong consistency
guarantees in addition to performance and scalability. In future, the
approach can be tested on other domains for its efficacy.

REFERENCES
[1] Aguiar-Pulido V. R Munteanu C. Rivero D. R Rabunal J. Dorado J. A Seoane, J.

and A. Pazos. 2013. Biomedical data integration in computational drug design
and bioinformatics.. In Current computer-aided drug design, Vol. 9. 108–117.

[2] Damien Olivier Yoann Pigné. Antoine Dutot, Frédéric Guinand. 2007. Graph-
Stream: A Tool for bridging the gap between Complex Systems and Dynamic
Graphs.. In Emergent Properties in Natural and Artificial Complex Systems. Satellite
Conference within the 4th European Conference on Complex Systems (ECCS’2007).
Cray Users Group (CUG). hal-00264043.

[3] Raghav Kaushik Arasu, Arvind and Jian Li. 2011. DataSynth: Generating synthetic
data using declarative constraints. In VLDB Endowment, Vol. 4. 1418–1421.

[4] C. Avery. 2011. Giraph: Large-scale graph processing infrastructure on hadoop.
In Proceedings of the Hadoop Summit. Santa Clara, USA, Vol. 11. 5–9.

[5] Ashiq Anjum Richard Hill Nik Bessis Baker, Charlie and Saad Liaquat Kiani. 2012.
Improving cloud datacentre scalability, agility and performance using OpenFlow,
Vol. 122. IEEE Fourth International Conference on Intelligent Networking and
Collaborative Systems, 20–27.

[6] Evans C. Paritosh P. Sturge T. Bollacker, K. and J. Taylor. 2008. Freebase: a
collaboratively created graph database for structuring human knowledge.. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data. ACM, 1247–1250.

[7] Evans C. Paritosh P. Sturge T. Bollacker, K. and J. Taylor. 2012. Introducing the
knowledge graph: things, not strings.. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. Official google blog. https:
//blog.google/products/search/introducing-knowledge-graph-things-not/

[8] Mokrane Bouzeghoub and Maurizio Lenzerini. 2001. Introduction to:-data extrac-
tion, cleaning, and reconciliation. In Special issue of Information Systems, Vol. 26.
535–536.

[9] F. Bry. 1997. Query answering in information systems with integrity constraints..
In IFIP WG 11.5 Working Conf. on Integrity and Control in Information System.
Chapman Hall.

[10] Joachim Rupp Croset, Samuel and Martin Romacker. 2015. Flexible data inte-
gration and curation using a graph-based approach. In Bioinformatics, Vol. 32.
918–925.

[11] Maccioni A. De Virgilio, R. and R. Torlone. 2013. Converting relational to graph
databases. In First International Workshop on Graph Data Management Experiences
and Systems. ACM, 1.

[12] Kasper Sørensen et al. Last Accessed: September 2019. Apache MetaModel.
[13] S. Greco G. Greco and E. Zumpano. 2001. A logic programming approach to

the integration, repairing and querying of inconsistent databases.. In 17th Int.
Conf. on Logic Programming (ICLP’01) of Lecture Notes in Artificial Intelligence,
Vol. 2237. Springer, 348– 364.

[14] Daniela Florescu Dennis Shasha Galhardas, Helena and Eric Simon. 1999. An
extensible framework for data cleaning. HAL-Inria.

[15] C. Goble and R. Stevens. 2014. State of the nation in data integration for bioin-
formatics.. In Journal of biomedical informatics, Vol. 41. 687–693.

[16] Xin R.S. Dave A. Crankshaw D. Franklin M.J. Gonzalez, J.E. and I. Stoica. 2014.
Graphx: Graph processing in a distributed dataflow framework. In In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14). 599–613.

[17] Ashiq Anjum Richard Mcclatchey Habib, Irfan and Omer Rana. 2013. Adapting
scientific workflow structures usingmulti-objective optimization strategies, Vol. 8.
ACM Transactions on Autonomous and Adaptive Systems (TAAS).

[18] Rajaraman A. Halevy, A. and J. Ordille. 2006. Data integration: the teenage years.
In Proceedings of the 32nd international conference on Very large data bases - VLDB
Endowment. 9–16.

[19] E. Haihong Guan Le Han, Jing and Jian Du. 2011. Survey on NoSQL database..
In 6th international conference on pervasive computing and applications. IEEE,
363–366.

[20] Frank Harary and Gopal Gupta. 1997. Dynamic graph models. In Mathematical
and Computer Modelling, Vol. 25. 79–87.

[21] Antonio Delgado Peris Ashiq AnjumDave Evans Stephen Gowdy José M. Hernan-
dez Eduardo Huedo et al. Hasham, Khawar. 2011. CMS workflow execution using
intelligent job scheduling and data access strategies., Vol. 58. IEEE Transactions
on Nuclear Science, 1221–1232.

[22] Ashiq Anjum Michael Knappmeyer Nik Bessis Kiani, Saad Liaquat and Nikolaos
Antonopoulos. 2013. Federated broker system for pervasive context provisioning.,
Vol. 86. Journal of Systems and Software, 1107–1123.

[23] Michel. Klein. 2001. Combining and relating ontologies: an analysis of problems
and solutions.. In OIS@ IJCAI.

[24] Lee J.M. Riley G.R. Jang W. Rubinstein W.S. Church D.M. Landrum, M.J. and D.R.
Maglott. 2013. ClinVar: public archive of relationships among sequence variation
and human phenotype.. In Nucleic acids research, Vol. 42. 980–985.

[25] M. Lenzerini. 2002. Data integration: A theoretical perspective.. In Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 233–246.

[26] J. Lin and A. O. Mendelzon. 1998. Merging databases under constraints.. In Int. J.
of Cooperative Information Systems, Vol. 7. 55–76.

[27] Mork P. Martin-Sanchez F. Halevy A. Louie, B. and P Tarczy-Hornoch. 2007. Data
integration and genomic medicine. In Journal of biomedical informatics, Vol. 40.
5–16.

[28] L. E. Bertossi M. Arenas and J. Chomicki. 1999. Consistent query answers in
inconsistent databases.. In 18th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’99). ACM, 68–79.

[29] L. E. Bertossi M. Arenas and J. Chomicki. 2000. Specifying and querying database
repairs using logic programs with exceptions.. In 4th Int. Conf. on Flexible Query
Answering Systems (FQAS’00). Springer, 27–41.

[30] Andrew Branson Ashiq Anjum Peter Bloodsworth Irfan Habib Kamran Mu-
nir Jetendr Shamdasani Kamran Soomro McClatchey, Richard and neuGRID
Consortium. 2005. Providing traceability for neuroimaging analyses., Vol. 82.

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

271

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/


International journal of medical informatics, 882–894.
[31] Irfan Habib Ashiq Anjum Kamran Munir Andrew Branson Peter Bloodsworth

Saad Liaquat Kiani McClatchey, Richard and neuGRID Consortium. 2013. Intelli-
gent grid enabled services for neuroimaging analysis., Vol. 122. Neurocomputing,
88–99.

[32] J.J Miller. 2013. Graph database applications and concepts with Neo4j. In In
Proceedings of the Southern Association for Information Systems Conference, Atlanta,
GA, USA, Vol. 2324.

[33] Anjum Ashiq. Moeez, Subhani. 2019. Multiclass disease predictions based on
integrated clinical and genomics datasets.. In BIOTECHNO2019, The eleventh
international conference on Bioinformatics, Biocomputational Systems and biotech-
nologies. 20–27.

[34] Kyle B. Wheeler Brian W. Barrett Murphy, Richard C. and James A. Ang. 2010.
Introducing the graph 500. In Mathematical and Computer Modelling, Vol. 25.
Cray Users Group (CUG), 45–74.

[35] M.A. Rodriguez and P. Neubauer. 2010. Constructions from dots and lines.. In
Bulletin of the American Society for Information Science and Technology, Vol. 36.
35–41.

[36] M.A. Rodriguez and P. Neubauer. 2013. The graph traversal pattern.. In In Graph
Data Management: Techniques and Applications. IGI Global, 29–46.

[37] A.S. Staines. 2011. Rewriting Petri Nets as Directed Graphs. In International
Journal of Computers. 289–297.

[38] Ashiq Anjum Andreas Koop Subhani, Moeez M. and Nick Antonopoulos. 2019.
Clinical and genomics data integration using meta-dimensional approach.. In
9th International Conference on Utility and Cloud Computing (UCC). IEEE/ACM,
416–421.

[39] M. Thomas T. Azim I. Chitnis A. AnjumD. BourilkovM. Kulkarni et al. Van Lingen,
Frank. 2005. Grid enabled analysis: architecture, prototype and status.

[40] J. Webber and I. Robinson. 2014. A programmatic introduction to neo4j. Addison-
Wesley Professional, 599–613.

[41] Ruichun Hou Xiang, Peng and Zhiming Zhou. 2010. Cache and consistency in
NOSQL. In 3rd International Conference on Computer Science and Information
Technology, Vol. 6. IEEE, 117–120.

[42] Mahmoud Attia Doaa Hegazy Zaki, Aya and Safaa Amin. 2016. Comprehensive
survey on dynamic graph models. In International Journal of Advanced Computer
Science and Applications, Vol. 7. 573–582.

[43] P. Ziegler and K.R. Dittrich. 2007. Data integration—problems, approaches,
and perspectives.. In Conceptual modelling in information systems engineering.
Springer, 35 – 58. Berlin, Heidelberg.

Session 6B: Cloud Modelling and Tools UCC ’19, December 2–5, 2019, Auckland, New Zealand

272


	Abstract
	1 Introduction
	2 Research Approach - Dynamic Graph Modelling and Graph Generation
	3 Formal Modelling for Dynamic Graph Evolution
	3.1 Modelling changes to Dynamic Graphs - Insertion
	3.2 Modelling changes to Dynamic Graphs - Deletion
	3.3 Modelling changes to Dynamic Graphs - Update

	4 Implementation and Experimental Setup
	5 Results
	6 Conclusion and Future Directions
	References



