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Abstract   With exabytes of data being generated from genome sequencing, a 

whole new science behind genomic big data has emerged. As technology improves, 

the cost of sequencing a human genome has gone down considerably increasing the 

number of genomes being sequenced. Huge amounts of genomic data along with a 

vast variety of clinical data cannot be handled using existing frameworks and 

techniques. It is to be efficiently stored in a warehouse where a number of things 

have to be taken into account. Firstly, the genome data is to be integrated effectively 

and correctly with clinical data. The other data sources along with their formats 

have to be identified. Required data is then extracted from these other sources (such 

as clinical datasets) and integrated with the genome. The main challenge here is to 

be able to handle the integration complexity as a large number of datasets are being 

integrated with huge amounts of genome. Secondly, since the data is captured at 

disparate locations individually by clinicians and scientists, it brings the challenge 

of data consistency. It has to be made sure that the data consistency is not 

compromised as it is passed along the warehouse. Checks have to be put in place to 

make sure the data remains consistent from start to finish. Thirdly, to carry this out 

effectively, the data infrastructure has to be in the correct order. How frequently the 

data is accessed plays a crucial role here. Data in frequent use will be handled 

differently than data which is not in frequent use. Lastly, efficient browsing 

mechanisms have to put in place to allow the data to be quickly retrieved. The data 

is then iteratively analysed to get meaningful insights. The challenge here is to 

perform analysis very quickly. Cloud Computing plays an important role as it is 

used to provide scalability.    

Keywords: Big Data, Cloud Computing, Analytics, Healthcare data, Genomics 

data, Graph models, Tiered data storage, 



Introduction 

With exabytes of data being generated from genome sequencing, a whole new 

science behind genomic big data has emerged. Adding to that, the recent advances 

in storage and processing technologies has enabled the generation, storage, retrieval 

and processing of exabytes of genomic and healthcare data in electronic form. As 

technology improves, the cost of sequencing a human genome is going down 

considerably, and, in turn has increased the number of genomes being sequenced. 

Handling huge amounts of genomic data along with a vast variety of clinical data 

using existing frameworks and techniques has become a challenge.  

There is a wide interest in genomic data because it can allow meaningful insights 

to be generated. These insights could range from a variety of things including 

genomic research as well more practical uses such as personalised medicine for a 

particular genome. Genomics is producing data size 2-40 EB/year (Stephens, et al., 

2015) which is stored in local databases or in cloud storage. Cloud computing is 

used for storage, distribution and processing of this data so that applications can run 

on remote machines that already have access to data (Stephens, et al., 2015).  

A data platform that integrates genomics/healthcare data while enabling quick 

and efficient analysis would allow extraction of practical insights in a short frame of 

time. Developing such a platform poses a number of challenges on its own. These 

challenges relate to integrating genomics and clinical data sources, ensuring 

consistency of the integrated data and developing a big data platform that stores and 

manages the integrated data. An overview of these challenges and a brief 

description of the proposed framework is provided in the remainder of this section. 

With respect to integration of big data, it is imperative to maintain the 

consistency of data between the data sources and the data warehouse. Since the data 

is of the magnitude of exabytes the issue converges to Big Data analytics. 

Infrastructures such as that provided over cloud are required to ensure that the 

consistency is maintained between the data sources and the warehouse. In a clinical 

information management environment, data consists of heterogeneous data 

sources with multitude of data types at distributed locations. Clinicians and 

scientists generate data which is individually captured at disparate locations and 

brought together to a warehouse for reporting, decision support and data analysis. 

This data needs to be correctly integrated in order to ensure the consistency and 

coherence of the system at large. Any inconsistency may result in breaking the data 

warehouse, which in turn would affect the reports being generated (examples 

include quarterly comparisons and trends to daily data analysis) and bio-statistical 

analysis among other things. Therefore, there is a need for structured migration and 

integration of data between the sources and the data warehouse to ensure that the 

integrity of the warehouse can be maintained. In such an environment coherence 

and consistency of data is imperative in order to protect the integrity of the 

warehouse. Since the data from heterogeneous sources is in exabytes, it is essential 

to provide a scalable environment for clinical analytics. A possible solution is the 

provision of a scalable environment for clinical data integration and system 



integrity based on graphs. The infrastructure provided for such an environment 

needs to take the frequent use of data into account. . Large scale graph processing 

systems such as Giraph (Giraph, 2016) and GraphLab (Low, et al., 2014) provide 

support for data consistency by providing configurable consistency models.  

The infrastructure of the system should be such that it should allow frequently 

used data to be quickly retrieved when required, whereas the data which is not in 

much use should be allowed to reside in the system. Technologies such as Hadoop 

make storing a large scale of data trivial, but Hadoop by itself is often not an ideal 

platform for working with data and performing the levels of complex analysis and 

interactive querying often afforded to data warehouses (Borthakur, et al., 2011) 

(Songting, 2010). Thus, in order to store huge amounts of data in a cost-effective 

and time-efficient manner and deliver a high standard of analytics performance, 

Hadoop's scalability may be used to accommodate storing data. On the other hand, 

there is a need to maintain existing scale-up data warehouses and analytics 

environments to provide the fast and efficient analysis people expect. But using 

both technologies can only work if we move data between environments when 

required. 

Generating insights from the integrated data is only possible after developing 

suitable infrastructure for storing and retrieving the data. Analyzing this data is a 

user-driven and iterative non-trivial task. In a lot of cases, the data needs to be 

revisited several times in order to get the required insights. Different challenges and 

their solutions are discussed.  

This chapter proposes a cloud based framework for integrating genomics/ 

healthcare data in a big data platform which would enable users to generate 

meaningful insights in their domain. The platform provides a solution to the 

challenges discussed above. The rest of the chapter is organized as follows: Section 

2 introduces genomics and clinical datasets. Section 3 explains the integration of 

these datasets. An approach for maintaining data consistency during and after the 

integration is explained in Section 4. The infrastructure for storing the data is 

explained in Section 5, whereas, Section 6 explains the data analytics approaches 

for generating insights from the data and Section 7 concludes the chapter. 

Genomics and Clinical Data 

The cloud based data analytics platform focuses on integrating the genomics and 

clinical datasets and on generating insights from the integrated data. It is important 

to understand these dataset before introducing the cloud based data analytics 

platform. 

 



Genomics Data 

The genetic makeup of an organism is responsible for coding its different 

characteristics. A complete set of genetic information is contained in the genome, 

which consist of genes. The genes are a sequence of four different molecules known 

as nucleotide bases: Adenine (A), Guanine (G), Thymine (T) and Cytosine (C). 

Different combinations and frequency of these nucleotides generate a huge variety 

of genes within a genome. Understanding the constitution of these genes was a 

mystery until development of sequencing methods. The 1970s and 1980s saw 

manual DNA sequencing methods such as Maxam-Gilbert sequencing (Maxam & 

Gilbert, 1977) and Sanger sequencing (Sanger & Coulson, 1975). Automated 

sequencing methods such as Shotgun sequencing were introduced in the 1990s. 

Over the next decade, scientists were able to sequence unicellular and multicellular 

organisms using these methods. It wasn’t until 2001 that the human genome was 

completely sequenced. By 2005, next-generation sequence (NGS) technologies 

(Metzker, 2010) were introduced.  

Before sequencing, other techniques such as genome-wide association studies 

between thousands of individuals were used because genome sequencing was an 

unthinkable thing to do. However, as technologies advanced, the sequencing market 

has become very competitive in recent years. Many platforms, such as Illumina 

(16Il), 454 Life Sciences (1645) and Complete Genomics (16Co) to name a few, are 

available commercially for research and clinical use. 

Sequencing is now the first step for research investigating the genome at the 

basic level. Genome sequencing technology takes a sample of the genetic material 

in a test tube and converts it to a string of As, Gs, Ts and Cs representing the 

genome and stores it into a text file. A human genome consists of 3 billion bases. 

The size of a text file containing these is, on average, 6 X 109 bits. 

As the cost of sequencing is decreasing (Fig. 1.), more and more genomics data 

is becoming readily available sparking several initiatives such as 1000 Genomes 

Project (1000 Genomes Project Consortium, 2010) and the 100,000 Genome 

Project (Brierly, 2010). One of the aims of initiatives like these is to discover 

medical insights especially for more serious diseases such as cancer. 

   

Fig. 1.  Cost per Raw Megabase of DNA Sequence & Genome over the years. Published by 

National Human Genome Research Institute (NHGRI) (National Human Genome Research 

Institute, 2016) 



Clinical Data 

Clinical data sets are generated during the course of ongoing patient care or as 

part of normal clinical trial program. Major sources include electronic health 

records, claims data, disease registries, health surveys, clinical trials data and 

administrative data. These are a vital source for health and medical research.  

Data Integration 

Data integration is the first challenge while developing a cloud based data 

analytics platform. The data sources in clinical research domain are much 

diversified, such as health records, clinical trials, disease records etc. On the other 

hand, the genomics data sets are generally very data intensive such as genome 

sequences, variants, annotations and gene expressions data sets etc. Due to the 

massive size of genomics data sets, the problem of integration enters into the 

domain of big data problems. Integrating these data intensive genomics sources 

with a set of diversified clinical sources is a considerable challenge that chiefly 

implies building a database capable of containing heterogeneous data types.  

The clinical data ranges from patients health records, diagnostics tests results 

including laboratory reports and imaging scans, disease history, to hospital 

administration and finance data. These data sets are captured in different 

repositories, such health records maintained by each hospital or clinical trials 

conducted by state or different pharma or non-profit organizations. The clinical data 

sets within these repositories are comprised of a large variety of parameters within a 

single study, and then there are further variations among parameters across different 

studies, as per the requirement of underlined research. Integrating this large variety 

of parameters of various data types across multiple studies is a challenging problem 

in itself because the integrated clinical data should have an intuitional output.  

The next challenge is to integrate these parameters with genomics data sets. 

Traditionally, the information about genomics is not captured in the clinical data 

sets. Therefore, the genomics data is only available from separate genomics 

sources, mainly the repositories such as NCBI, Ensembl or 1000 genome projects. 

These data types are, therefore, different from those of clinical data sets. Hence, in 

order to integrate them with clinical data sets, the challenge is to make the data 

types compatible with each other so that they can be consolidated within a single 

warehouse. 

Combining data sets from different clinical sources with genomic data can help 

understanding a clinical problem at a deeper level by empowering it with genomics 

background information. This big data integration may help to delve into genetic 

background of clinical problems, which will ultimately aid various users of these 

data sets. The major benefit, that can be foreseen from clinical and genomics data 

integration, will be to design personalized treatments for patients. 



Pharmacogenomics industry can also gain the advantage to provide more 

personalized solutions to healthcare, such as designing drugs with improved 

efficacy. Researches from both clinical and genomics domains can also use the 

integrated data to discover the insights of complicated biological problems, such as 

finding new biomarkers. Hence, it can be estimated that data integration could help 

every academic or industrial institution related to these dimensions of medical 

science.  

There exist some clinical data integration solutions, such as those provided by 

SAS (SAS CDI), Edifecs (Edifecs CDI), Lumeris (Lumeris CDI) etc., but they are 

only focused on data management and administration purposes and are not targeted 

for clinical research. These solutions target combining various clinical data sets 

from different sources and providing them from a single platform. However, there 

are no solutions for clinical and genomics data integration available hitherto. Due to 

absence of any data model that can accommodate both clinical and genomics data 

sets, there is a need to design and construct such a data model which provides a 

single platform access to both domains.  

In the last decade, increasing trend has been observed in this direction of 

research. Researchers have studied and proposed various integration models for 

integrating multi-omics data. The two most common approaches that can be found 

in literature are multi-stage analysis and meta-dimensional analysis.  

Multi-stage analysis is a stepwise or hierarchical analysis method. It helps to 

reduce search space by stage wise analysis (Ritchie, Holzinger, Li, Pendergrass, & 

Kim, February 2015). It essentially analyses and integrates only two data types at a 

time while analysing across the data space. Triangle method is the most common 

method under this approach which has been widely used for association studies. 

This method is more commonly used for SNP (single nucleotide polymorphism) 

associations with expression data and genes themselves (Ritchie, Holzinger, Li, 

Pendergrass, & Kim, February 2015) (Lee, Cho, Kim, & Park, 2009). Some clinical 

phenotypes can be result of interaction between different genes and multiple 

clinical parameters. Due to step-wise analysis, this approach cannot capture those 

phenotypes which are determined by factors acting from various sources. It is a 

robust and rather simple approach, however, it is not recommended when multiple 

different sources are required to be integrated (Ritchie, Holzinger, Li, Pendergrass, 

& Kim, February 2015) (Hamid, et al., 2009). 

Meta-dimensional studies involve simultaneous analysis of all the data sources 

to produce complex models (Ritchie, Holzinger, Li, Pendergrass, & Kim, February 

2015). There are various methods under this approach, each of which is based on a 

different data model. The approach can be selected according to the underlining 

research goals. Either the multiple data sets are integrated prior to building a 

common model on them, or an individual model is built on each data set before 

integrating them together, as illustrated in Fig. 2. Bayesian networks and neural 

networks have been more commonly observed in the integration based research 

(Fridley, Lund, Genkins, & Wang, 2012) (Akavia, et al., 2010). Meta-dimensional 

approach facilitates the capability to search across various data types among 

multiple data sets. This vast search capability aids to detect those phenotypic traits 



which are caused by mutual interaction of multiple factors from different clinical 

and genomics sources. Although this integration using meta-dimensional approach 

leads to a rather complex and less robust models, but it helps to search across a 

wider spectrum of data types (Ritchie, Holzinger, Li, Pendergrass, & Kim, February 

2015) (Hamid, et al., 2009). 

 

Fig. 2.  An illustration of meta-dimensional approach 

Due to the huge size of genomics data sets, and large variability of clinical 

parameters, it is not viable to integrate all parameters. Only those parameters should 

be integrated which may provide deeper intuition after integration. Most 

researchers have identified gene expression data and SNP data sets to be most 

relevant to integrate with the clinical data. Since, determining the gene expression 

of SNPs can help to find out ultimate effects of a gene on a phenotype, therefore, 

these parameters have been widely seen to be integrated with clinical data in 

research (Nevins, et al., 2003) (Louie, Mork, Martin-Sanchez, Halevy, & 

TarczyHornoch, 2005) (Ritchie, Holzinger, Li, Pendergrass, & Kim, February 

2015) (Lee, Cho, Kim, & Park, 2009). For future prospects, the research can be 

further extended to incorporate additional genomics parameters for integration, 

such as annotations data. 

A promising solution to integrate the clinical and genomics data will be to design 

a relational data model based on meta-dimensional approach and implement it 

within a data warehouse. Since meta-dimensional approach provides a wider search 

spectrum, therefore, this approach seems more promising to be implemented for 

clinical and genomics data integration where a wide variety of parameters and large 

data sets are required to be integrated. Out of various meta-dimensional approaches, 

graph based models seems more promising such as Bayesian networks (Fridley, 

Lund, Genkins, & Wang, 2012) (Holzinger & Ritchie, 2012 January). A 



probabilistic schema can be designed to implement on this data model. Some 

previous work shows that star-based schema can be designed for biomedical data 

(Wang, Zhang, & Ramanathan, 2005) (Salem & Ben-Abdallah, 2015). These 

schema designs can be adopted and modified to meet the requirements of the data 

sets and data warehouse under consideration. The performance and scalability of 

the integration model will be a critical factor to be controlled in this case. If the 

model is not capable of scaling to larger data sets, or it fails to provide same 

performance with larger data sets, then such a model will not be sustainable for a 

futuristic model. 

Data Consistency 

Ensuring consistency of integrated data is a crucial part of the big data analytics 

platform. Data coming from heterogeneous sources requires to be effectively 

integrated to ensure the coherence of the source data and the warehouse (Salem & 

Ben-Abdallah, 2015). A change in one of the data sources not only affects the data 

in that data source but also affects the inter-relationships between the multiple data 

sources. As the structure of the data warehouse is defined based on the structure of 

the individual data sources and based on the inter-relationships between the sources, 

a single change has the potential to significantly impact the warehouse. More 

importantly, the data in the warehouse may not be consistent with the data in the 

data sources when a change occurs in the data source. This is turn means that the 

inconsistent changes might result in breaking the data warehouse. Evolution of 

clinical data results is one such example of inconsistent source change that needs to 

be reflected in the data warehouse. Since the data from these sources is of the 

magnitude of petabytes the challenge of data consistency emerges as a part of the 

Big Data domain. Furthermore in context of big data applications, it is imperative to 

maintain data consistency across the entire spectrum of application to ensure correct 

results and traceability of individual elements in the system. 

One of the prime issues in an evolving data warehouse environment is the 

dynamic nature of sources. The evolving nature of sources can lead to breaking the 

data warehouse which is a major issue in maintaining data consistency. Inconsistent 

changes can lead to generation of inaccurate reports such as those based on 

personalised patient analysis further leading to incorrect diagnosis. In order to 

prevent the system from breaking due to inconsistent changes, this endeavour aims 

to explain a possible solution to ensure consistency between the heterogeneous data 

sources and the clinical data warehouse. As explained in the previous section once 

the data has been integrated, consistency mechanisms need to ensure that the 

sources and data warehouse are consistent and reflects the evolving data from 

clinical data sources. 

In order to prevent the breaking of data warehouse from the evolving changes in 

the data sources, a possible solution is the use of graphs to ensure the coherence and 

consistency of data between the sources and the warehouse. Graphs can scale well 



to represent millions of entities in a clinical domain (Rodriguez & Neubauer, 2010) 

thus allowing to ensure the scalability of the system. This is of particular interest in 

the domain of clinical data since integrating data from disparate sources will be of a 

much higher magnitude compared to the data coming from sources. Graphs are 

governed by graph models that allow a flexible and uniform representation of data 

originating from heterogeneous sources. This study aims to investigate suitable 

graph data models for accurate representation of data both at the source and data 

warehouse level. Furthermore graph models provide the ability to predict functional 

relationships between heterogeneous data sources in order to ensure the correctness 

of source data with respect to the data warehouse. Thus the need for a scalable 

environment for clinical analytics arises to ensure the integrity of a data warehouse 

without compromising the integrity of the clinical data warehouse. Existing state of 

the art graph analytical systems do not fully encompass the needs for such a system. 

In conjecture with source data, another key component in a data warehouse 

environment is metadata (Harris, et al., 2009). Metadata describes the context in 

which the data was collected and hence means to query the sources. Since the data 

comes from distributed sources a lot of research deals with capturing metadata at 

the source level. Any change occurring at the source needs to be reflected in the 

metadata repository by updating it, leading to generation of new metadata. Both the 

updated and prior metadata are essential to aid in the replication and integration of 

sources. For the purpose of our research work we will be looking at the metadata 

repository knows as Semantic Manager (Akana, 2016) by Akana. Semantic 

Manager enables enterprises to define, understand, use and exchange data by 

managing standards and metadata as organizational assets. 

Several approaches have been investigated for clinical data integration that help 

to ensure data consistency such as integration engines (Karasawas, Baldock, & 

Burger, 2004), (Sujasnsky, 2001) or ontology based data integration (Lapatas, 

Stefanidakis, Jimenez, Via, & Schneider, 2015). Integration engines provide a 

useful way of solving the basic communication problems between systems, but they 

do nothing to address true integration of information particularly in the context of 

data consistency (Karasawas, Baldock, & Burger, 2004), (Sujasnsky, 2001). This 

approach works well and has been effective, but when the number of possible 

interactions between systems increases, the limitations of scalability becomes 

apparent. The use of graph based integration of data being generated from multiple 

data sources is a viable option to address this issue (Rodriguez & Neubauer, 2010).  

Graphs (Rodriguez & Neubauer, 2010), (Park, Shankar, Park, & Ghosh, 2014), 

are particularly useful for the description and analysis of interactions and 

relationships in a clinical domain. Graphs provide useful features such as analytical 

flexibility, in particular to evaluate relationships, integration of data and 

comparison of results to name a few. Graphs are currently being used to analyse 

social networks, knowledge bases, biological networks and protein synthesis etc. 

(Rodriguez & Neubauer, 2010). A graph consists of a set of nodes and a set of edges 

that connect the nodes. The nodes are the entities of interest and the edges represent 

relationships between the entities. Edges can be assigned weights, directions and 

types. This is particularly useful in a clinical domain, the directions in edges help to 



represent causality between nodes, while the edges themselves can be annotated to 

represent the relationship between entities. 

In order to ensure that the changes have been integrated consistently, source 

graphs need to be correctly replicated. This leads to the need to investigate and 

implement models that allow quick generation, integration and replication of graphs 

so that the source data can be quickly and effectively integrated. Furthermore, in 

order to replicate and integrate graphs, powerful graph models such as the Property 

Graph Model (Property Graph Model, 2016), Bayesian Networks (Nielsen & 

Jensen, 2009) or Markov Models (Nielsen & Jensen, 2009) are required. These 

graph models allow efficient inference of clinical data (Nielsen & Jensen, 2009) 

essential to determine relationships between disparate clinical data sources. Graph 

models can be divided into two classes: undirected and directed graph models. 

Markov Models (Nielsen & Jensen, 2009) are an example of undirected graph 

model, while Property Graph Model are an example of directed graph model. 

Bayesian Networks can accommodate a variety of knowledge sources and data 

types, they are computationally expensive and difficult to explore previously 

unknown network. Bayesian Networks do not have feedback loops due to the 

acyclic nature of Bayesian network graphs. In contrast to Bayesian Networks, 

Property graph model (Property Graph Model, 2016) represents data as a directed 

multi graph consisting of finite (and mutable) set of nodes and edges. Both, vertices 

and edges can have assigned properties (attributes) which can be understood as 

simple name-value pairs, shown in Fig. 3. A dedicated property can serve as a 

unique identifier for vertices and edges. In addition to this, a type property can be 

used to represent the semantic type of the respective vertex or edge. Properties of 

vertices and edges are not necessarily determined by the assigned type and can 

therefore vary between vertices or edges of the same type. Vertices can be 

connected via different edges as long as they have different types or identifiers. 

Property graph model (Property Graph Model, 2016) not only offers schema 

flexibility but also permits managing and processing data and metadata jointly. 

Graphs are generated by the graph engine based on the graph models. 

 



 

Fig. 3.  Property Graph Model (Property Graph Model, 2016) 

The property graph model provides the following key characteristics that differ 

from the classical relational data model:   

 Relationships as first class citizens - With the property graph model relationships 

between entities are promoted as first class citizens of the model with unique 

identity, semantic type, and possibly additional attributes;  

 Increased Schema Flexibility - In a property graph edges are specified at the 

instance and not at the class level, i.e. they relate two specific vertices, and 

vertices of the same semantic types can be related via different edges;  

 No Strict separation between Data and Metadata - Vertices and edges in a graph 

can have assigned semantic types to indicate their intended meaning. These 

types can be naturally represented as a tree (taxonomy) or graph themselves. 

This allows their retrieval and processing as either type definitions, i.e. metadata 

or (possibly in combination with other vertices) as data.  

In order to process large graphs such as those generated in clinical domain, there 

is a need for systems that can scale well over hundreds and thousands of nodes and 

edges at a single point in time. To ensure that this requirement can be achieved 

several large scale graph processing systems have been designed such as Apache 

Giraph (Giraph, 2016) , GraphLab (Low, et al., 2014)] and Pregel (Malewicz, et al., 

2010). Apache Giraph is an iterative graph processing framework, built on top of 

Apache Hadoop. The input to a Giraph computation is a graph composed of vertices 

and directed edges. GraphLab is a graph based, high-performance, distributed 

framework written in C++. The GraphLab framework is a parallel programming 

abstraction targeted for sparse iterative graph algorithms. It provides a high level 

programming interface, allowing a rapid deployment of distributed machine 

learning algorithms.  Pregel is Google’s scalable and fault tolerant API that is 

sufficiently flexible to express arbitrary graph algorithms. . Giraph is a suitable 



choice for applications where scalability is essential (Giraph, 2016), in contrast to 

that GraphLab is effective in applications where processing time is critical (Low, et 

al., 2014) In order for the system to scale well, these systems can be deployed over 

cloud to ensure the scalability of the system at large. 

A proposed solution (Fig. 4.) is a graph based system that ensures coherent 

integration of data from heterogeneous clinical data sources for consistency and 

scalable analytics. In order to ensure consistency in the disparate clinical data 

sources and data warehouse graphs can be used based on the property graph model. 

In order to accommodate the overarching requirement of the amount of data large 

scale graph processing engines such as Giraph (Giraph, 2016) can be used since it is 

based on the property graph model. The proposed system can be designed based on 

the gather-apply-scatter (GAS) programming paradigm (Low, et al., 2014). This 

will allow an incremental graph problem to be reduced to a sub-problem that 

operates on a portion, or sub-graph, of the entire evolving graph. This sub-graph 

abstraction will aim for the solution to substantially out-perform the traditional 

static processing techniques. There are multiple heterogeneous clinical data sources 

with varying data (clinical trials data, genomics data, EHR data etc.). The proposed 

solution shall incorporate a metadata repository that ingests the metadata from the 

disparate clinical data sources in order to ensure the correctness of the data once it 

resides in the clinical data warehouse. The wrapper ingests the clinical source data 

and passes it on to the Graph Processing Engine that will generate graph and then 

allows it to push into the clinical data warehouse. If the source data changes/evolves 

e.g. over the course of the clinical trial, metadata repository detects the change and 

automatically alerts the data warehouse to update the graph in it, the changes are 

then made to the subset of the graph where the source has evolved so the overhead 

of generating new graph every time a changes occurs is omitted, reducing the 

computational workload on the graph engine. 



 

Fig. 4.  Proposed Solution Architecture to maintain data consistency in a Big Data Environment 

Data coming from heterogeneous sources requires to be effectively integrated to 

ensure the coherence of the source data and the warehouse. Compared to traditional 

approaches for data integration, graphs promise significant benefits. First, a graph 

like representation provides a natural and intuitive format for the underlying data, 

which leads to simpler application designs. Second, graphs are a promising basis for 

data integration as they allow a flexible and uniform representation of data, 

metadata, instance objects and relationships. Graphs are well suited for data 

integration since they can model highly interconnected entities where other NoSQL 

alternatives and relational databases for short. Graphs can scale well over millions 

of nodes hence suitable for integration of data for clinical data. Metadata works as a 

governance framework in such an environment.  

Data Infrastructure 

Data integrated from diverse genomics and clinical sources requires a cloud 

based platform for storage and retrieval. We explain the infrastructure for data 

storage, retrieval and data movement on an on-demand basis. 

When planning a multi-storage data warehouse environment the data needs to be 

understood and evaluated to determine whether a specific data set needs storing 

within a high performance legacy warehouse or on a commodity Hadoop cluster. A 

method to accomplish this is through assigning data with a “Data Temperature”. 



“Hot” represents the in-demand and mission critical data in direct need for quick 

decision making, through to “Frozen” data which is accessed very infrequently and 

often is represented as archived. In between these two extremes are “Warm” data 

which is commonly used but does not have a huge amount of urgency, and “Cold” 

data which is infrequently accessed (Subramanyam, 2015). 

The assigned temperature of data is used to determine its storage location. The 

frequently accessed “Hot” data is stored within fast storage such as high 

performance main-memory systems (scale-up) and the infrequently accessed 

“Cold” is stored on the large amount of cheap commodity storage such as Hadoop 

(scale-out) (Levandoski, Larson, & Stoica, 2013). 

To make informed decisions about the data and where it should be moved, it is 

vital to identify what data is hot, and what is cold. Factors that are commonly used 

to establish data temperature are the frequency of access and age, so the more 

frequent the access and the more recent the data then the hotter the data ranked. 

These factors can be used separately or collectively. 

 

Fig. 5.  Data Temperatures with age of data 

In evaluating the data, certain workloads and data tasks may be identified that 

would be more suitable for batch-type work upon cold Hadoop storage. Usage and 

age are common factors for data temperature, but it is also important to consider 

data could have a priority based upon a specific task or alternatively based upon 

around a specific group of user requirements for the data, so it is important to 

consider business operations and other influencing factors when establishing a data 

temperature. Another example of this could be a set of data that remains unused for 

long periods of time but becomes incredibly important at a single point of the year 



the age and usage values would not be able to account for this but incorporating 

business logic or machine-learned knowledge would. 

Read and write operations are expensive operations so where possible they are 

best avoided (Lin, Ma, Chandramohan, Geist, & Samatova, 2005), but with “Hot” 

storage being in short supply and high demand, it is inevitable that data will be 

moving in and out of this storage layer frequently. When planning to implement a 

multi-temperature storage environment, it is vital to plan how frequently and at 

what scale data will move. If it was based purely on the temperature, then you could 

potentially have data moving in and out of the hotter storage tiers constantly 

through the day which would be a considerable drain on resources and considerably 

impact system performance (Crago & Yeung, 2016).  

 

Fig. 6.  Multi-tiered Data Storage 

To prevent such a problem movement operations to rebalance the temperature 

need to be scheduled at opportune times but also need to be relatively frequent to 

ensure the benefits of a multi-temperature system are maintained and so that you are 

not moving huge amounts of data at one time. 

Data Analysis 

The main aim of data analytics is to provide quick healthcare. The available 

genomics data, and the new data that is being generated on almost a daily basis 



needs to be explored in a meaningful way. As a result, new insights, such as 

different relationships between disease and genome may be identified. 

Furthermore, this could be a significant step towards personalised medicine based 

on an individual’s genome. This is a very difficult challenge given the size of 

genomics data. Add to it the integrated clinical data and the complexity of the 

problem increases several folds. There are many challenges along the way starting 

with finding an effective way of storage and retrieval of this huge amount of data. 

Once the data can be accessed quickly, insights could be found by generating useful 

data models.  

The existing frameworks and platforms carry out genomic data analysis using 

SQL, NoSQL and high throughput approaches. For example, (Rohm & Blakeley, 

January 2009) looks at genome data-management by storing the data files and 

importing data into a relational database system for analysis using SQL. Another 

platform called Genome Analysis Toolkit integrates data access patterns with 

MapReduce to allow analysis (McKenna, et al., 2010). The HIG platform makes 

use of in-memory technology and distributed computing to increase the speed of 

processing by intelligent scheduling (Schapranow, October 2013). The SQL 

approaches are not appropriate for scalable analytics. NoSQL approaches are not 

optimized in reading data. MapReduce approaches are scalable but do not support 

iterative analytics. Most of the time, data integration as well as storage is not taken 

into account. 

One way to address the scale of data and latency of accessing integrated genomic 

data is to introduce an in-memory Warehouse. The genomic data can be analysed on 

its own as well as in combination with clinical data.  Genomics data can be pushed 

into the warehouse, but in order to store it efficiently, state of the art approaches 

such as tiling may be used (Guthrie, et al., 2015). The tiling approach breaks down 

the genomic data into short overlapping segments called “tiles”, adds unique tags 

before and after each tile, along with a hash table of variants and its position in the 

genome. These tiles are then stored in a library. Gene Variants are stored as a new 

tile in the library at the same position in the genome as the reference genome. The 

genome is represented by a file containing pointers to the tiles in the library, thus 

reducing the size of the genome file from around 200GB to a few kilobytes (KB). 

Tiling could be integrated with the warehouse so that genomic data is efficiently 

stored in the warehouse in parallel to clinical data. 

For analysis, the stored data should be quickly retrievable by addressing the 

computational cost associated with genome data browsing. Traditional methods for 

searching genome databases compare a sequence from a query to all the sequences 

(i.e. several GBs of data) present within the database being searched, with 

thousands of queries being processed a day. This method is, however, 

computationally expensive. With exabytes of genomic data, this creates a limitation 

to query and browse data quickly. To address this, approaches which will allow 

genomic data to be browsed within the least possible time should be explored. The 

current warehouse architecture is not scalable, but it can browse finite amount of 

data very quickly. Efficient memory and storage management models and 



innovative algorithms for processing large amounts of data should be investigated 

to offer high speed iterative analytics. 

 

Fig. 7.  Genomic data represented as graphs. Correlations are found between nodes and useful 

information is extracted using algorithms such as graph partitioning. 

Analytics on genome data predict disease risks, drug efficacy and other 

outcomes. This requires integration of data from external sources. Several iterations 

of the data should sift through the data. To allow for fast and intelligent processing 

of data using the approaches such as machine learning, the stored genomic data 

could be represented as machine readable graphs (Fig. 7). Different graph models 

should be investigated and a suitable one, which could support high performance 

iterative analysis, should be selected. Previously, genome data has been represented 

as graphs (Ritchie, Holzinger, Li, Pendergrass, & Kim, February 2015). This could 

be extended to exploit the graph model for newer ways of processing genomic data 

that is structured into the tiling approach. Using a graph model will overcome the 

problem of processing the data iteratively because a graph-like representation will 

offer opportunities to rapidly generate and compute graphs using emerging 

hardware architectures and computing platforms. 

The information associated with a genome and its variants will be linked within 

the graph model. Graphs will ensure that the genomics data they are representing is 

functionally correct and results being produced are consistent with stored data. 

Using a graph model will also ensure the correctness of the analytics being 

performed on the data because of their capabilities to be mathematically and 

statistically verified. Hundreds of associations between genes and variants could be 

deduced by linking the nodes in the graph model (Fig. 7). However, not all the 

correlations deduced within the data-sets would be of importance in different 

analytical studies of the genome. In order to extract the required information only, 

approaches and algorithms such as graph partitioning should be investigated (Fig. 

7). This way a few meaningful correlations from hundreds of associations could be 

extracted using several iterations. 

Hosting the warehouse in a cloud environment will provide the infrastructure for 

scalable analytics. As the warehouse is based on distributed, in-memory 

architecture hosted on a cloud environment, both performance and scalability will 

be addressed in the resulting infrastructure. 



Conclusions 

In this chapter, we presented a cloud based data analytics platform. It provides an 

infrastructure for integrating diverse sources of genomics and clinical data. The 

approaches for maintaining consistency of the integrated data are also explained. It 

is ensured that data is in consistent state before and after integration. Analytics 

approaches for generating insights from the integrated data are discussed towards 

end of the chapter. 
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