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ABSTRACT
Cryptocurrency market is very volatile, trading prices for some
tokens can experience a sudden spike up or downturn in a matter
of minutes. As a result, traders are facing difficulty following with
all the trading price movements unless they are monitoring them
manually. Hence, we propose a real-time alert system for monitor-
ing those trading prices, sending notifications to users if any target
prices match or an anomaly occurs. We adopt a streaming platform
as a backbone of our system. It can handle thousands of messages
per second with low latency rate at an average of 19 seconds on
our testing environment. Long-Short-Term-Memory (LSTM) model
is used as an anomaly detector. We compare the impact of five dif-
ferent data normalisation approaches with LSTM model on Bitcoin
price dataset. Result shows that decimal scaling produces onlyMean
Absolute Percentage Error (MAPE) of 8.4 per cent prediction error
rate on daily price data, which is the best performance achieved
compared to other observed methods. However, with one-minute
price dataset, our model produces higher prediction error making
it impractical to distinguish between normal and anomaly points
of price movement.
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1 INTRODUCTION
Unlike stock market trading, cryptocurrency trading platforms op-
erate daily non-stop and combining with the volatility of the market
itself, cryptocurrency traders and holders are facing the challenge of
trying to keep track of all their asset values. For example, on Bitmax
exchanges, there was an unexpected 80% drop of it token BTMX in
just 31 minutes [1]. It would be impossible for them to monitor all
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the trading price actions manually and constantly. Therefore, a real-
time alert system mechanism is required to help them manage risks.
The system can send specific trading price alerts to users based on
their preferences or automated alerts when current trading price
meets the target threshold. To the best of our knowledge, only large
exchanges such as Binance.com, Coinbase.com, and Upbit.com ,
equip their systems with an automatic mechanism. Moreover, only
Coinbase provides an automatic alert to its users when Bitcoin
and Ethereum price anomaly occurs within a twenty-four-hour
window.

Although, most of the exchanges do not have such an automation
system, they do provide an API andWebSocket endpoint for a third-
party application to access their trading data. Therefore, an external
system can utilise this data to build a real-time alert system that
can independently operate from exchanges [27].

Such a system requires a framework that can handle a substan-
tial amount of data in real-time and can seamlessly integrate that
information into an existing system. Much like systems that incor-
porate data from High Performance Computing (HPC) and cloud
platforms such as DIANA scheduler [3], Claren Web service [34],
CMS workflow execution [15], Grid enabled analysis [33], Neu-
roimaging analysis [30] [31], Pervasive context provisioning [20],
multi-objective optimization strategies [17] and Open-Flow [6].

Consequently, the purpose of this paper is to build a real-time
cryptocurrency price alert platform from different exchanges. The
hypothesis of this paper is how can machine learning be used to
detect anomalies in cryptocurrencies trading prices?

To address the hypothesis, the following research questions need
to be answered.

(1) How to build a real-time price alert streaming platform that
can handle considerable amount of trading events, process
them from various exchanges while querying users price
alert targets to match with current prices and generate alerts
with low latency?

(2) Does employing state-of-the-art deep learning LSTM model
facilitate the automation process of detecting cryptocurren-
cies price movements without requiring users to set up spe-
cific price targets manually?

(3) Can the system handle large scale price comparison across
multiple cryptocurrencies and their exchanges?

The research methodology employed to address the hypothesis
and research questions is a combination of experimental and ex-
ploratory analysis [7]. Part of the problemswill be analysed through
literature review to find a suitable solution, and the other part will
be analysed through experimentation.

CIFS 2019 Workshop UCC ’19 Companion, December 2–5, 2019, Auckland, New Zealand

109

https://doi.org/10.1145/3368235.3368874
https://doi.org/10.1145/3368235.3368874


2 LITERATURE REVIEW
2.1 Real-time Event Streaming Applications
Real-time event streaming mechanism could be implemented to
help cryptocurrency traders managing risks in price volatility. Such
a system has already been actively implemented in many existing
domains where continuous adaptation of the application to the envi-
ronmental conditions is critical such as fraud protection in financial
services [21], logistics and asset management in manufacturing,
telematics for automotive maintenance, and disease surveillance
for public health [22], and agriculture sector [2].

Based on [8] Apache Kafka and RabbitMQ are the two pop-
ular open-source and commercial graded streaming systems (by
Confluent Inc. and Pivotal) that have been widely integrated into
enterprise companies. RabbitMQ outperforms Kafka in the most
basic set up environment in terms of throughput. However, by
increasing partition within the node, Kafka proves its scalability
capability as it can significantly out perform RabbitMQ. As a result,
the authors suggest the use case of Kafka for scalable ingestion sys-
tem data-layer infrastructure, and stream processing due to its high
throughput and scalability. Whereas request-response messaging,
operational metrics tracking, and information-centric networking
are better using Rabbit MQ.

Kafka has been adopted for data transmission between producer
and consumer since it provides several out-of-the-box third-party
integration support, including direct database connection to Cas-
sandra and Hadoop, and streaming applications like Spark. D‘Silve
et al. [10] uses Kafka to handle message communication among
IoT devices that need to send messages to each other over the
cloud in real-time. In a study of license plate recognition, Kafka
is responsible for receiving BlackBox videos, frame by frame, and
sequentially deliver them to the node that performs recognition
task [32]. A similar approach is implemented to support real-time
anomaly detection in log data streams application [11].

At an enterprise level, each company has different reasons and
purposes integrating Kafka into the production system. As an il-
lustration, LinkedIn, the creator of Kafka itself, has been using it
in their data centre to facilitate hundreds of gigabytes of log data
and close to a billion messages per day generated by the front-end
services [18].

2.2 Anomaly Detection
The anomaly detection in this paper refers to the monitoring of
abnormal behaviour in the price movement of cryptocurrency trad-
ing price. This feature is crucial because it can inform the trader
about price fluctuation in real-time so that they can make informed
decisions of their trading strategies. One common approach for
anomaly detection has been to build prediction models and use
prediction errors to compute an anomaly score. A data point is
flagged as an anomaly when the prediction error falls into a certain
threshold [16].

The author of [13] uses Linear regression, Logistic regression,
SVM, and Neural network to generate models for predicting Bitcoin
price for one hour in advance. Several bitcoin network node features
such as a number of transactions, new addresses, and the total
number of bitcoin mined were used to build a supervised machine
learning model. The authors expect that these features might affect

its value exchange behaviour; additionally, they believe that the
price movement is controlled by exchanges instead, as their model
produces only 55% accuracy.

These regression algorithms normally treat each data sample
individually, so they could not take advantage of the dependency
information exhibited in time-series data. Consequently, LSTM can
produce better prediction accuracy because of its ability to capture
such dependency information.

Author of [4] employs LSTM to forecast the next day closing
price of stock index. The authors introduce three levels of processes
to produce the final prediction result. First, they use the wavelet
transform to normalised input vector data before forwarding them
to stacked autoencoder to extract the high-level features needed
for LSTM predictor.

Phaladosailoed et al.’s [28] experiment proves that Deep Learn-
ing models such as LSTM and Gated Recurrent Unit (GRU) produce
better prediction accuracy, then Theil-Sen Regression or Huber Re-
gression. As GRU, an adjust version of LSTM, gives the best result
of MSE at 0.0002 and R-Square (R2) at 99.2% based on a one-minute
interval dataset of Bitcoin historical price data containing highly
correlated features such as close, open, high, low, weight price,
volume_BTC and volume_USD, and timestamp that can affect the
prediction results.

The predicted values from the prediction algorithm are used
to determine point anomaly. At Microsoft, the anomaly score is
computed by configuring the LSTM model to produce output value
range [0,1] to denote an anomaly point [29]. In Munir et al. [25]
work, Mean Average Error (MAE) approach is used as an indicator
to reduce an error between an actual and predicted value so that
the LSTM network can learn to predict the normal behaviour of the
time series. Finally, the predicted value is passed to the anomaly
detector to measure the error between actual and predicted value
by Euclidean distance formula (1):

error =
√
(yt − y′t )

2 (1)

where yt , y′t are actual and predicted value of time t respectively.

3 PROPOSED APPROACH
Time-series input data is non-linear and highly dynamic and needs
to undergo a normalisation process because model performance is
dependent on the consistency of data. The difference between the
value scale of each input data increases the time for the model to
train and could also affect its performance [9]. The normalised data
is then used to detect anomalies.

The anomaly detection algorithm proposed in this paper con-
tains two main steps. First, the prediction model is built to predict
the future price of a specific digital asset by learning the regular
pattern from its historical price data. Second, anomaly detection
is performed by computing anomaly scores from the prediction
errors.

3.1 Data Normalisation
Data normalisation is the primary data pre-processing technique
for reducing the range of each time-series input value to the same
range commonly between 0 to 1 or, -1 to 1. The effectiveness of time
series forecasting is heavily dependent on normalisation technique
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used on data before feeding them into the network for training and
prediction.

There are many data normalisation techniques, but only five of
them are used in our experiment including Min-max Normalisation,
Decimal Scaling Normalisation, Z-Score Normalisation, Median
Normalisation and Tanh Estimators [5].

In this paper, all the above methods are used to normalise in-
put data to find the best normalisation method on cryptocurrency
dataset that can produce better forecasting accuracy. The best one
is then selected for normalising real-time cryptocurrency data.

3.2 Prediction Model and Anomaly Detection
We propose the use of multi-layered LSTM, otherwise known as
Stacked LSTM, to build and train our cryptocurrency price predic-
tion model because having more hidden layers gives the network
more depth to divide the processing tasks. Each layer processes
different tasks in hierarchical order before passing its output to the
next layer until the output layer is reached [16]. It is an optimisation
technique for a network to require fewer neurons and run faster
[26].

As shown in figure 1, the network layer consists of an input layer,
three LSTMhidden layers, a dense layer and a recurrent output layer.
The number of hidden layer and number of unit in each hidden
layer varies according to experiments that show better performance
on the datasets. All layers are fully connected; therefore, dropout is
used to avoid overfitting. Moreover, since this is a regression model,
we use linear activation and MSE as the loss function.

Figure 1: Proposed stacked LSTM architecture

In a real-time system, anomaly detection can happen only when
the real input value becomes available. Hence, we propose a model
to predict what would be the current price based on the historical
price data and compare it with the actual current rate. We assume
that by training model with historical price data, it can learn the
normal patterns on each asset prices movement. Accordingly, when
using it with new price data, it should produce higher error predic-
tion rate on unfamiliar pattern regions.

To illustrate this, suppose that there is a collection of 31 time-
stamp data x1,x2,x3,. . . ,x30,x31,. However, the model accepts only
30 timestamp input vector x1 to x30 and it will produce the y31,
which is the predicted value of x31. The next input interval is x2 to
x31 to predict the y32, respectively.

Each input vector xn is a set of multiple individual asset trading
indicators such as open, close, low, high price and trading volume.
All of these raw feature values need to go through the normalisation
process first to reduce their original value to the same range. It is
important to note that other external factors such as political situa-
tion that may influence the price fluctuations are not considered in
this research. We use all methods described in Data Normalisation
section to normalise input data for comparison and select one of
the suitable technique for the cryptocurrency price domain.

We propose the price input data to be a one-minute average com-
puted from real-time trading data. Therefore, if there is something

unusual, the system can send out an alert within a preferable timely
manner instead of sending out multiple time alerts within a short
range of time, for example, few second intervals. For the network to
be able to learn to predict the normal behaviour of the time series
more accurately, we use Absolute Error (MAE) (Equation (2)) to
define the discrepancy between the actual value and the predicted
value and try to reduce the error by modifying the LSTM training
model.

MAE =
1
n

n∑
t=1

|xt − yt | (2)

Where n is the total number of the input sequence, xt , yt are the
real value, and predicted value respectively.

Anomaly Score: The prediction model is trained only on data
without any anomalies so that it learns the normal behavior of the
time series. Then, the prediction errors produced by LSTM predictor
are used as indicators of whether or not an alert should be sent
out to a concerned party. Euclidean distance (Equation (1)) is used
to determine the anomaly score. A high anomaly score indicates a
significant anomaly at the given time t.

4 SYSTEM ARCHITECTURE.
We incorporate a real-time alert system concept to design a scalable
cryptocurrency price alert system that will notify users through
mobile push notification when one of these events occur:

(1) Pre-defined target prices match with current trading price.
(2) The price movement of target currencies matches the pre-

define anomaly threshold with the help of neural network
algorithm.

Our real-time price stream system is built using Kafka and its
Streams API since it is a distributed streaming platform capable
of publishing and subscribing to a huge amount of record streams.
Therefore, by following the design principle of Kafka [12], we inte-
grate all necessary Kafka components into our proposed system as
shown in figure 2.

Figure 2: Real-time price alert streaming system in detail.

• Data service: Relevant data are extracted from different
sources, including real-time trading data via exchanges, user-
defined target prices, users device data viamobile application.
WebSocket client is built to communicate with exchanges’
API to get trading data and send them to Kafka brokers for
price processing in real-time. Exchange name, asset name,
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price and event time are forwarded to broker topic: trad-
ing_event. And price indicators such as open, close, low,
high and volume of each digital asset are sent to topic trad-
ing_event_24.

• Real-time price process service: It processes incoming
trading data by calculating an average of each asset price in
the 10-second interval. Meanwhile, data from the userprice-
settings topic are processed from a collection of key-value
pair, where the key is exchange and asset name and value is
the array price defined by users for the specific asset. They
are then stored in Kafka Streams state-stores. Finally, the
existing local state store is searched to get the list of push
notification tokens of users who set target price similar (exact
match or price difference less than 0.2 per cent) to the current
average price of each asset by using the following formula:

α =
|price1 − price2|

(price1 + price2)/2
∗ 100(where0 ≤ a ≤ 0.2)

– price1 : current price
– price2 : user set price
– α : difference in percentage between the two

• Real-time price process service: It consumes real-time
price data, applies the normalisation method on it and for-
wards it to the LSTM model for prediction. The anomaly
scores are calculated based on the prediction result to deter-
mine anomaly points in real-time.

• Push notification service: It is responsible for subscribing
to user_alerts topic and process all incoming messages by
sending FCM [24], a remote notification service provided by
Google Firebase platform, to user devices.

5 EXPERIMENTAL ENVIRONMENT
5.1 Data Collection
In this proposed system, there are four primary types of data to be
collected, namely: user device token, user price preferences data,
real-time trading data, and historical trading data.

Device tokens are collected frommobile devices using an android
app, while price preferences data is collected artificially by using
the app to automatically select the trading assets and target prices
instead of human interaction.

The real-time trading price information is collected from Binance
exchange via WebSocket application to collect data and test our
system. They are divided into real-time and one-second trading
price data, which length are between 115 to 264 bytes, with detail
statistics such as price, open, high, low and volume

Historical trading price data are needed as well for training
machine learning algorithm, so daily and per-minute Bitcoin (BTC)
price data from Gemini exchange are collected from an online
resource named cryptodatadownload 1.

BTCUSDT daily dataset: There are seven features including
date, symbol, open, close, low, high and the volume in each dataset.
The BTC dataset consists of 1413 rows of recorded data daily from
October 2015 to August 2019. The lowest and highest point during
that period is suitable for selecting an appropriate data normalisa-
tion method. However, due to the inconsistency of volume feature

1Available at: http://www.cryptodatadownload.com/data/northamerican/

in both dataset, it is excluded from our proposed input features. As
a a result, only four features related to digital asset trading such
low, open, high, close are normalised and fed to the network.

Figure 3: Anomaly point manually created to test themodel

BTCUSDTminute dataset: BTCUSDT minute interval dataset
contain 40325 rows and represents one minute of bitcoin price
in August 2019. The price range during this month is minimum
9339.36 USD and a maximum of 12321.01, which is around 24.2%
fluctuation. This data is split to 80% training and 20% testing dataset
while the training data is then split another 20% from validation
dataset.

Due to the lack of dataset containing labeled anomaly points
for cryptocurrency, we decided to artificially create a few anomaly
points out of the original dataset with the assumption that a few
percentages of price movement make it look like an anomaly point.
We select 367 minutes of bitcoin during August that already contain
some few noticeable up and downtrend, and we artificially slightly
increase or decrease those value, as shown in Figure 3. The blue
dots indicate the artificially created anomaly points. The original
dataset contain the minimum price of 9510.59 while 9480.59 in the
artificial dataset. However, the maximum of 9629.07 USD remains
unchanged.

5.2 Price Prediction Model
We used the LSTM model provided by Deeplearing4J 2 and adopt
the implementation from Karim et al. [19]. The LSTM parameter
setup is adapted from Liu et al. [23], which can be seen in table 1.
Each algorithm was trained with 200 epoch and tested on a Bitcoin
daily test dataset.

6 RESULTS AND ANALYSIS
6.1 Anomaly Detection
We want to choose a normalisation approach that responds well
to our selected machine learning algorithm. Therefore, we make
the comparison experiment on five types of data normalisation
methods with our LSTM model, and the prediction accuracy is
measured by Mean Average Error (MAE), MAPE, and Root Mean
Square Error (RMSE).

2Available at: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent
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Name Value
Learning rate iterations A dam with initial of 0.001
Hidden layer 1 nodes (LSTM) 256
Hidden layer 2 nodes 256
Hidden layer 3 nodes 256
Dense layer nodes 32
Output layer node 1
Truncated BPTT length 30

Table 1: LSTM Parameters in this study

Figure 4: One-day-ahead prediction result of Bitcoin price
four different data normalisation algorithm

The results can be seen in Figure 4. Among the five normalisation
methods, Tanh Estimator produces the poorest result. According to
table 2, while the other methods compete with each other, decimal
scaling performs the best by producing the least error of percentage
(around MAPE 8 per cent error.)

Consequently, will choose decimal scaling normaliser as a nor-
malisation method for our anomaly detection. The Control chart
in figure 5 shows the prediction accuracy of the algorithm on BTC
daily data set where Upper Control Limit (ULC) value is 574.70 and
Lower Control Limit (LCL) is -672.74.

The BTCUSDT minute-interval historical dataset contains a mas-
sive amount of data, therefore, requires a considerable amount of
computing resource and time. Due to the constraint of space, we
only train and test our model for the duration of 10-days from 20th
to 30th of August. The reduced dataset contains 14405 records. Early
stopping is used to find the best iteration for the dataset. As the
nature of the dataset itself, the one minute ahead prediction result
produces six per cent prediction error. This error gap is considered
a significant error margin because the MAE is 698 USD difference.
Therefore, we could not proceed to test the anomaly score because
the average prediction already produced a large margin of error.

graphicx

6.2 Price Alert System Pipeline
Kafka is widely well-known for its ability to handle high volumes
of data with high throughput. Therefore, the effect of message sizes
on data transmission between broker and producers is tested on
a total number of record and size of messages being able to send
per second. As shown in figure 6, we send 500,000 messages to
Kafka broker with different sizes (10,100,120, 300,1000 bytes). It

BTC Time (m) MAPE MEA RMSE
Decimal 27.67665 8.489823541 474.1409408 583.2750424
Median 28.18893333 11.24358042 1032.765968 1608.583322
Mimax 28.02226667 9.238080592 510.0762249 608.8254165
Z_score 28.56198333 9.183332373 526.0535892 667.8216022
Tanh 28.83513333 467.7654997 24006.9633 24272.68365

Table 2: Result of BTC Prediction Errors on the five ap-
proaches

Figure 5: The control chart of prediction error in percent-
ages calculating by percentage prediction error described in
[14] using Decimal normalizer on BTC daily dataset.

is important to note that 120 and 300-bytes are the roundup size
of the actual data, as described in section 5.3. They are real-time
price data (average 115 bytes) and one-second trading information
(average 264 bytes).

Figure 6: Size of message vs the number of records sent per
second by the producer

Based on the results shown in Figure 6, we can see that the
smaller the image size, the higher the number of the records that
a producer can send to Kafka broker. In terms of latency, Figure 7
depicts that the bigger the size of the message, the longer it takes to
complete the transaction. Therefore, with our actual data of 120 and
300-byte sizes, the test system can handle sending messages in total
up to around 108,000 and 46,000 number of records respectivelywith
a maximum throughput of around 13MB. Moreover, the maximum
latency is only 2.3, and 7.2-seconds respectively, to send 500000
messages for both sizes.
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Figure 7: Latency of producer sending 500000 total to Kafka
topic with different size

The scalability of Kafka is based on the data partition. The parti-
tion key is very important to achieve that. Kafka hashes the key in
each message and guarantees that all the messages with the same
key stay in the same partition. This feature ensures data consis-
tency for multiple consumers in a group consuming messages. We
send a total of 200,616 trading records one by one in real-time to
a Kafka topic with eight partitions, and this process takes around
8.37 hours to complete. These records are equipped with key con-
vention as follows: "key": exchange+ symbol. For exchange, key
for Bitcoin symbol in USD value on Binance exchange is "key":
"binanceBTCUSDT".

Figure 8: Messages are stored and spread across different
partitions based on their key

As shown in Figure 8, by keying each record based on which
exchange it is from and a trading symbol, Kafka can store them
on different partitions according to those keys. We can see that a
portion of the messages stored in each partition is different. This is
because of the frequency of each trading symbol. As an illustration,
partition five contains more than 50 per cent of the total number of
records in a topic.

2000 price settings are preloaded into the system, andwemeasure
the time it takes from a trading event message being sent by a
producer to Kafka, then through stream processor for matching
that preloaded price to Google Cloud Messaging service (push
notification). The results of the first 1000 message are shown in

Figure 9: Response time of one producer sending 1000 mes-
sage one by one.

Figure 9. The average execution time per message is around 0.31
minute (19 seconds), and the system can accurately match the price
within a pre-determined threshold (0 or within 0.2 different).

7 RESEARCH LIMITATIONS AND FUTURE
DIRECTIONS

The biggest challenge that we faced during the project is historical
price data needed to train the LSTM model. The collection of public
online datasets is used for this paper.We decided to build a model on
four feature vectors only. They are low, high, close, open price, and
we ignore the volumes information because of the inconsistentcy
between one-day dataset and minute data.

There are several areas to be focused on future works. Firstly,
adding the unsubscribe feature. This current system design only
support adds operations. It means users can add as many prices alert
target as they want, but they cannot unsubscribe their previous
targets. Additionally, improving prediction error accuracy on a
minute interval dataset. Our proposed LSTM model provides better
accuracy on the daily dataset but produces higher prediction error
on a minute dataset.

8 CONCLUSIONS
While the number of tradable digital assets increase, the traders
and holders face the challenge of trying to keep track of all their
assets price movement. It is impossible for them to monitor all the
price actions manually. In order to address this issue we build an
intelligent price alert system to meet their need of price tracking.

Our system can store user price alert target, and retrieve real-
time trading prices of all the assets available from different ex-
changes. It then automatically sends alert to all the user’s mobile
devices whenever their price targets hits. We employ Kafka to build
such a system and experimental results show that Kafka is an ap-
propriate solution data pipeline system due to its scalability and
high throughput. It ensures the trading data with the same key
stays in the same partition to enable the system to scale in stream-
ing application as well as alert processing application with ease.
Test results show that it takes an average of 19 seconds for round
trip for each price data; from sending it to Kafka system; getting it
processed and sending an alert to a user’s device.
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