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Abstract—Object detection and classification are the basic
tasks in video analytics and become the starting point for other
complex applications. Traditional video analytics approaches are
manual and time consuming. These are subjective due to the very
involvement of human factor. We present a cloud based video
analytics framework for scalable and robust analysis of video
streams. The framework empowers an operator by automating
the object detection and classification process from recorded
video streams. An operator only specifies an analysis criteria
and duration of video streams to analyse. The streams are then
fetched from a cloud storage, decoded and analysed on the cloud.
The framework executes compute intensive parts of the analysis
to GPU powered servers in the cloud. Vehicle and face detection
are presented as two case studies for evaluating the framework,
with one month of data and a 15 node cloud. The framework
reliably performed object detection and classification on the data,
comprising of 21,600 video streams and 175 GB in size, in 6.52
hours. The GPU enabled deployment of the framework took 3
hours to perform analysis on the same number of video streams,
thus making it at least twice as fast than the cloud deployment
without GPUs.

Index Terms—Cloud Computing, Video Stream Analytics,
Object Detection, Object Classification, High Performance

I. INTRODUCTION

RECENT past has observed a rapid increase in the avail-
ability of inexpensive video cameras producing good
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quality videos. This led to a widespread use of these video
cameras for security and monitoring purposes. The video
streams coming from these cameras need to be analysed for
extracting useful information such as object detection and
object classification. Object detection from these video streams
is one of the important applications of video analysis and
becomes a starting point for other complex video analytics
applications. Video analysis is a resource intensive process and
needs massive compute, network and data resources to deal
with the computational, transmission and storage challenges
of video streams coming from thousands of cameras deployed
to protect utilities and assist law enforcement agencies.

There are approximately 6 million cameras in the UK alone
[1]. Camera based traffic monitoring and enforcement of speed
restrictions have increased from just over 300,000 in 1996
to over 2 million in 2004 [2]. In a traditional video analysis
approach, a video stream coming from a monitoring camera
is either viewed live or is recorded on a bank of DVRs
or computer HDD for later processing. Depending upon the
needs, the recorded video stream is retrospectively analyzed by
the operators. Manual analysis of the recorded video streams
is an expensive undertaking. It is not only time consuming, but
also requires a large number of staff, office work place and
resources. A human operator loses concentration from video
monitors only after 20 minutes [3]; making it impractical to
go through the recorded videos in a time constrained scenario.
In real life, an operator may have to juggle between viewing
live and recorded video contents while searching for an object
of interest, making the situation a lot worse especially when
resources are scarce and decisions need to be made relatively
quicker.

Traditional video analysis approaches for object detection
and classification such as color based[4], statistical background
supression[5], adaptvie background [6], template matching [7]
and Guassian [8] are subjective, inaccurate and at times may
provide incomplete monitoring results. There is also a lack of
object classification in these approaches [4], [5], [8]. These
approaches do not automatically produce colour, size and
object type information [5], [6]. Moreover, these approaches
are costly and time consuming to such an extent that their
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usefulness is sometimes questionable [7], [9].

To overcome these challenges, we present a cloud based
video stream analysis framework for object detection and clas-
sification. The framework focuses on building a scalable and
robust cloud computing platform for performing automated
analysis of thousands of recorded video streams with high
detection and classification accuracy.

An operator using this framework, will only specify the
analysis criteria and the duration of video streams to analyse.
The analysis criteria defines parameters for detecting objects
of interests (face, car, van or truck) and size/colour based
classification of the detected objects. The recorded video
streams are then automatically fetched from the cloud storage,
decoded and analysed on cloud resources. The operator is
notified after completion of the video analysis and the analysis
results can be accessed from the cloud storage.

The framework reduces latencies in the video analysis pro-
cess by using GPUs mounted on compute servers in the cloud.
This cloud based solution offers the capability to analyse
video streams for on-demand and on-the-fly monitoring and
analysis of the events. The framework is evaluated with two
case studies. The first case study is for vehicle detection and
classification from the recorded video streams and the second
one is for face detection from the video streams. We have
selected these case studies for their wide spread applicability
in the video analysis domain.

The following are the main contributions of this paper:
Firstly, to build a scalable and robust cloud solution that can
perform quick analysis on thousands of stored/recorded video
streams. Secondly, to automate the video analysis process so
that no or minimal manual intervention is needed. Thirdly, to
achieve high accuracy in object detection and classification
during the video analysis process. This work is an extended
version of our previous work [10].

The rest of the paper is organized as followed: The related
work and state of the art are described in Section II. Our
proposed video analysis framework is explained in Section
III. This section also explains different components of our
framework and their interaction with each other. Porting the
framework to a public cloud is also discussed in this section.
The video analysis approach used for detecting objects of
interest from the recorded video streams is explained in
Section IV. Section V explains the experimental setup and
Section VI describes the evaluation of the framework in great
detail. The paper is concluded in Section VII with some future
research directions.

II. RELATED WORK

Quite a large number of works have already been completed
in this field. In this section, we will be discussing some of
the recent studies defining the approaches for video analysis
as well as available algorithms and tools for cloud based
video analytics. An overview of the supported video recording
formats is also provided in this section. We will conclude this
section with salient features of the framework that are likely
to bridge the gaps in existing research.

Object Detection Approaches

Automatic detection of objects in images/video streams
has been performed in many different ways. Most commonly
used algorithms include template matching [7], background
separation using Gaussian Mixture Models (GMM) [11], [12],
[13] and cascade classifiers [14]. Template matching tech-
niques find a small part of an image that matches with a
template image. A template image is a small image that may
match to a part of a large image by correlating it to the
large image. Template matching is not suitable in our case as
object detection is done only for pre-defined object features
or templates.

Background separation approaches separate foreground and
background pixels in a video stream by using GMM [11],
[12]. A real time approximation method that slowly adapts to
the values from the Gaussians and also deals with the multi-
model distributions caused by several issues during an analysis
has been proposed in [12]. Background frame differencing
[9] is a variation of background separation approaches and
identifies moving objects from their background in a video
stream. It uses averaging and selective update methods [9]
for updating the background in response to environmental
changes. Background separation and frame differencing meth-
ods are not suitable in our case as these are computationally
expensive. Feature extraction using support vector machines
[15] and parallel rule based classifiers for image classification
[16] provided good performance on large scale image datasets
with increasing number of nodes.

A cascade of classifiers (termed as HaarCascade Classifier)
[14] is an object detection approach and uses real AdaBoost
[17] algorithm to create a strong classifier from a collection
of weak classifiers. Building a cascade of classifiers is a
time and resource consuming process. However, it increases
detection performance and reduces the computation power
needed during the object detection process. We used a cascade
of classifiers for detecting faces/vehicles in video streams for
the results reported in this paper.

Video Analytics in the Clouds

Large systems usually consist of hundreds or even thousands
number of cameras covering over wide areas. Video streams
are captured and processed at the local processing server and
are later transferred to a cloud based storage infrastructure for
a wide scale analysis. Since, enormous amount of computation
is required to process and analyze the video streams, high
performance and scalable computational approaches can be a
good choice for obtaining high throughputs in a short span
of time. Hence, video stream processing in the clouds is
likely to become an active area of research to provide high
speed computation at scale, precision and efficiency for real
world implementation of video analysis systems. However,
so far major research focus has been on efficient video
content retrieval using Hadoop [18], encoding/decoding [19],
distribution of video streams [20] and on load balancing of
computing resources for on-demand video streaming systems
using cloud computing platforms [20], [21].
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Figure 1: System Architecture of the Video Analysis Framework

Video analytics have also been the focus of commercial
vendors. Vi-System [22] offers an intelligent surveillance
system with real time monitoring, tracking of an object within
a crowd using analytical rules and provides alerts for different
users on defined parameters. Vi-System does not work for
recorded videos, analytics rules are limited and need to be
defined in advance. SmartCCTV [23] provides optical based
survey solutions, video incident detection systems, high end
digital CCTV and is mainly used in UK transportation system.
Project BESAFE [24] aimed for automatic surveillance of
people, tracking their abnormal behaviour and detection of
their activities using trajectories approach for distinguishing
state of the objects. The main limitation of SmartCCTV and
Project BESAFE is lack of scalability to a large number of
streams and a requirement of high bandwidth for video stream
transmission.

IVA 5.60 [25] is an embedded video analysis system and is
capable of detecting, tracking and analyzing moving objects in
a video stream. It can detect idle and removed objects as well
as loitering, multiple line crossing, and trajectories of an ob-
ject. EptaCloud [26] extends the functionality provided by IVA
5.60 and implements the system in a scalable environment.
Intelligent Vision [27] is a tool for performing intelligent video
analysis and for fully automated video monitoring of premises
with a rich set of features. The video analysis system is built
into the cameras of IVA 5.60 that increases its installation
cost. Intelligent Vision is not scalable and does not serve our
requirements.

Because of abundant computational power and extensive
support on multi-threading, GPUs have become an active
research area to improve performance of video processing
algorithms. For example, Lui et. al. [28] proposed a hybrid

parallel computing framework based on the MapReduce [29]
programming model. The results suggest that such a model
will be hugely beneficial for video processing and real time
video analytics systems. We aim to use a similar approach in
this research.

Existing cloud based video analytics approaches do not sup-
port recorded video streams [22] and lack scalability [23], [24].
GPU based approaches are still experimental [28]. IVA 5.60
[25] supports only embedded video analytics and Intelligent
Vision [27] is not scalable, otherwise their approaches are
close to the approach presented in this research.

The framework being reported in this paper uses GPU
mounted servers in the cloud to capture and record video
streams and to analyse the recorded video streams using a
cascade of classifiers for object detection.

Supported Video Formats

CIF, QCIF, 4CIF and Full HD video formats are supported
for video stream recording in the presented framework. The
resolution (number of pixels present in one frame) of a video
stream in CIF format is 352x288 and each video frame has 99k
pixels. QCIF (Quarter CIF) is a low resolution video format
and is used in setups with limited network bandwidth. Video
stream resolution in QCIF format is 176x144 and each video
frame has 24.8k pixels. 4CIF video format has 4 times higher
resolution (704x576) than that of the CIF format and captures
more details in each video frame. CIF and 4CIF formats have
been used for acquiring video streams from the camera sources
for traffic/object monitoring in our framework. Full HD (Full
High Definition) video format captures video streams with
1920x1080 resolution and contains 24 times more details in a
video stream than CIF format. It is used for high resolution
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Video Format Frame Pixels per Video Avera_ge Recorded
Rate Frame Resolution Video Size

CIF (Common Intermediate Format) 25 99.0K 352 X 288 7.50MB

QCIF (Quarter CIF) 25 24.8K 176 X 144 2.95MB

4CIF 25 396K 704 X 576 8.30MB

Full HD (Full High Definition) 25 1.98M 1920 X 1080 9.35MB

Table I: Supported Video Recording Formats

video recording with availability of abundant disk storage and
high speed internet connection.

A higher resolution video stream presents a clearer image of
the scene and captures more details. However, it also requires
more network bandwidth to transmit the video stream and
occupies more disk storage. Other factors that may affect the
video stream quality are video bit rate and frames per second.
Video bit rate represents the number of bits transmitted from a
video stream source to the destination over a set period of time
and is a combination of the video stream itself and mate-data
about the video stream. Frames per second (fps) represents
the number of video frames stuffed in a video stream in one
second and determines the smoothness of a video stream. The
video streams have been captured with a constant bitrate of
200kbps and at 25 fps in the results reported in this paper.
Table I summarizes the supported video formats and their
parameters.

III. VIDEO ANALYSIS FRAMEWORK

This section outlines the proposed framework, its different
components and the interaction between them (Figure 1).
The proposed framework provides a scalable and automated
solution for video stream analysis with minimum latencies and
user intervention. It also provides capability for video stream
capture, storage and retrieval. This framework makes the video
stream analysis process efficient and reduces the processing
latencies by using GPU mounted servers in the cloud. It
empowers a user by automating the process of identifying
and finding objects and events of interest. Video streams
are captured and stored in a local storage from a cluster of
cameras that have been installed on roads/buildings for the
experiments being reported in this paper. The video streams
are then transferred to a cloud storage for further analysis
and processing. The system architecture of the video analysis
framework is depicted in Figure 1 and the video streams
analysis process on an individual compute node is depicted
in Figure 2a. We explain the framework components and the
video stream analysis process in the remainder of this section.

Automated Video Analysis: The framework automates the
video stream analysis by reducing the user interaction dur-
ing this process. An operator/user initiates the video stream
analysis by defining an “Analysis Request” from the APS
Client component (Figure 1) of the framework. The analysis
request is sent to the cloud data center for analysis and no
more operator interaction is required during the video stream
analysis. The video streams, specified in the analysis request,
are fetched from the cloud storage. These video streams are
analysed according to the analysis criteria and the analysis
results are stored in the analytics database. The operator is

notified of the completion of the analysis process. The operator
can then access the analysis results from the database.

An “Analysis Request” comprises of the defined region of
interest, an analysis criteria and the analysis time interval. The
operator defines a region of interest in a video stream for an
analysis. The analysis criteria defines parameters for detecting
objects of interests (face, car, van or truck) and size/colour
based classification of the detected objects. The time interval
represents the duration ofanalysis from the recorded video
streams as the analysis of all the recorded video streams might
not be required.

Framework Components

Our framework employs a modular approach in its design.
At the top level, it is divided into client and server components
(Figure 1). The server component runs as a daemon on the
cloud machines and performs the main task of video stream
analysis. Whereas, the client component supports multi-user
environment and runs on the client machines (operators in our
case). The control/data flow in the framework is divided into
the following three stages:

¢ Video stream acquisition and storage
¢ Video stream analysis
« Storing analysis results and informing operators

The deployment of the client and server components is as
follows: The Video Stream Acquisition is deployed at the
video stream sources and is connected to the Storage Server
through 1/10 Gbps LAN connection. The cloud based storage
and processing servers are deployed collectively in the cloud
based data center. The APS Client is deployed at the end-user
sites. We explain the details of the framework components in
the remainder of this section.

A. Video Stream Acquisition

The Video Stream Acquisition component captures video
streams from the monitoring cameras and transmits to the
requesting clients for relaying in a control room and/or for
storing these video streams in the cloud data center. The
captured video streams are encoded using H.264 encoder [30].
Encoded video streams are transmitted using RTSP (Real
Time Streaming Protocol) [31] in conjunction with RTP/RTCP
protocols [32]. The transmission of video streams is initiated
on a client’s request. A client connects to the video stream
acquisition component by establishing a session with the RTSP
server.

The client is authenticated using CHAP protocol before
transmitting video streams. The RTSP server sends a challenge
message to the client in the CHAP protocol. The client

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2517653, IEEE

Transactions on Cloud Computing

APS Server

Single Compute Node

Cloud Storage

Main CPU Thread Processing on GPU

Video Stream 1 Analysis Thread 1

0

0
0
Image Buffer Thread N i
Result Buffer

Video Stream 2
L > Analysis Thread 2| =

9 o

Q
0 ‘ o
lVideo Stream N | > Analysis Thread N| ———

Analytics
database

i

{ APS Client |

(a) Schematic Diagram

Create Input Split
from Sequence File

Upload Sequence File
to Cloud storage

\4
Extract Video
Frames

Detect Objects
of Interest

Store Results

Analytics
Database J

(b) Flow/Procedural Diagram

Figure 2: Video Stream Analysis on a Compute Node

responds to the RTSP server with a value obtained by a one-
way hash function. The server compares this value with the
value calculated with its own hash function. The RTSP server
starts video stream transmission after a match of the hash
values. The connection is terminated in case of a mis-match
of the hash values.

The video stream is transmitted continuously for one RTSP
session. The video stream transmission stops only when the
connection is dropped or the client disconnects itself. A new
session will be established after a dropped connection and the
client will be re-authenticated. The client is responsible for
recording the transmitted video stream into video files and
storing them in the cloud data center. Administrators in the
framework are authorized to change quality of the captured
video streams. Video streams are captured at 25 fps in the
experimental results reported in this paper.

B. Storage Server

The scale and management of the data coming from hun-
dreds or thousands of cameras will be in exabytes, let alone all
of the more than 4 million cameras in UK. Therefore, storage
of these video streams is a real challenge. To address this
issue, H.264 encoded video streams received from the video
sources, via video stream acquisition, are recorded as MP4
files on storage servers in the cloud. The storage server has
RL300 recorders for real time recording of video streams.
It stores video streams on disk drives and meta-data about
the video streams is recorded in a database (Figure 1). The

Duration Minimum Size | Maximum Size
2 Minutes (120 Seconds) 3MB 120MB

1 Hours (60 Minutes) 90MB 3.6GB

1 Day (24 Hours) 2.11GB 86.4GB

1 Week (168 Hours) 14.77GB 604.8GB

4 Weeks (672 Hours) 59.06GB 2.419TB

Table II: Disk Space Requirements for One Month of Recorded Video
Streams

received video streams are stored as 120 seconds long video
files. These files can be stored in QCIF, CIF, 4CIF or in Full
HD video format. These supported video formats are explained
in Section II. The average size, frame rate, pixels per frame
and the video resolution of each recorded video file for the
supported video formats is summarized in Table I.

The length of a video file plays an important role in the
storage, transmission and analysis of a recorded video stream.
The 120 seconds length of a video file is decided after
considering the network bandwidth, performance and fault
tolerance reasons in the presented framework. A smaller video
file is transmitted quicker as compared to a large video file.
Secondly, it is easier and quicker to re-transmit a smaller file
after a failed transmission due to a network failure or any other
reasons. Thirdly, the analysis results of a small video file are
quickly available as compared to a large video file.

The average minimum and maximum size of a 120 seconds
long video stream, from one monitoring camera, is 3MB
and 120MB respectively. One month of continuous recording
from one camera requires 59.06GB and 2.419TB of minimum
and maximum disk storage respectively. The storage capacity
required for storing these video streams of one month duration
from one camera is summarized in Table II.

C. Analytics Processing Server (APS)

The APS server sits at the core of our framework and
performs the video stream analysis. It uses the cloud storage
for retrieving the recorded video streams and implements a
processing server as compute nodes in a Hadoop cluster in the
cloud data center (as shown in Figure 1). The analysis of the
recorded video streams is performed on the compute nodes by
applying the selected video analysis approach. The selection
of a video analysis approach varies according to the intended
video analysis purpose. The analytics results and meta-data
about the video streams is stored in the Analytics Database.

Overall working of the framework is depicted in Figure 1,
the internal working of a compute node for analysing the video
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streams is depicted in Figure 2a. An individual processing
server starts analysing the video streams on receiving an
analysis request from an operator. It fetches the recorded video
streams from the cloud storage. The H.264 encoded video
streams are decoded using the FFmpeg library and individual
video frames are extracted. The analysis process is started on
these frames by selecting features in an individual frame and
matching these features with the features stored in the cascade
classifier. The functionality of the classifier is explained in
section IV. The information about detected objects is stored
in the analytics database. The user is notified after completion
of the analysis process. Figure 2b summarizes the procedure
of analysing the stored video streams on a compute node.

D. APS Client

The APS Client is responsible for the end-user/operator
interaction with the APS Server. The APS Client is deployed
at the client sites such as police traffic control rooms or city
council monitoring centers. It supports multi-user interaction
and different users may initiate the analysis process for their
specific requirements, such as object identification, object clas-
sification, or the region of interest analysis. These operators
can select the duration of recorded video streams for analysis
and can specify the analysis parameters. The analysis results
are presented to the end-users after an analysis is completed.
The analysed video streams along with the analysis results are
accessible to the operator over 1/10 Gbps LAN connection
from the cloud storage.

The APS Client is deployed at the client sites such as
police traffic control rooms or city council monitoring centers.
A user from a client site connects to the camera sources
through video stream acquisition module. The video stream
acquisition modules transmits video streams over the network
from the camera sources. The acquired video streams are
viewed live or are stored for analysis. In this video stream
acquisition/transmission model, neither changes are required in
the existing camera deployments nor any additional hardware
is needed.

E. Porting the Video Analytics Framework to a Public Cloud

The presented video analysis framework is evaluated on the
private cloud at the University of Derby. Porting the framework
to a public cloud such as Amazon EC2, Google Compute
Engine or Microsoft Azure will be a straighforward process.
We explain the steps/phases for porting the framework to
Amazon EC2 in the remainder of this section.

The main phases in porting the framework to Amazon EC2
are data migration, application migration and performance
optimization. The data migration phase involve uploading all
the stored video streams from local cloud storage to the
Amazon S3 cloud storage. The AWS SDK for Java will be
used for uploading the video streams and AWS Management
Console to verify the upload. The “Analytics Database” will
be created in Amazon RDS for MySQL database. The APS is
moved to Amazon EC2 in the application migration phase.

Custom Amazon Machine Images (AMIs) will be created
on Amazon EC2 instances for hosting and running the APS

components. These custom AMIs can be added or removed
according to the varying workloads during the video stream
analysis process. Determining the right EC2 instance size will
be a challenging task in this migration. It is dependent on
the processing workload, performance requirements and the
desired concurrency for video streams analysis. The health and
performance of the instances can be monitored and managed
using AWS Management Console.

IV. VIDEO ANALYSIS APPROACH

The video analysis approach detects objects of interest
from the recorded video streams and classifies the detected
objects according to their distinctive properties. The AdaBoost
based cascade classifier [14] algorithm is applied for detecting
objects from the recorded video streams. Whereas, size based
classification is performed for the detected vehicles in the
second case study.

In the AdaBoost based object detection algorithm, a cascade
classifier combines weak classifiers into a strong classifier. The
cascade classifier does not operate on individual image/video
frame pixels. It rather uses integral image for detecting object
features from he individual frames in a video stream. All
the object features not representing an object of interest are
discarded early in the object detection process. The cascade
classifier based object detection increases detection accuracy,
uses less computational resources and improves the overall
detection performance. This algorithm is applied in two stages
as explained below.

Training a Cascade Classifier

A cascade classifier combining a set of weak classifiers
using real AdaBoost [17] algorithm is trained in multiple
boosting stages. In the training process, a weak classifier
learns about the object of interest by selecting a subset of
rectangular features that efficiently distinguish both classes
of the positive and negative images from the training data.
This classifier is the first level of cascade classifier. Initially,
equal weights are attached to each training example. The
weights are raised for the training examples misclassified by
the current weak classifier in each boosting stage. All of these
weak classifiers determine the optimal threshold function such
that mis-classification is minimized. The optimal threshold
function is mathematically represented [17] as follow:

L if pifi(x) < p;b;

hi(x )
0 otherwise

) =
where z is the window, f; is value of the rectangle feature, p;
is parity and 6, is the threshold. A weak classifier with lowest
weighted training error, on the training examples, is selected
in each boosting stage. The final strong classifier is a linear
combination of all the weak classifiers and has gone through
all the boosting stages. The weight of each classifier in the
final classifier is directly proportional to its accuracy.

The cascade classifier is developed in a hierarchical fashion
and consists of cascade stages, trees, features and thresholds.
Each stage is composed of a set of trees, trees are composed
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of features and features are composed of rectangles. The
features are specified as rectangles with their x, y, height and
width value and a tilted field for each rectangular feature.
The tilted field specifies whether the feature is rotated or not.
The threshold field specifies the branching threshold for the
feature. The left branch is taken when the value of the feature
is less than the adjusted threshold and the right branch is taken
otherwise. The tree values within a stage are accumulated
and are compared with the stage threshold. The accumulated
value is used to decide object detection at a stage. If this
value is higher than the stage threshold the sub-windows are
classified as an object and is passed to the next stage for further
classification.

A cascade of classifiers increases detection performance and
reduces computational power during the detection process. The
cascade training process aims to build a cascade classifier
with more features for achieving higher detection rates and a
lower false positive rate. However, a cascade classifier with
more features will require more computational power. The
objective of the cascade classifier training process is to train a
classifier with minimum number of features for achieving the
expected detection rate and false positive rate. Furthermore,
these features can encode ad hoc domain knowledge that is
difficult to learn using finite quantity of the training data. We
used opencv_harrtraining utility provided with OpenCV [33]
to train the cascade classifier.

Detecting Objects of Interest from Video Streams Using
Cascade Classifier: Object detection with a cascade classifier
starts by scanning a video frame for all the rectangular features
in it. This scanning starts from the top-left corner of the video
frame and finishes at the bottom-right corner. All the identified
rectangular features are evaluated against the cascade. Instead
of evaluating all the pixels of a rectangular feature, the
algorithm applies an integral image approach and calculates
a pixel sum of all the pixels inside a rectangular feature by
using only 4 corner values of the integral image as depicted in
Figure 3. The integral image results in faster feature evaluation
than the pixel based evaluation. Scanning a video frame and
constructing an integral image are computationally expensive
tasks and always need optimization.

The integral image is used to calculate the value of the
detected features. The identified features consist of small
rectangular regions of white and shaded areas. These features
are evaluated against all the stages of the cascade classifier.

The value of any given feature is always the sum of the pixels
within white rectangles subtracted from the sum of the pixels
within shaded rectangles. The evaluated image regions are
sorted out between positive and negative images (i.e. objects
and non-objects).

For reducing the processing time, each video frame is
scanned in two passes. A video frame is divided into sub-
windows in the first pass. These sub-windows are evaluated
against the first two stages of the cascade of classifiers
(containing weak classifiers). A sub-window is not evaluated
against the remaining stages of cascade classifier, if it is
eliminated in stage zero or evaluates to an object in stage
one. The second pass evaluates only those sub-windows that
were neither eliminated nor marked as objects in the first pass.

An attentional cascade is applied for reducing the detection
time. In the attentional cascade, simple classifiers are applied
earlier in the detection process and a candidate rectangular
feature is rejected at any stage for a negative response from
the classifier. The strong classifiers are applied later in the
detection stages to reduce false positive detections. A positive
rectangular feature from a simple classifier is further evaluated
by a second complex classifier from the cascade classifier.
The detection process rejects many of the negative rectangular
features and detects all of the positive rectangular features.
This process continues for all the classifiers in the cascade
classifier.

It is important to mention that the use of a cascade classifier
for detecting objects reduces the time and resources required
in the object detection process. However, object detection
by using a cascade of classifiers is still time and resource
consuming. It can be further optimized by porting the parallel
parts of the object detection process to GPUs.

It is also important to note that the machine learning based
real AdaBoost algorithm for training the cascade classifier is
not trained on the cloud. The cascade classifier is trained once
on a single compute node. The trained cascade classifiers are
used for detecting objects from the recorded video streams on
the compute cloud.

Object Classification: The objects detected from the video
streams can be classified according to their features. The
colour, size, shape or a combination of these features can be
used for the object classification.

In the second case study for vehicle detection, the vehicles
detected from the video streams are classified into cars, vans or
trucks according to their size. As explained above, the vehicles
from the video streams are detected as they pass through the
defined region of interest in the analysis request. Each detected
vehicle is represented by a bounding box (a rectangle) that
encloses the detected object. The height and the width of the
bounding box is treated as the size of the detected vehicle.

All the vehicles are detected at the same point in video
streams. Hence, the location of the detected vehicles in a video
frame becomes irrelevant and the bounding box represents the
size of the detected object.

The detected vehicles are classified into cars, vans and
trucks by profiling the size of their bounding boxes as follows.
The vehicles with a bounding box of size less than (100x100)
are classified as cars, (150x150) are classified as vans and all
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the detected vehicles above this size are classified as trucks.
The object detection and classification results are explained in
the experimental results section.

The faces detected from video streams, in the second case
study, can be classified according to their gender or age.
However, no classification is performed on the detected faces
in this work. The object detection and classification results are
explained in the experimental results section.

V. EXPERIMENTAL SETUP

This section explains the implementation and experimental
details for evaluating the video analysis framework. The results
focus on the accuracy, performance and scalability of the
presented framework. The experiments are executed in two
configurations; cloud deployment and cloud deployment with
Nvidia GPUs.

The cloud deployment evaluates the scalability and robust-
ness of the framework by analysing different aspects of the
framework including (i) video stream decoding time, (ii) video
data transfer time to the cloud, (iii) video data analysis time on
the cloud nodes and (iv) collecting the results after completion
of the analysis.

The experiments on the cloud nodes with GPUs evaluate
the accuracy and performance of the video analysis approach
on state of the art compute nodes with two GPUs each. These
experiments also evaluate the video stream decoding and video
stream data transfer between CPU and GPU during the video
stream analysis. The energy implications of the framework
at different stages of the video analytics life cycle are also
discussed towards the end of this section.

A. Compute Cloud

The framework is evaluated on the cloud resources available
at the University of Derby. The cloud instance is running
OpenStack Icehouse [34] with Ubuntu LTS 14.04.1. It consist
of six server machines with 12 cores each. Each server has
two 6-core Intel® Xeon® processors running at 2.4Ghz with
32GB RAM and 2 Terabyte storage capacity. The cloud
instance has a total of 72 processing cores with 192GB of
RAM and 12TB of storage capacity. OpenStack Icehouse is
providing a management and control layer for the cloud. It
has a single dashboard for controlling the pool of computers,
storage, network and other resources. The iSCSI solution using
Logical Volume Manager (LVM) is implemented as the default
OpenStack Block Storage service.

We configured a cluster of 15 nodes on the cloud instance.
Each of these 15 nodes have 100GB of storage space, 8GB
RAM and a 4 VCPU running at 2.4 GHz. This 15 nodes cluster
is used for evaluating the framework. These experiments focus
at different aspects of the framework such as analysis time of
the framework, effect of task parallelism on each node, block
size, block replication factor and number of compute/data
nodes in the cloud. The purpose of these experiments is to test
the performance, scalability and reliability of the framework
with varying cloud configurations. The conclusions from these
experiments can then be used for deploying the framework on
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a production cloud with as many nodes as required by the data
size of a user application.

The framework is executed on Hadoop MapReduce [29]
for evaluations in the cloud. JavaCV, a Java wrapper of
OpenCV [33] is used as image/video processing library.
Hadoop Yarn schedules the jobs and manages resources for
the running processes on Hadoop. There is a NameNode
for managing nodes and load balancing among the nodes, a
DataNode/ComputeNode for storing and processing the data,
a JobTracker for executing and tracking jobs. A DataNode
stores video stream data as well as executes the video stream
analysis tasks. This setting allows us to schedule analysis tasks
on all the available nodes in parallel and on the nodes close
to the data. Figure 4 summarizes the flow of analysing video
streams on the cloud.

B. Compute Node with GPUs

The detection accuracy and performance of the framework
is evaluated on cloud nodes with 2 Nvidia GPUs. The compute
nodes used in these experiments have Nvidia Tesla K20C and
Nvidia Quadro 600 GPUs. Nvidia Tesla K20 has 5GB DDRS5
RAM, 208 GBytes/sec data transfer rate, 13 multiprocessor
units and 2496 processing cores. Nvidia Quadro 600 has
1GB DDR3 RAM, 25.6 GBytes/sec data transfer rate, 2
multiprocessor units and 96 processing cores.

CUDA is used for implementing and executing the compute
intensive parts of the object detection algorithm on a GPU.
It is an SDK that uses SIMD (Single Instruction Multiple
Data) parallel programming model. It provides fine-grained
data parallelism and thread parallelism nested within coarse-
grained data and task parallelism [35], [36]. The CUDA pro-
gram executing compute intensive parts of the object detection
algorithm is called CUDA kernel.

A CUDA program starts its execution on CPU (called host),
processes the data with CUDA kernels on a GPU (called
device) and transfers the results back to the host.

Challenges in porting CPU application to GPU: The main
challenge in porting a host application (CPU based applica-
tion) to a CUDA program is in identifying parts of the host
application that can be executed in parallel and isolating data
to be used by the parallel parts of the application. After porting
the parallel parts of the host application to CUDA kernels, the
program and data are transferred to the GPU memory and
the processed results are transferred back to the host with the
CUDA API function calls.

The second challenge is faced while transferring the pro-
gram data for kernel execution from CPU to GPU. This
transfer is usually limited by the data transfer rates between
CPU-GPU and the amount of available GPU memory.

The third challenge relates to the global memory access in
a CUDA application. The global memory access on a GPU

Image Training Images Boosting | Scale

Size Positive Negative Stages Factor
Vehicle 20x20 550 550 12 1.2
Face 20x20 5000 3000 21 1.2

Table III: Image Dataset with Cascade Classifier Parameters
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Figure 4: Analysing Video Streams on the Cloud

takes between 400 and 600 clock cycles as compared to 2
clock cycles of the GPU register memory access. The speed
of memory access is also affected by the thread memory
access pattern. The execution speed of a CUDA kernel will
be considerably higher for coalesced memory access (all the
threads in same multiprocessor access consecutive memory
locations) than that of non-coalesced memory access.

The above challenges are taken into account while porting
our CPU based object detection implementation to the GPU.
The way, we tackled these challenges is detailed below.

What is Ported on GPU and Why

A video stream consists of individual video frames. All of
these video frames are independent of each other from object
detection perspective and can be processed in parallel. The
Nvidia GPUs use SIMD model for executing CUDA kernels.
Hence, video stream processing becomes an ideal application
for porting to GPUs as the same processing logic is executed
on every video frame.

We profiled the CPU execution of the video analysis
approach for detecting objects from the video streams and
identified the compute intensive parts in it. Scanning a video
frame, constructing an integral image, and deciding the feature
detection are the compute intensive tasks and consumed most
of the processing resources and time in the CPU based
implementation. These functions are ported to GPU by writing
CUDA kernels in our GPU implementation.

In the GPU implementation, the object detection process
executes partially on CPU and partially on GPU. The CPU
decodes a video stream and extracts video frames from it.
These video frames and cascade classifier data are ported to a
GPU for object detection. The CUDA kernel processes a video
frame and the object detection results are transferred back to
the CPU.

We used OpenCV [33], an image/video processing library
and its GPU component for implementing the analysis algo-
rithms as explained in Section IV. JavaCV, a Java wrapper
of OpenCV, is used in the MapReduce implementation. Some
primitive image operations like converting image colour space,

image thresholding and image masking are used from OpenCV
library in addition to HaarCascade Classifier algorithm.

C. Image Datasets for Cascade Classifier Training and Test-
ing

The UIUC image database [37] and FERET image database
[38] are used for training the cascade classifier for detecting
vehicles and faces from the recorded video streams respec-
tively. The images in UIUC database are gray scaled and
contain front, side and rear views of the cars. There are 550
single-scale car images and 500 non-car images in the training
database. The training database contains two test image data
sets. The first test set of 170 single-scale test images contains
200 cars at roughly the same scale as of the training images.
Whereas, the second test set has 108 multi-scale test images
containing 139 cars at various scales.

The FERET image database [38] is used for training and
creating the cascade classifier for detecting faces from the
recorded video streams. A total of 5000 positive frontal face
images and 3000 non-face images are used for training the
face cascade classifier. The classifier is trained for frontal faces
only with an input image size of 20x20. It has 21 boosting
stages.

The input images used for training both the cascade classi-
fiers have a fixed size of 20x20. We used opencv_harrtraining
utility provided with OpenCV for training both the cascade
classifiers. These datasets are summarized in Table III.

D. Energy Implications of the Framework

Energy consumed in a cloud based system is an important
aspect of its performance evaluation. The following three are
the major areas where energy savings can be made, leading to
energy efficient video stream analysis.

1) Energy consumption on camera posts

2) Energy consumption in video stream transmission

3) Energy consumption during video stream analysis

Energy consumed on camera posts: Modern state of the
art cameras are employed which consume as little energy as
possible. The solar powered, network enabled digital cameras
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Scale Factor Single Scale Test Images Multi—Scale Test Images
Detected Cars | Missed Cars | Detection Rate | Time (sec) | Detected Cars | Missed Cars | Detection Rate | Time (sec)
1.01 170 30 85% 4.48 108 31 77.7% 2.97
1.02 166 64 83% 2.62 106 34 76.26% 1.69
1.03 157 43 78.5% 2.21 100 39 71.94% 1.29
1.04 153 47 76.5% 1.63 97 42 69.78% 1.07
1.05 149 51 74.5% 1.37 96 43 69.06% 0.91
1.10 117 83 58.5% 1.01 76 63 54.68% 0.70
1.15 112 88 56% 0.82 71 68 51.08% 0.56
1.20 88 112 44% 0.77 56 83 40.29% 0.50
1.30 73 137 36.5% 0.69 46 93 33.09% 0.44
1.50 55 145 27.5% 0.58 37 102 26.62% 0.36

Table IV: Detection Rate with Varying Scaling Factor for the Supported Video Formats

are replacing the traditional power hungry cameras. These
cameras behave like sensors and only activate themselves
when an object appears in front of a camera, leading to
considerable energy savings.

Energy consumed in video stream transmission: There
are two ways we can reduce the energy consumption during
the video stream transmission. The first one is by using
compressions techniques on the camera sources. We are using
H264 encoding in our framework which compresses the data
up to 20 times before streaming it to a cloud data center. The
second approach is by using an on source analysis to reduce
the amount of data and thereby reducing the energy consumed
in the streaming process. The on source analysis will have
in-built rules on camera sources that will detect important
information such as motion and will only stream the data
that is necessary for analysis. We will employ a combination
of these two approaches to considerably minimize the energy
consumption in the video transmission process.

Energy consumption during video stream Analysis: The
energy consumed during the analysis of video data uses a large
portion of energy consumption in the whole life cycle of a
video stream. We have employed GPUs for efficient processing
of the data. GPUs have lightweight processing cores than that
of CPUs and consume less energy. Nvidia’s Fermi (Quadro
600) and Kepler’s Tesla K20 GPUs are at least 10 times more
energy efficient that the latest x86 based CPUs [39]. We used
both of these GPUs in the reported results.

The GPUs execute compute intensive part of the video
analysis algorithms efficiently. We achieved a speed up of at
least two times on cloud nodes with GPUs as compared to
the cloud nodes without GPUs. In this way the energy use is
reduced by half for the same amount of data. By ensuring the
availability of video data closer to the cloud nodes also reduced
the un-necessary transfer of the data during the analysis. We
are also experimenting the use of in-memory analytics that
will further reduce the time to analyse, leading to considerable
energy savings.

VI. EXPERIMENTAL RESULTS

We present and discuss the results obtained from the two
configurations detailed in Section V. These results focus
on evaluating the framework for object detection accuracy,
performance and scalability of the framework. The execution
of the framework on the cloud nodes with GPUs evaluates the
performance and detection accuracy of the video analysis ap-
proach for object detection and classification. It also evaluates

the performance of the framework for video stream decoding,
video stream data transfer between CPU and GPU and the
performance gains by porting the compute intensive parts of
the algorithm to the GPUs.

The cloud deployment without GPUs evaluates the scala-
bility and robustness of the framework by analysing different
components of the framework such as video stream decoding,
video data transfer from local storage to the cloud nodes, video
data analysis on the cloud nodes, fault-tolerance and collecting
the results after completion of the analysis. The object detec-
tion and classification results for vehicle/face detection and
vehicle classification case studies are summarized towards the
end of this section.

A. Performance of the Trained Cascade Classifiers

The performance of the trained cascade classifiers is eval-
vated for the two case studies presented in this paper i.e.
vehicle and face detection from the recorded video streams. It
is evaluated by the detection accuracy of the trained cascade
classifiers and the time taken to detect the objects of interest
from the recorded video streams. The training part of the real
AdaBoost algorithm is not executed on the cloud resources.
The cascade classifiers for vehicle and face detection are
trained once on a single compute node and are used for
detecting objects from the recorded video streams on the cloud
resources.

Cascade Classifier for Vehicle Detection: The UIUC image
database [37] is used for training the cascade classifier for
vehicle detection. The details of this data set are explained in
Section V. Minimum detection rate was set to 0.999 and 0.5
was set as maximum false positive rate during the training.
The test images data set varied in lightening conditions and
background scheme.

The input images used in the classifier training has a fixed
size of 20x20 for vehicles. Only those vehicles will be detected
that have a similar size as of the training images. The recorded
video streams have varying resolutions (Section II) and capture
objects at different scales. The objects of different sizes, than
that of 20x20, from the recorded video streams can be detected
by re-scaling the video frames. A scale factor of 1.1 means
decreasing the video frame size by 10%. It increases the
chance of matching size with the training model, however, re-
scaling the image is computationally expensive and increases
computation time during the object detection process.
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However, the increased computation time of re-scaling pro-
cess is compensated by the resulting re-scaled image. Setting
this parameter to higher values of 1.2, 1.3 or 1.5 will process
the video frames faster. However, the chances of missing some
objects increase and the detection accuracy is reduced. The
impact of increasing scaling factor on the supported video
types is summarized in Table IV. It can be seen that with
increasing scaling factor for the supported video formats, the
number of candidate detection windows decreases, the object
detection decreases and it takes more time to process a video
frame with a higher scaling factor. The optimum scale factor
value for the supported video formats was found to be 1.2 and
was used in all of the experiments.

Another parameter that affects the quality of the detected
objects during the object detection process is the minimum
number of neighbors. It represents the number of neighbor
candidate rectangles each candidate rectangle will have to
retain in the detection process. A higher value decreases the
number of false positives. In our experiments, 3~5 provided a
balance of detection quality and processing time.

The compute time for the object detection process can be
further decreased from domain knowledge. We know that any
object less that 20x20 pixels is neither a vehicle nor a face
in the video streams. Therefore, all the candidate rectangles
that are smaller than 20x20 are rejected during the detection
process and are not further processed.

Overall, performance of the trained classifier is 85% for the
single-scale car images data set. Performance of the trained
classifier was 77.7% for the mixed-scale car images data set.
Since the classifier was trained with single-scale car images
data set, relatively low performance of the classifier with multi-
scale car images was expected. Best detection results were
found with 12 boosting stages of the classifier. The object
detection (vehicle ) accuracy of the trained cascade classifier

# of . Miss
Cars Hit Rate Rate
Single-Scale Cars 200 85% 15%
Multi-Scale Cars 139 77.7% 22.3%
Faces 752 99.91% 0.09%

Table V: Trained Classifier Detection Accuracy

is summarized in Table V.

Cascade Classifier for Face Detection: The procedure for
training the cascade classifier for detecting faces from the
image/video streams is the same as used for training the
cascade classifier for vehicle detection. The cascade classifier
for face detection is trained with FERET image database [38].
A value of 3 for minimum number of neighbors provided best
detection. The minimum detection rate was set to 0.999 and
0.5 was set as the maximum false positive rate. The test image
data set contained 752 frontal face images having varying
lightening conditions and background schemes. The detection
accuracy of the trained cascade classifier for frontal faces is
99.91%.

A higher detection rate of the frontal face classifier in
comparison to the vehicle detection classifier is due to less
variation in the frontal face poses. The classifier for vehicle
detection is trained from the images containing frontal, side
and rear poses of the vehicles. Whereas, the classifier for
frontal face has information about the frontal pose of the face
only.

B. Video Stream Analysis on GPU

The video analytics framework is evaluated by analyzing
the video streams for detecting objects of interest for two
applications (vehicle/face). By video stream analysis, we mean
decoding a video stream and detecting objects of interest,
vehicle or face, from it. The results presented in this section
focus on the functionality and computational performance
required for analyzing the video streams. The analysis of a
video stream on a GPU can be broken down into the following
four steps:

1) Decoding a video stream

2) Transferring a video frame from CPU to GPU memory
3) Processing the video frame data

4) Downloading the results from GPU to CPU

The total video stream analysis time on a GPU includes video
stream decoding time on the CPU, the data transfer from CPU
to GPU, the processing time on GPU, and the results transfer
time from GPU to CPU. Whereas, the total video stream
analysis time on a CPU includes video stream decoding time
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Video Video Stream Frame Frame Data Frame Transfer Single Frame Analysis Time Single Video Stream Analysis Time
Format Resolution Decode Time Size Time (CPU-GPU) CPU GPU CPU GPU

QCIF 177 X 144 0.11 msec 65 KB 0.02 msec 3.03 msec 1.09 msec 9.39 sec 3.65 sec

CIF 352 X 288 0.28 msec 273 KB 0.12 msec 9.49 msec 4.17 msec 29.31 sec 13.71 sec
4CIF 704 X 576 0.62 msec 1.06 MB 0.59 msec 34.28 msec 10.17 msec 104.69 sec 34.13 sec

Full HD 1920 X 1080 2.78 msec 2.64 MB 0.89 msec 44.79 msec 30.38 msec 142.71 sec 105.14 sec

Table VI: Single Video Stream Analysis Time for Supported Video Formats

and video stream processing time. It is important to note that
no data transfer is required in the CPU implementation as the
video frame data is being processed by the same CPU. The
time taken on all of these steps for CPU and GPU executions
is explained in the rest of this section.

Decoding a Video Stream: Video stream analysis is started
by decoding a video stream. The video stream decoding is
performed using FFmpeg library and involves reading a video
stream from the hard disk or from the cloud data storage and
extracting video frames from it. It is an I/O bound process
and can potentially make the whole video stream analysis very
slow, if not handled properly. We performed a buffered video
stream decoding to avoid any delays caused by the I/O process.
The recorded video stream of 120 seconds duration is read
into buffers for further processing. The buffered video stream
decoding is also dependent on available amount of RAM on
a compute node. The amount of memory used for buffered
reading is a configurable parameter in our framework.

The video stream decoding time for extracting one video
frame for the supported video formats (QCIF, CIF, 4CIF,
Full HD) varied from between 0.11 to 2.78 milliseconds.
The total time for decoding a video stream of 120 seconds
duration varied between 330 milliseconds to 8.34 seconds
for the supported video formats. It can be observed from
Figure 5a that less time is taken to decode a lower resolution
video format and more time to decode higher resolution video
formats. The video stream decoding time is same for both
CPU and GPU implementations as the video stream decoding
is only done on CPU.

Transfer Video Frame Data from CPU to GPU Memory:
Video frame processing on GPU requires transfer of the video
frame and other required data from CPU memory to the GPU
memory. This transfer is limited by the data transfer rates
between CPU and GPU and the amount of available memory
on the GPU. The high end GPUs such as Nvidia Tesla and
Nvidia Quadro provide better data transfer rates and have more
available memory. Nvidia Tesla K20 has 5SGB DDR5 RAM
and 208 GBytes/sec data transfer rate and Quadro 600 has
1GB DDR3 RAM and a data transfer rate of 25.6 GBytes/sec.
Whereas, lower end consumer GPUs have limited on-board
memory and are not suitable for video analytics.

The size of data transfer from CPU memory to GPU
memory depends on the video format. The individual video
frame data size for the supported video formats varies from
65KB to 2.64 MB (the least for QCIF and the highest for the
Full HD video format). The data transfer from CPU memory to
the GPU memory took between 0.02 to 0.89 milliseconds for
an individual video frame. The total transfer time from CPU
to GPU for a QCIF video stream took only 60 milliseconds
and 2.67 seconds for a Full HD video stream. Transferring

the processed data back to CPU memory from GPU memory
consumed almost the same time. The data size of a video
frame for the supported video formats and the time taken to
transfer this data from CPU to GPU is summarized in Table
VI. An individual video frame reading time, the transfer time
from CPU to GPU and the processing time on the CPU and on
the GPU is graphically depicted in Figure 5a. No data transfer
is required for the CPU implementation as CPU processes a
video frame directly from the CPU memory.

Processing Video Frame Data: The processing of data for
object detection on a GPU is started after all the required data
is transferred from CPU to GPU. The data processing on a
GPU is dependent on the available CUDA processing cores
and the number of simultaneous processing threads supported
by a GPU. The processing of an individual video frame means
processing all of its pixels for detecting objects from it using
the cascade classifier algorithm. The processing time for an
individual video frame of the supported video formats varied
between 1.09 milliseconds to 30.38 milliseconds. The total
processing time of a video stream on a GPU varied between
3.65 seconds to 105.14 seconds.

The total video stream analysis time on a GPU includes
video stream decoding time, the data transfer time from CPU
to GPU, the video stream processing time, and transferring
the processed data back to the CPU memory from the GPU
memory. The analysis time for a QCIF video stream, of 120
seconds duration, is 3.65 seconds and the analysis time for a
Full HD video stream of the same duration is 105.14 seconds.

The processing of a video frame on a CPU does not involve
any data transfer and is quite straightforward. The video frame
data is already available in the CPU memory. The CPU reads
the individual frame data and applies the algorithm on it. The
CPU has less processing cores than that of a GPU and takes
more time to process an individual video frame than on a GPU.
It took 3.03 milliseconds for processing a QCIF video frame
and 44.79 milliseconds for processing a Full HD video frame.
The total processing time of a video stream for the supported
video formats varied between 9.09 seconds to 134.37 seconds.
Table VI summarizes the individual video frame processing
time for the supported video formats.

The total video stream analysis time on CPU includes the
video stream decoding time and the video stream processing
time. The total analysis time for a QCIF video stream is 9.39
seconds and the total analysis time for a Full HD video stream
of 120 seconds duration is 142.71 seconds. It is obvious that
the processing of a Full HD video stream on the CPU is slower
and is taking more time than the length of a Full HD video
stream. Each recorded video stream took 25% CPU processing
power of the compute node. We were limited to analyse only
three video streams in parallel on one CPU. The system was
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crashing with simultaneous analysis of more than three video
streams.

In the GPU execution, we observe less speed up for QCIF
and CIF video formats as compared to 4CIF video format.
QCIF and CIF are low resolution video formats and a part
of the processing speed up gain is over-shadowed by the data
transfer overhead from CPU memory to the GPU memory.
The highest speed up of 3.07 times is observed for 4CIF video
format and is least affected by the data transfer overhead, as
can be observed in Figure 5b.

We can analyse more video streams by processing them in
parallel. As mentioned above, we could only analyse 3 video
streams in parallel on a single CPU and were constrained
by the availability of CPU processing power. We spawned
multiple video streams processing threads from CPU to GPU.
In this way, multiple video streams are processed in parallel on
a GPU. The video frames of each video stream were processed
in its own thread. We analyzed four parallel video streams
on the two Nvidia GPUs namely Tesla K20 and Quadro 600
GPUs, each analyzing 2 video streams in parallel.

C. Analysing Video Streams on Cloud

We explain the evaluation results of the framework on
the cloud resources in this section. These results focus on
evaluation of the scalability of the framework. The analysis of
a video stream on the cloud using Hadoop [29] is evaluated
in three distinct phases.

1) Transferring the recorded video stream data from storage
server to the cloud nodes

2) Analysing the video stream data on the cloud nodes

3) Collecting results from the cloud nodes

Hadoop MapReduce framework is used for processing the
video frames data in parallel on the cloud nodes. The input
video stream data is transferred into the Hadoop file storage
(HDFS). This video stream data is analysed for object de-
tection and classification using the MapReduce framework.
The meta-data produced is then collected and stored in the
Analytics database for later use (as depicted in Figure 4).

Each cloud node executes one or more "analysis tasks". An
analysis task is a combination of map and reduce tasks. It is
generated from the analysis request submitted by a user. A
map task in our framework is used for processing the video
frames for object detection and classification and generating
analytics meta-data. The reduce task writes the meta-data back
into the output sequence file. A MapReduce job splits input
sequence file into independent data chunks. Each data chunk
becomes input to an individual map task. The output sequence
file is downloaded from the cloud data storage and the results
are stored in the Analytics database.

It is important to mention that the MapReduce framework
takes care of the scheduling map and reduce tasks, monitoring
their execution and re-scheduling the failed tasks.

Creating Sequence File from Recorded Video Streams: The
H.264 encoded video streams, coming from camera sources,
are first recorded in the storage server as 120 seconds long
files (see Section III for details). The size of one month of
the recorded video streams in 4CIF format is 175GB. Each
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video file has a frame rate of 25 frames per second. Therefore,
each video file has 3000 (=120*25) individual video frames.
The individual video frames are extracted as images and these
images file are saved as PNG files before transferring them
into the cloud data storage. The number of 120 seconds video
files in one hour is 30 and in 24 hours is 720. The total number
of image files for the 24 hours recorded video streams from
one camera source is 216,000 (=720%3000).

These small image files are not suitable for directly trans-
ferring to the cloud data storage and processing with the
MapReduce framework. As the MapReduce framework is
designed for processing large files and processing a small
file will decrease the overall performance. These files are
first converted into a large file which is suitable for storing
into cloud data storage and processing with the MapReduce
framework. The process of converting these small files into
a large file and transferring to the cloud nodes is explained
below.

The default block size for data storage on the cloud nodes
is 128MB. Any file smaller than this size will still occupy
one block and will thus decrease the performance. All the
video files recorded in the storage server are less than the
128MB block size. These small files require lots of disk
seeks, inefficient data access pattern and increased hopping
from DataNode to DataNode due to the distribution of the
files across the nodes. These factors result in overall reduced
performance of the whole system. When a large numbers of
small files are stored in the cloud data storage (minimum of
216,000), the meta-data of these files occupies large portion
of the namespace. Every file/directory/block in the cloud data
storage is represented as an object in NameNode’s memory
and occupies namespace. The namespace capacity is limited
by the physical memory in the NameNode. Each of the object
is 150 bytes. If the video files are transferred to the cloud data
storage without converting them into a large file, one month
of recorded video streams data would require around 10GB of
cloud data storage for storing the meta-data only and this is
only from one camera source. It results in reduced efficiency
of data storage in particular and of the whole cloud system in
general.

These small files can either be stored as Hadoop Archives
(HAR) files or as Hadoop sequence files. HAR files data
access is slower, requires two index file reads in addition
to the data file read and is therefore not suitable for our

Sequence File Creation Time
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Figure 6: Sequence File Creation Time with Varying Data Sets
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Block Video Data Set Size

Size 5GB 7.5GB 15GB 30GB 60GB 120GB 175GB
64MB 0.11 0.15 0.29 0.58 1.23 2.77 6.52
128MB 0.10 0.14 0.28 0.52 1.10 2.48 5.83
256MB 0.11 0.14 0.27 0.52 1.11 2.50 5.88

Table VII: Analysis Time for Varying Data Set Sizes on the Cloud (in Hours)

framework because performance is a critical requirement in
the video analytics framework. Hadoop sequence files uses
input image/video file name as a key and the contents of the
file are recorded as the value in a sequence file. The header
of a sequence file contains information on the key/value class
names, version, file format, meta-data about the file and sync
marker to denote the end of the header. The header is followed
by the records which constitute the key/value pairs and their
respective lengths. The sequence file uses compression. This
results in consuming less disk space, less /O and reduced
network bandwidth usage. The cloud based analysis phase
breaks these sequence file into input splits and operates on
each input split independently.

The only drawback with the sequence file is that converting
the existing data into sequence files is a slow and time
consuming process. The recorded video streams are converted
into sequence files by using a batch process at the source.
The sequence files are then transferred to cloud data storage
for object detection and classification.

Sequence File Creation Time with Varying Data Sets:
We used multiple data sets that varied from 5GB to 175GB
for generating these results. The 175GB data set represents
the recorded video streams, in 4CIF format, for one month
from one camera source. These data sets helped in evaluating
different aspect of the framework. These files are converted
into one sequence file before transferring to the cloud data
storage. The sequence file creation time varied between 6.15
minutes to 10.73 hours for 5GB to 175GB data set respectively.
Figure 6 depicts the time needed to convert input data sets
into a sequence file. The time needed to create a sequence file
increases with the increasing size of the data set. However,
this is a one off process and the resulting file remains stored
in cloud data storage for all future analysis purposes.

Data Transfer Time to Cloud Data Storage: The sequence
file is transferred to the cloud data storage for performing the
analysis task of object detection and classification. The transfer

Data Transfer Time to Cloud Data Storage
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time depends on the network bandwidth, data replication factor
and the cloud data storage block size. For the data sets used
(5GB - 175GB), this time varied from 2 minutes to 3.17 hours.
The cloud storage block size varied from 64MB to 256MB
and the data replication factor varied between 1 and 5. Figure
7 shows data transfer time for varying block sizes. Varying
block size does not seems to affect the data transfer time.
Varying replication factor increases the data transfer time as
each block of input data is replicated as many times as the
replication factor in the cloud data storage. However, varying
block size and varying replication factor do affect the analysis
performance as explained below.

1) Analysing Video Streams on Cloud Nodes: The scalabil-
ity and robustness of the framework is evaluated by analysing
the recorded video streams on the cloud nodes. We explain the
results of analysing the multiple data sets, varying from 5GB
to 175GB, on the cloud nodes. We discuss the execution time
with varying HDFS block sizes and the resources consumed
during the analysis task execution on the cloud nodes. All
of the 15 nodes in the cloud are used in these experiments.
The performance of the framework on the cloud is measured
by measuring the time it takes to analyse the data set of
varying sizes, object detection performance and the resources
consumed during the analysis task.

The block size is varied from 64MB to 256MB for ob-
serving the effect of changing block size on the Map task

Nodes Tasks . Execution Time
” | per Node | Single Task (seconds) | All Tasks (Hours)
15 94 13.01 5.83
12 117 15.19 7.10
9 156 21.82 7.95
6 234 30.57 14.01
3 467 61 27.80

Table VIII: Analysis Task Execution Time with Varying Number of
Nodes
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Figure 9: Analysis Time with Varying Number of the Cloud Nodes

execution. With increasing data set size, an increasing trend is
observed for the Map/reduce task execution time (Figure 8).
Varying block size has no major effect on the execution time
and all the data sets consumed almost the same time for each
block size. The execution time varied between 6.38 minutes
and 5.83 hours for 5GB and 175GB data sets respectively.
The analysis time for varying data sets and block sizes on the
cloud is summarized in Table VII.

All the block sizes consumed almost the same amount of
memory except the block size 64MB. However, the 64MB
block size required more physical memory for completing
the execution as compared to other block sizes (Figure 10).
The 64MB block size is less than the default cloud storage
block size (128MB) and produces more data blocks to be
processed by the cloud nodes. These smaller blocks cause
management and memory overhead. The map tasks become
inefficient with the smaller block sizes and more memory
is needed to process these smaller block sizes. The system
crashed when less memory is allocated to a container with
64MB block size and required compute nodes with 16GB of
RAM. The total memory consumed by varying data sets is
summarized in Figure 10.

Robustness with Changing Cluster Size: The objective of
this set of experiments is to measure the robustness of the
framework. It is measured by total analysis time and the
speedup achieved with varying number of cloud nodes. The
number of cloud nodes is varied from 3 to 15 and the data set
is varied from 5GB to 175GB.
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We measured the time taken by one analysis task and the
total time taken for analysing the whole data set with varying
number of cloud nodes. Each analysis task takes a minimum
time that cannot be reduced beyond a certain limit. The
inter process communication, data read, and write from cloud
storage are the limiting factors in reducing the execution time.
However, the total analysis time decreases with the increasing
number of nodes. The time taken by single map/reduce task
and analysis time of 175 GB data set is summarized in Table
VIIL

The execution time for 175GB data set with varying number
of nodes for 3 different cloud storage block sizes is depicted
in Figure 9. The execution time shows a decreasing trend with
increasing number of nodes. When the framework is executing
with 3 nodes, it takes about 27.80 hours to analyse 175GB data
set. Whereas, the analysis of the same data set with 15 nodes
is completed in 5.83 hours.

Task Parallelism on Compute Nodes: The total number of
the analysis tasks is equal to the number of input splits. The
number of analysis tasks running in parallel on a cloud node is
dependent on the input data set, available physical resources
and the cloud data storage block size. For the dataset size
of 175GB and with the default cloud storage block size of
128MB, 1400 map/reduce tasks are launched. Each node has
8GB RAM, 2GB is reserved for the operating system and
Hadoop framework. Each container with one processing core
and 6GB of RAM provided the best performance results.

We varied the number of nodes from 3 to 15 in this set
of experiments. The number of analysis tasks on each node
increases with decreasing number of nodes. The increased
number of tasks per node reduces performance of the whole
framework. Each task has to wait longer to get scheduled
and executed due to the over occupied physical resources
on the compute nodes. Table VIII summarizes the framework
performance with varying number of nodes. It also shows the
number of tasks executed on each compute node.

The analysis time for 5GB to 175GB data sets with varying
block sizes is summarized in Table VII and is graphically
depicted in Figure 8. It is observed that analysis time of a
data set with a larger block size is less as compared to smaller
block size. Less number of map tasks, with large block size,
are better suited to process a data set as compared to a small
block size. The reduced number of tasks reduces memory
and management overhead on the compute nodes. However,
input splits of 512MB and 1024 MB did not fit in the cloud
nodes with 8GB RAM and required compute nodes with large
memory of 16GB. The variation in the block size did not affect
the execution time of the Map task. The 175GB data set with
512MB block size took the same time as of 128MB or other
block sizes. However, the larger block sizes required more
time to transfer data and larger compute nodes are needed to
process the data.

Effect of Data Locality on Video Stream Analysis: Data
locality in a cloud based video analytics system can increase
its performance. Data locality means that the video streams
data is available at the node responsible for analysing that data.
The HDFS block replication factor determines the number of
replicas of each data block and ensures the data locality and
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Figure 11: Effect of Cloud Data Storage Replication Factor

fault tolerance of the input data.

In this set of experiments, we measured the time taken
by the framework for analysing each data set with block
replication factor under varying block sizes. The block repli-
cation factor ensures data locality and fault tolerance of the
input data. The data sets varied from 5GB to 175GB, the
block replication factor is varied from 1 to 5 and the block
size varied from 64MB to 1024MB. The effect of varying
replication factor on data locality is shown in Figure 11. The
x-axis represent the data replication factor for 175GB data set
and the y-axis represent the percentage of data local tasks as
compared to the rack local tasks. It is evident from Figure 11
that increasing the replication factor increases the data locality
of the map/reduce tasks. However, a replication factor of 4
and 5 resulted in over replication of the cloud data storage.
The over replication results in consuming more disk space and
network bandwidth to transfer the replicated data to the cloud
nodes.

2) Storing the Results in Analytics Database: The reducers
in map/reduce tasks write the analysis results to one output
sequence file. This output sequence file is processed separately,
by a utility, for extracting analysis meta-date from it. The
meta-data is stored in the Analytics database.

D. Object Detection and Classification

The object detection performance of the framework, its
scalability and robustness is evaluated in the above set of
experiments. This evaluation is important for the technical
viability and acceptance of the framework. Another important
evaluation aspect of the framework is the count of detected and
classified objects after completing the video stream analysis.

The count of detected faces in the region of interest from
the one month of video streams data is 294,061. In the second
case study, total detected vehicles from the 175GB data set are
160,954. These vehicles are moving in two different direction
from the defined region of interest. The vehicles moving in are
46,371 and cars moving out are 114,574. The classification of

QCIF CIF 4CIF | Full HD
GPU Hours 5.47 20.57 | 51.2 15771.3
Days 0.23 0.86 2.13 6.57

Table IX: Time for Analyzing One Month of Recorded Video Streams
for the Supported Video Formats
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the vehicles is based on their size. A total of 127,243 cars,
26,261 vans, and 7441 trucks pass through the defined region
of interest. These number of detected faces and vehicles are
largely dependent on the input data set used for these case
studies and may vary depending on the video stream duration.

VII. CONCLUSIONS & FUTURE RESEARCH DIRECTIONS

The cloud based video analytics framework for automated
object detection and classification is presented and evaluated in
this paper. The framework automated the video stream analysis
process by using a cascade classifier and laid the foundation
for the experimentation of a wide variety of video analytics
algorithms.

The video analytics framework is robust and can cope with
varying number of nodes or increased volumes of data. The
time to analyse one month of video data depicted a decreasing
trend with the increasing number of nodes in the cloud, as
summarized in Figure 9. The analysis time of the recorded
video streams decreased from 27.80 hours to 5.83 hours, when
the number of nodes in the cloud varied from 3-15. The
analysis time would further decrease when more nodes are
added to the cloud.

The larger volumes of video streams required more time to
perform object detection and classification. The analysis time
varied from 6.38 minutes to 5.83 hours, with the video stream
data increasing from 5GB to 175GB.

The time taken to analyse one month of recorded video
stream data on a cloud with GPUs is shown in Figure 12. The
speed up gain for the supported video formats varied according
to the data transfer overheads. However, maximum speed up is
observed for 4CIF video format. CIF and 4CIF video formats
are mostly used for recording video streams from cameras.
The analysis time for one month of recorded video stream
data is summarized in Table IX.

A cloud node with two GPUs mounted on it took 51 hours
to analyse one month of the recorded video streams in the
4CIF format. Whereas, the analysis of the same data on the
15 node cloud took a maximum of 6.52 hours. The analysis
of these video streams on 15 cloud nodes with GPUs took 3
hours. The cloud nodes with GPUs yield a speed up of 2.17
times as compared to the cloud nodes without GPUs.

Analysis Time for One Month Video Streams on GPU
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Figure 12: Analysis Time of One Month of Video Streams on GPU
for the Supported Video Formats
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In this work, we did not empirically measure the energy
used in capturing, streaming and processing the video data.
We did not measure the use of energy while acquiring video
streams from camera posts and streaming them to the cloud
data centre. This is generally perceived that GPUs are energy
efficient and will save considerable energy by executing the
video analytics algorithms. However, we did not empirically
verify this fact in our experiments. This is one of the future
directions of this work.

In future, we would also like to extend our framework
for processing the live data coming directly from the camera
sources. This data will be directly written into data pipeline
by converting into sequence files. We would also extend our
framework by making it more subjective. It will enable us to
perform logical queries, such as , “How many cars of a specific
colour passed yesterday” on video streams. More sophisticated
queries like, “How many cars of a specific colour entered into
the parking lot between 9 AM to 5 PM on a specific date”
will also be included.

Instead of using sequence files, in future we would also
like to use a NoSQL database such as HBase for achieving
scalability in data writes. Furthermore, Hadoop fails to come
up to the low latency requirements. We plan to use Spark [40]
for this purpose in future.
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