
Modelling Genomics Datasets to Optimize Its Usage

Patterns for Efficient Analytics

Zeeshan Ali Shah

College of Engineering and
Technology

University of Derby, Derby,
United Kingdom

King Faisal Specialist Hospital and
Research Centre, Riyadh,

KSA

z.shah1@unimail.derby.ac.uk

Prof. Ashiq Anjum
College of Engineering and

Technology
University of Derby

Derby, UK

a.anjum@derby.ac.uk

Mohamed Abouelhoda
Faculty of Engineering, Cairo

University, Giza, Egypt
King Faisal Specialist Hospital and

Research Centre, Riyadh,
KSA

mabouelhoda@yahoo.com

ABSTRACT
Data intensive computing requires fast access to the input data.

Currently in an HPC environment, the computation part is

managed by the job scheduler, whereas data access is unmanaged

and reply completely on the underlying file system. The job

scheduler tracks system parameters such as RAM, CPU and

utilize this for efficient computation. However, it is the

responsibility of the developer to take care of the data related

attributes and their traffic over the network. To solve this issue ,

we suggest data models for genomics data which can be used to

guide the computation engine from data management perspective

in addition to the usual system and computation parameters – We

will demonstrated that enabling the job scheduler with info about

the data is an important steps towards efficient fully automated

data analysis.

CCS Concepts

• Information systems ➝ Data management systems ➝
Information integration ➝ Mediators and data integration.

Keywords
data scheduler, data modelling, scheduling , meta-data systems

1. INTRODUCTION

1.1 Next Generation Sequences
Genomics based medicine, which is, usually referred to as

personalized or precision medicine, became an integral

component in the healthcare system [21]. This is due to recent

advancements in next generation sequencing (NGS) technology.

This technology can reduced the cost and time of reading the

genome. NGS is currently used in the clinic to find variants

(mutations) related to the disease to improve the diagnosis,

prognosis, or to find optimized treatment plans.

The wide use of NGS in the clinic has introduced new

computational challenges. The Genomics grade data analysis

requires optimized algorithms to reach reliable results. To reach a

list of variants with the necessary information for the clinical

practice, a sophisticated computational workflow of many

software tools should be used. The number of these reads depends

on the technology and the model of the NGS instrument. For Ion

technology, one expects around 80 million reads per run.

Processing such huge number of reads entails huge I/O operations,

especially when a workflow of multiple independent programs is

used.

Figure 1: NGS Data analysis pipeline

Figure 1 describes the steps involved in NGS and consists on

following steps:

1. The Primary analysis which mentioned in Step-1 consists on

platform dependent procedures and occurred in the wet lab via

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
ICAAI 2019, October 26-28, 2019, Istanbul, Turkey.

© 2019 ACM. ISBN 978-1-4503-7253-4

DOI: 10.1145/3369114.3369148

135

sequence instruments. The result produced in Step-1 is usually

a FastQ file which process in subsequent step.

2. The Step-2 which is also called Secondary analysis requires

high performance cluster and often accumulate parallel and

distributed computing technologies, it also leverages massive

large scale storage as show in (2) Figure 1 .

The secondary analysis is repetitive, which means various

researchers and scientist use the same data-sets with different

analytical[19] techniques and execute different workflows over it.

For this reason large scale storage are required including some

sort of cluster management system which should allow parallel

execution of different tasks/jobs.

Our research problem deal with this secondary analysis step and

tried to answer different challenges involved around it to optimize

the performance and complexity.

1.2 Current HPC Cluster and How It Works
HPC stands for high performance computing it enables this via

use of multiple physical compute nodes[20] inter-connected

through shared network and access to share file system . Job

scheduler as mentioned in figure 2 manages compute nodes with

their parameters and attributes such as available RAM, storage,

Network and Current CPU Load. These attributes taken into

consideration with scheduler for selecting appropriate compute

nodes for execution job.

Often these attributes are dynamic such as available RAM or

CPU , which requires job schedule to continuously monitor

compute nodes and store these values in database for further query

and job schedule algorithm .

1. From Step-1 in Figure 2 users prepare the jobs as executable

templates which than submitted to job scheduler

2. in step-2 . The job scheduler using the scheduling algorithm

assign the suitable compute node for the job and further submit

them in step-3 .

For data I/O the HPC Cluster [18] requires a shared network file-

system which could be like NFS, Lustre, GPFS etc [19[]]. This

file-system shared among all compute nodes and store the data

require as input to job and data produced from job as output.

Few of the scheduler also benefit from local disk associated with

the compute node but the job in this case do-not start until the data

loaded into local disk completely , this delays the execution and

overall performance .

Furthermore, as the job scheduler manages compute nodes and

execution jobs, the data associated with it are adhoc and

unmanaged. Following figure 3 depicts the data adhoc movement

which is the pain area[1] for HPC cluster performance and which

this paper tried to investigate.

As mentioned in figure 3 the data moved without preplanned

routes or methods, often same data copied twice between different

compute nodes and central storage since another job needs it, this

cause network congestion and delays.

Figure 2: Traditional HPC scheduler

Question arises why the data movement cannot managed and

preplanned ? The investigation of one aspect will be discussed in

this paper.

2. PROBLEM

2.1 Data as black-box, The blind-sight for

Scheduler
Computational jobs link the data with its location that is mostly

contains folder/filenames . For job scheduler perspective the data

appears as a black-box, It has no knowledge about its contents

neither about any meta data associated with it. Below is the

snippet of an execution job template:

Listing 1: Sample job

In above code listing 1 at line (4) the data is mentioned as file

location. The Job itself does not know the data attributes which

appears as black box to the execution tasks.

136

Figure 3: Adhoc Data movement between compute nodes and

central storage

Furthermore, even the basic attributes of data such as its size is

not considered although it is already stored in operating system.

This is why we mentioned that data appears to the scheduler as

black box[17], means it has no knowledge about it except

location .

Like the saying goes , if you cannot measure , you cant improve ,

we goes one step backwards and say that if you don’t model

something you would not know it and in result could not measure

and improve it.

In addition, if the same data mentioned in other piece of code the

tasks are not able to co-relate them , for them it appear to be just

another data to be processed . Neither the scheduler (see above

section) knows that it is same data used earlier by another job. We

named this blind-sight problem.

2.2 Random Data Movement
Chaos is the absence of management and this occurs because the

data attributes are neither monitored , nor stored and not

considered . Data moves haphazardly without planned routes , and

even if same data mentioned X times by Job it will treated as fresh

request X time, this cause network congestion and increase of IO

load with latency to storage servers. Furthermore, in environments

which are time critical and also data intensive, that data

congestion cost performance delays.

3. PROPOSED MODEL
We proposed to model the data movement [2] but before that we

have to adapt the mathematical notations of data itself. The data

attributes are depend on the research domain for e.g. in Genomics

next generation sequence domains we concluded the data model

mentioned in Table: 1.

In terms of graphs it can be represented as in figure 4:

Some of the data attributes from Table : 1 are static such as guid,

name, PI and Location and other are dynamic like Temperature

and State . The static data attributes require to be filled before

actual execution start and the dynamic ones should be updated on

run time. Which means that data scheduler is the integral part of

whole execution cycle[11]. As described in previous section that

without storing the data attributes in its model the execution

engine relies blindly on underlying file system . To improve this

situation the data scheduler works side by side with computational

scheduler and often governed it to select the best data route and to

get the optimized computational platform [4].

The data scheduler works in two modes: Initially it works

background for modelling existing data set with static attributes

and in second mode which is more active and foreground is to

model the data as it passes through the execution cycle.

For active mode it has to be integrate with existing compute

scheduler and optimize its scheduling algorithms for best route to

data and selection of optimum compute platform.

As we stated previously this optimum data movement all depends

on data model and its characterization , without doing so would

lead scheduling in an adhoc and random data patterns.

Table 1: Data model for NGS

Guid unique id

Name Free textual name

Location Path to data

PI Principal investigator name

Project Projects it is belong to

Size Size in Mega Byte (MB)

Temperature 1-60 fast-medium based on usage

State In fast storage/hot medium

Created at Time when it was created

Last accessed Time when last used

Last edited Time when last edited

Jobs list List of Jobs it is used for

Related with Any relation with other data

Figure 4: Data model in graph

137

4. GENERATION AND EXPERIMENT
From 1 some of these attributes are static and some are dynamic,

The static attributes such as Guid , Location, PI , Project are set

when the data is actually created , further more some of those

attributes can be set automatically like created at, Last accessed,

Last edited or storage system can be configured to do this task ,

rest of attributes are dynamic[12] such as Jobs List, Related with,

access read, storage type and we need to investigate how to

populate them on runtime [3][22].

Below tables depicted these types :

Table 2: Data model’s attribute Types

Name Type How to generate

Guid static creation time by storage system

Name static set by LIMS

Location static storage system on creation time

PI static set by LIMS

Project static set by LIMS

Size static storage system on creation time

Temperature dynamic need to investigate

State dynamic need to investigate

Created static storage system on creation time

Last accessed dynamic storage system

Last edited dynamic storage system

Jobs list dynamic need to investigate

Related with dynamic need to investigate

Those mentioned as italics in Table:2 are out of scope of this

paper and will be addressed in future , we did the experiment to

generate rest of model and following pseudocode used to generate

that.

Data: folder/project/patient/data Result:

How to generate attribute of data

initialization;

while files exist in Data folder do

read current; if file present then

size = sizeof (current); name =

filename; project= getproject (current);

location = getpath (current); PI =

principle-investigator (current);

created = creation-data (current);

else
store attributes of current in database;

go to another folder; end

end

Algorithm 1: Pseudo code for generating model of

data

4.1 Using iRods for Storing Data Model
iRods [7] and [8] stands for integrated rules oriented data systems.

It is software middle-ware that manages a highly controlled

collection of distributed[5] digital objects, while enforcing user-

defined Management Policies across multiple storage locations.

iRODS system is generic software infrastructure that can be tuned

to implement any desired data management application, ranging

from a Data Grid for sharing data across collaborations, to a

digital library for publishing data, to a preservation environment

for long-term data retention, to a data processing pipeline, to a

system for federating real-time sensor data streams.

In this paper we used iRods for storing data model generated from

Algorithm 1 and store them as meta-data attributes. [21described

that how iRODS[6] has been implemented and works as the

production system for the sequencing pipeline of the Welcome

Trust Sanger Institute. Other studies [Hedges et al. 2007] found

that how iRODS can be used to preservation of research data. This

is quite interesting to us as well since the modelling of data also

enables and assist in proactive preservation for disaster recovery

situations. Not only life sciences but NASA Center for Climate[13]

Simulation are using the Integrated RuleOriented Data System

(iRODS) to combine disparate data collections into a federated

platform upon which various data services can be implemented

[14].

Modelling of data[10] is also the pivot stone for Machine learning

based Artificial intelligence which can further enhanced the

applications for automated behaviour. [16] showed how this can

be achieved with using meta-data.

Another life science domain such as Brain imaging also benefited

use of data modelling with iRODS since the Brain image datasets

pose a problem for data storage, access, and analysis due to their

large and complex structure. To manage metadata associated with

brain image collections iRODS proven to be stable and assisted in

large scale analysis [Deitrich et al. 2018].

5. RESULTS
With above modeling parameters we were able to fix the black

box and now know the data modelling. this is an initial step to

improve the data movement pattern. Generating from above

algorithm 1 and storing them in [15] enabled the removal of chaos

in data movement. Following experiments are done on scheduler

side to investigate if the meta-data inserted are visible from

scheduler level.

Earlier the data model was unknown which caused the blind-sight

problem to schedule and resulted a chaos and delay in data

movement.

6. CONCLUSION AND FUTURE WORK
We have introduced a data model to be used by the computation

engine for optimizing the analysis of genomics data. Our data

model takes different data attributes into account, including size,

location in the system, storage type and IO speed, among others.

This meta data enables the engine to perform extra optimization

beyond usage of CPU and RAM[24]. We have shown that iRods

can be used to maintain the meta data and facilitate access to the

data, especially in a system with distributed and heterogeneous

storage units.

Our data model avoid random access to the data, reduce network

congestion, and lead to better execution time.

138

7. ACKNOWLEDGMENT
We are thankful specially to King Faisal Specialist hospital and

Research centre, Riyadh with Saudi Genome program and King

abdulaziz city of science and technology to provide enough

resource in conducting this research work.

8. REFERENCES
[1] [Anjum et al. 2006] Ashiq Anjum, Richard McClatchey,

Arshad Ali, and Ian Willers. 2006. Bulk scheduling with the

DIANA scheduler. IEEE Transactions on Nuclear Science

53, 6 (2006), 3818–3829.

[2] Charlie Baker, Ashiq Anjum, Richard Hill, Nik Bessis, and

Saad Liaquat Kiani. 2012. Improving cloud datacentre

scalability, agility and performance using OpenFlow. In

2012 Fourth International Conference on Intelligent

Networking and Collaborative Systems. IEEE, 20–27.

[3] Gen Tao Chiang, Peter Clapham, Guoying Qi, Kevin Sale,

and Guy Coates. 2011. Implementing a genomic data

management system using iRODS in the Wellcome Trust

Sanger Institute. BMC Bioinformatics 12, July 2010 (2011).

https://doi.org/10.1186/1471-2105-12-361

[4] Sean Deitrich, Jacob CzechAlexander Ropelewski, Arthur

W. Wetzel, Greg Hood, Derek Simmel, Marcel Bruchez,

Simon C. Watkins, and Alan M. Watson. 2018. Applying

iRODS to the Brain Image Library. Proceedings of the

Practice and Experience on Advanced Research Computing

PEARC ’18 (2018), 1–4.

https://doi.org/10.1145/3219104.3229266

[5] Irfan Habib, Ashiq Anjum, Richard Mcclatchey, and Omer

Rana. 2013. Adapting scientific workflow structures using

multi-objective optimization strategies. ACM Transactions

on Autonomous and Adaptive Systems (TAAS) 8, 1 (2013), 4.

[6] Khawar Hasham, Antonio Delgado Peris, Ashiq Anjum,

Dave Evans, Stephen Gowdy, Jos é M Hernandez, Eduardo

Huedo, Dirk Hufnagel, Frank van Lingen, Richard

McClatchey, et al. 2011. CMS workflow execution using

intelligent job scheduling and data access strategies. IEEE

Transactions on Nuclear Science 58, 3 (2011), 1221–1232.

[7] Mark Hedges, Adil Hasan, and Tobias Blanke. 2007.

Management and preservation of research data with iRODS.

Proceedings of the ACM first workshop on

CyberInfrastructure: information management in eScience -

CIMS ’07 (2007), 17.

https://doi.org/10.1145/1317353.1317358

[8] Amanda Jones, Marzieh Bazrafshan, Fernando Delgado,

Tania Lihatsh, and Tamara Schuyler. 2014. The Role of

Metadata in Machine Learning for Technology Assisted

Review. 2013 (2014), 1–12.

[9] Gaurav Kaul, Zeeshan Ali Shah, and Mohamed Abouelhoda.

2017. A High Performance Storage Appliance for Genomic

Data. In Bioinformatics and Biomedical Engineering,

Ignacio Rojas and Francisco Ortun˜o (Eds.). Springer

International Publishing, Cham, 480–488.

[10] Saad Liaquat Kiani, Ashiq Anjum, Michael Knappmeyer,

Nik Bessis, and Nikolaos Antonopoulos. 2013. Federated

broker system for pervasive context provisioning. Journal of

Systems and Software 86, 4 (2013), 1107–1123.

[11] Yang Liu, Hung Wei Tseng, Mark Gahagan, Jing Li, Yanqin

Jin, and Steven Swanson. 2016. Hippogriff: Efficiently

moving data in heterogeneous computing systems.

Proceedings of the 34th IEEE International Conference on

Computer Design, ICCD 2016 (2016), 376–379.

https://doi.org/10.1109/ICCD.2016.7753307

[12] Richard McClatchey, Andrew Branson, Ashiq Anjum, Peter

Bloodsworth, Irfan Habib, Kamran Munir, Jetendr

Shamdasani, Kamran Soomro, neuGRID Consortium, et al.

2013a. Providing traceability for neuroimaging analyses.

International journal of medical informatics 82, 9 (2013),

882–894.

[13] Richard McClatchey, Irfan Habib, Ashiq Anjum, Kamran

Munir, Andrew Branson, Peter Bloodsworth, Saad Liaquat

Kiani, neuGRID Consortium, et al. 2013b. Intelligent grid

enabled services for neuroimaging analysis.

Neurocomputing 122 (2013), 88–99.

[14] Ioan Raicu, Yong Zhao, Ian T. Foster, and Alex Szalay.

2008. Accelerating large-scale data exploration through data

diffusion. (2008), 9–18.

https://doi.org/10.1145/1383519.1383521

[15] Arcot Rajasekar, Jonathan

Crabtree, Tom Carsey, Hye-Chung Kum, Sharlini Sankaran,

Gary King, Merce Crosas, Howard Lander, and Justin Zhan.

2013. The DataBridge. (2013), 1–14.

[16] Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher

A. Lee, Richard Marciano, Antoine de Torcy, Michael Wan,

Wayne Schroeder, Sheau-Yen Chen, Lucas Gilbert, Paul

Tooby, and Bing Zhu. 2010. iRODS Primer: Integrated

Rule-Oriented Data System. Vol. 2. 1–143 pages. https:

//doi.org/10.2200/S00233ED1V01Y200912ICR012

[17] [n. d.]] Integrated Rule-oriented. [n. d.]. iRODS Primer 2.

([n. d.]).

[18] John L. Schnase, William P. Webster, Lynn A. Parnell, and

Daniel Q. Duffy. 2011. The NASA center for climate

simulation data management system. IEEE Symposium on

Mass Storage Systems and Technologies (2011), 1–6.

https://doi.org/10.1109/MSST.2011.5937235

[19] Zeeshan Ali Shah, Mohamed El-Kalioby, Tariq Faquih,

Moustafa Shokrof, Shazia Subhani, Yasser Alnakhli,

Hussain Aljafar, Ashiq Anjum, and Mohamed Abouelhoda.

2018. Exploiting In-memory Systems for Genomic Data

Analysis. In Bioinformatics and Biomedical Engineering,

Ignacio Rojas and Francisco Ortun˜o (Eds.). Springer

International Publishing, Cham, 405–414.

[20] Wenzhong Shi, Kawai Kwan, Geoffrey Shea, and Jiannong

Cao. 2009. A dynamic data model for mobile GIS.

Computers and Geosciences 35, 11 (2009), 2210–2221.

https://doi.org/10.1016/j.cageo.2009.03.002

[21] Frank van Lingen, Conrad Steenberg, Michael Thomas,

Ashiq Anjum, Tahir Azim, Faisal Khan, Harvey Newman,

Arshad Ali, Julian Bunn, and Iosif Legrand. 2005. The

Clarens Web service framework for distributed scientific

analysis in grid projects. In 2005 International Conference

139

https://doi.org/10.1186/1471-2105-12-361
https://doi.org/10.1145/3219104.3229266
https://doi.org/10.1145/1317353.1317358
https://doi.org/10.1109/ICCD.2016.7753307
https://doi.org/10.1145/1383519.1383521
https://doi.org/10.2200/S00233ED1V01Y200912ICR012
https://doi.org/10.2200/S00233ED1V01Y200912ICR012
https://doi.org/10.1109/MSST.2011.5937235
https://doi.org/10.1016/j.cageo.2009.03.002

on Parallel Processing Workshops (ICPPW’05). IEEE, 45–

52.

[22] Frank Van Lingen, M Thomas, T Azim, I Chitnis, A Anjum,

D Bourilkov, M Kulkarni, C Steenberg, RJ Cavanaugh, J

Bunn, et al. 2005. Grid enabled analysis: architecture,

prototype and status. (2005).

[23] Muhammad Usman Yaseen, Ashiq Anjum, Omer Rana, and

Richard Hill. 2018. Cloud-based scalable object detection

and classification in video streams. Future Generation

Computer Systems 80 (2018), 286–298.

[24] Ali Reza Zamani, Mengsong Zou, Javier Diaz-Montes, Ioan

Petri, Omer Rana, Ashiq Anjum, and Manish Parashar. 2017.

Deadline constrained video analysis via in-transit

computational environments. IEEE Transactions on Services

Computing (2017).

140

