
Towards Context Caches in the Clouds

Saad Liaquat Kiani∗, Ashiq Anjum†, Kamran Munir∗, Ricahrd McClatchey∗ and Nick Antonopoulos†
∗Faculty of Engineering and Technology, University of the West of England, Bristol, UK

†School of Computing and Mathematics, University of Derby, Derby, UK

Abstract—Context information is traditionally collected from
distributed digital artifacts and services and made available
to similarly distributed, and often mobile, context consuming
applications via context brokers or servers. Contextual data
has a strong temporal element i.e. it remains valid for a period
of time, and hence is an ideal candidate for caching strategies
that aim to exploit such locality of reference. However, different
types of contextual information have varying temporal validity
durations and a varied spectrum of access frequencies as well.
An ideal of the caching mechanism should utilize dynamic
strategies based on the type of context data, quality of service
heuristics and access patterns and frequencies of context
consuming applications. This paper presents an investigation
of the utility of various context-caching strategies and proposes
a bipartite caching mechanism in a cloud-based context broker
that facilitates context provisioning between context providing
services and consuming applications. The results demonstrate
the relative benefits of different caching strategies under
varying context usage scenarios and the utility of the bipartite
context caching mechanism in a context provisioning system.

Keywords-cloud computing; context-aware clouds; context
provisioning; intelligent caching; context-awareness

I. INTRODUCTION

Context-aware systems facilitate the acquisition, represen-

tation, aggregation and distribution of this contextual in-

formation in ubiquitous environments. Established context-

aware systems predominantly utilize a broker or a context

server to facilitate context provisioning from providers of

context information to context consumers. Due to the dis-

tributed nature of sensors and services that provide raw data

for context creation, and that of applications/services that

utilize such data, the provisioning of contextual information

is a non-trivial task. Existing context-aware systems are

mostly focused on small geographic and conceptual domains

and the context provisioning function of these systems has

not attracted in-depth attention. For instance, the temporal

properties of contextual data are not utilized by existing

context-aware systems to improve context provisioning per-

formance through caching, grid and cloud based platforms.

One of the key challenges in context-aware systems is

the provisioning of contextual information about anything,
anytime and anywhere [1]. Meeting this challenge requires

an infrastructure that can reliably collect, aggregate and

disseminate contextual information related to a very large

user base over a large scale. Cloud computing is ideally

placed to provide infrastructural support for meeting this

challenge through its key characteristics of reliability, scala-

bility, performance and cost effectiveness. However, context-

aware systems have not yet taken advantage of this recent

progress in the computing arena.

In addition to the intrinsic benefits of Cloud computing,

contextual information itself has certain features that can aid

in improving the performance of systems that deliver context

information from context producing components to context

consuming components. Context information remains tem-

porally valid for a certain duration, which depends on the

type of context data. This property of the context data can

be exploited by employing context caches in context provi-

sioning systems to improve the overall system performance

as done routinely in distributed systems. Our motivation

towards investigating this area builds on the observation

that contextual data is central to the functional relevance of

any context-aware system. With a significantly large number

of users, devices, data sources and services involved in

the end-to-end cycle of acquisition, reasoning, delivery and

consumption of context, inadequate infrastructure support in

terms of storage, processing, and provisioning of contextual

information can be the biggest hurdle in adoption of context-

aware systems over a large scale. Caching is a well estab-

lished performance improvement mechanism in distributed

systems, and if employed in Cloud-based context provision-

ing systems, can augment its infrastructure strengths and

further improve the context provisioning function.

Context information is usually modeled using name-value

pairs, software objects and structured or semi-structured

records. Irrespective of the representation format, the context

information has an ever-present temporal property i.e. the

information remains valid for a certain period of time. For

example, an instantiation of the location context of a user

remains valid as long as the user remains in that location,

the weather context of a user remains valid as long as the

user remains within the geographic span whose weather

information is quantified in a context instance, the Wi-Fi
context of a device remains valid as long as the device is

connected to a certain Wi-Fi hotspot. This temporal validity

can be exploited in intermediate components of context-

aware systems for improving the context-provisioning per-

formance e.g. caching contextual data at a context broker

can allow for the exploitation of the locality of reference
in order to reduce contextual query satisfaction time and

reduction in the overall context related traffic in the system.

2011 Fourth IEEE International Conference on Utility and Cloud Computing

978-0-7695-4592-9/11 $26.00 © 2011 IEEE

DOI 10.1109/UCC.2011.67

403

While caching is an established mechanism for performance

improvement in distributed systems, the pertinent issues have

not been analyzed extensively in the domain of context-

aware systems. Firstly, different types of contextual data

have varying validity durations i.e. a certain scope of context

information (location, activity, Wi-Fi, weather, etc.) may

remain valid for a few seconds while another scope may

remain valid for days e.g. user-profile, device settings and

shopping preferences. Secondly, the access rate and patterns

of context consuming applications (distribution of scopes in

context queries) may vary according to the time of day, type

of context consuming application and user activity. Since

caches are practically limited in size, cache replacement

policies have to be employed and the variances in scope

distributions in the queries, rate of the queries and validity

periods of context scopes greatly influence the effectiveness

of different replacement policies. The comparative effective-

ness of different cache replacement policies needs to be

analyzed and empirically evaluated.

Mere analysis of the caching strategies for contextual data

provisioning is insufficient in the absence of a platform

where their benefits can be fully utilized. The evolving

technological landscape, characterized by increasing tech-

nological capabilities of smart devices and their adoption

by everyday users, the greater availability of digital infor-

mation services and the emergence of smart environments

with embedded digital artifacts point towards an emerging

digital ecosystem where a significantly large number of

users in inter-connected smart environments will be utilizing

context-based services through different computational in-

terfaces. The success of context-aware systems will depend

on accommodating these emerging scenarios and meeting

their wide-spectrum requirements will greatly influence their

adoption. Specifically, these requirements include device

and location independence during utilization of contextual

services, reliability of the system infrastructure, scalability

in terms of load, administration and geographic scale, and

the performance of the overall system in terms of query-

response times and quality of service. A cloud based context

provisioning system will 1) allow access to context informa-

tion through standardised and interoperable interfaces, which

will facilitate device and location independence, and 2) pro-

vide reliability and scalability through elastic and redundant

resources. However, simply enabling Cloud based provision-

ing will not utilize the temporal validity characteristic of

the context data, which can exploit the principle of locality
to improve query-response times and therefore positively

influence the quality of service of the context-aware system

as a whole. Keeping these expectations in view, this paper

relates the delivery of the caching functionality through a

Cloud based system, but focuses primarily on establishing

the suitability and relative effectiveness of different caching

strategies for different types of contextual data. Once such

effectiveness is established through experimental analysis,

we aim to implement the strategies in a prototype Cloud

based context provisioning system.

We discuss related work in Section II and describe the

functional architecture of our Context Provisioning System

in Section III. The experimental evaluation of the caching

functionality, and that of cache replacement policies in con-

text caches, is presented in Section IV. Based on the results

of the experimental analysis, we propose a novel caching

strategy for utilization in context provisioning systems and

discuss its dynamic re-configuration based operation as well.

The paper is concluded in Section V with a description of

relevant points that direct the future of this preliminary work.

II. RELATED WORK

A number of server/broker-based context provisioning

systems have been developed, e.g. CoBrA [2], JCAF [3]

and MobiLife [4] but caching contextual information has

not been targeted in these systems explicitly. The Mo-

biLife architecture specifies context caching at the context

provider component but this approach creates distributed

context caches at each context provider, potentially saving

computational load at the providers but not reducing the

communication cost. The query from the context consumer

has to traverse the complete round trip from the context

provider via the context broker. This mechanism can be

improved by building a collective cache based on the smaller

caches at context provider level. Buchholz et al. [5] discuss

the importance of caching context in improving its quality.

Ebling et al. [6] also highlight caching of context data

as an important issue in designing context-aware services.

Caching context requires that the validity of a context data

instance can be specified. This can be achieved by the inclu-

sion of temporal information in the context representation

format. MobiLife is one of the few context-provisioning

systems that specify a caching component at the architecture

level. However, its context representation format contains

no metadata that specifies its temporal properties. A similar

system is the Context Based Service Composition (CB-

SeC) [7] that employs a Cache Engine for providing context

based service composition. However, the CB-SeC system

does not store context information but the whole context

service in the cache. A Caching Service is demonstrated

in the SCaLaDE middleware architecture [8] for use with

Internet data applications. The focus of this Caching Service

is on providing disconnected operation to mobile devices

by keeping a mobile device cache consistent with a central

cache in the network. However, no performance metrics are

reported regarding the gains achieved by the use of this

cache. Despite the established significance and usability of

caching components in distributed systems, context aware

systems have not, as yet, demonstrated their use. Some re-

searchers have highlighted the importance of caching context

information but no study has reported any results on the

empirical gains of employing a context cache in a context

404

provisioning system and this deficiency has served as the

main motivation for our continuing study of this domain.

The discussion presented in this paper builds on our earlier

work that demonstrated one of the first empirical studies on

caching contextual data in context provisioning systems [9].

III. THE CONTEXT PROVISIONING ARCHITECTURE

Our system is based on the producer (provider)-consumer

model in which context related services take the roles of con-

text providers or context consumers. A Context Consumer

(CxC) is a component that uses context data and retrieves

context by sending subscriptions to the Context Broker

(CxB). The Context Provider (CxP) component provides

contextual information. A CxP gathers data from a collection

of sensors, network/cloud services or other relevant sources

and is usually specialized in a particular context domain (e.g.

location). A Context Broker (CxB) is the main coordinating

component of the architecture that facilitates context flow

among all attached components, which it achieves by allow-

ing CxCs to subscribe to or query context information and

CxPs to deliver notifications or responses. Further details of

this architecture are described in [10].

CxCs and CxPs register with a CxB by specifying its

communication end point and the type of context they

provide or require. This in turn enables a brokering function

in which the context broker can look up a particular CxP

that a CxC may be interested in (e.g. based on the type

of context being requested). The broker can cache recently

produced context, in order to exploit the principle of locality

of reference. A distinguishing feature of this architecture is

the federation of multiple context brokers to form an overlay

network of brokers (Fig. 1), which improves the scalability

of the overall system and provides location transparency

to the local clients (CxCs and CxPs) of each broker. This

federation is achieved with a coordination model that is

based on routing of context subscriptions and notifications

across distributed brokers, discovery and lookup functions

and is described in detail in [11]. This concept of context

broker federation can be directly related to Cloud federation

in which two or more geographically distinct or administra-

tively independent clouds cooperate in resource sharing and

related functional operations, hence setting the conceptual

foundation for federation of context-aware Clouds that ex-

change cross-domain context-information for serving their

mobile/roaming users.

Context information is represented using an XML based

schema entitled ContextML. The defining principle in Con-

textML is that context data relates to an entity (a username,

a SIP or an email address etc.) and is of a certain scope.

Furthermore, a temporal validity is associated with Con-

textML encoded context data through the timestamp and

expiry tags, which specify the time duration during which a

specific context instance is considered valid. This feature of

ContextML forms the basis of utilizing the caching function

�������
���

�������
�	�

�������
�
�

���������������������
�������������������������

�����
��

����������������
������������������
��������������
�����������

�

����������
�������������
���������
����

�
�������������������������
����� ����������!��
��������������������

��"�� "������"�� "����

��"�� "����

Figure 1. Simplified view of the federated broker based interaction

in the context brokers of the architecture. The model of the

contextual data-related elements and a discussion about vari-

ous dimensions of ContextML is presented in an earlier work

[12]. Work is under progress to deploy the existing Context

Provisioning Architecture on the Cloud infrastructure in

order to exploit the scalability, reliability, performance and

interoperability related benefits offered by the Cloud based

systems. Figure 2 shows a conceptual diagram of how the

system components may operate in a federation of context

brokers in the Cloud infrastructure. Each context broker may

operate under a different administrative authority but the

federation between these brokers (and semi-private Clouds)

can allow the context CxCs to utilize these brokers for

acquiring contextual information. The federation features are

beyond the scope of this paper and we will limit our focus

to the specific feature of context caching in a single broker

setup.

�����#��
��������	�

�#��

�#��

�#��

�#��

�����#��
���
���

�����������

������	��������������������#�����
��	������#��������

�����#�����
�����#��

���	����	�

����

#�

Figure 2. Architectural components of the Context Provisioning Archi-
tecture in the Cloud infrastructure

IV. CONTEXT CACHE

CxCs request context about a particular entity and scope

by forwarding a ContextML encoded query to the context

broker. The broker forwards the query to an appropriate

CxP that can satisfy it. When the query-satisfying context

information is available, the CxP sends the context response

to the broker. In the absence of a caching facility, the

405

broker simply forwards the query to the querying consumer.

The Context Provisioning Architecture utilizes a caching

component that caches recently received contextual data

in response to context queries, in addition to forwarding

the response to the querying consumer. The context data

remains in the cache for the validity period unless it is

replaced by more recent context of the same scope or

the entity has to be removed to free the cache due to

cache size limits. In addition to the development and real-

world deployment of the Context Provisioning Architecture

system, a simulation model has been developed to evaluate

the system under various conditions. The simulator is based

on OMNET++, a Discrete Event Simulator toolkit, and

models the actual system components, the representation

scheme and the communication model as well. The results

of the experiments carried out with this simulated setup will

aid in establishing the suitability and relative effectiveness

of caching strategies for context provisioning. These caching

strategies can then be readily implemented in a Cloud

based context provisioning system to augment the reliability,

scalability and device/location independence benefits that are

provide by the Cloud setup.

A. Experimental Evaluation

The simulation model consists of a context broker module,

CxPs and CxCs connected by communication channels.

The simulator comprises the core functionalities of context

caching, context querying service, CxP registration and

lookup service. Furthermore, the ContextML schema is also

fully modeled. CxP modules provide context on invocation

by the CxB and provide context about one particular scope

only. The simulation model comprises various input param-

eters that can be set individually for each simulation run

allowing several scenarios to be evaluated and compared

against each other. The parameters for each scope contain

numerical scope ID (integer) and its validity duration (sec-

onds). The parameters for each Context Provider comprise

a CxP ID (integer), ID of the context scope that it provides

(integer) and the average time taken to process a query and

respond to it (ms). The context broker module parameters in-

clude the lookup time for finding CxPs for satisfying queries

(ms), cache access time [ms], caching enabled (Boolean),

maximum cache size (integer i.e. the number of items in

the cache), and the cache strategy i.e. the cache replacement

policy used (integer).

scopeID =

⌈
maxScopeID ·

(
ξ

randUniform (0, 1]

)−σ⌉
(1)

Within the scope of this evaluation, there are three main

caching strategies that we will evaluate, including remove
oldest first (OF), remove least used first (LU), and remove
soonest expiring first (SE), in addition to the non-practical

strategy of having an infinite cache size thus requiring no

replacement. We have already established the usefulness of

caching contextual data in principle in our earlier work [9],

but did not analyze the effect of variance in the scope validity

durations in detail. As the results will demonstrate, different

access patterns from users can have a significant influence

on the performance of the cache. With the help of this

simulation model, we intend to establish suitable strategies

for varying access patterns and devise a caching strategy that

can accommodate a combination of these access patterns.

The CxCs are configured to request context a constant rate

[/s]. The context scope specified by the CxCs in the queries

is determined using a Pareto distribution with a selectable

shape α and scale ξ (1). The discretized Pareto distribution

has been selected because it allows us to model scope distri-

bution in context queries with tuneable parameters. Twelve

different scopes are used in this experiment and the scope

distribution in context queries is controlled by changing the

Pareto shape parameter α while the scale parameter ξ is kept

constant at 1. In each simulation run 5000 context requests

distributed across 10 entities are instantiated. After all the

responses have been received by CxCs, the simulation is

terminated. Scopes and CxPs are initialized using the values

from Table I. The CxB cache access time and CxP lookup

time are assumed to be 10ms. In each simulation run, a

caching strategy is selected and the Pareto distribution for

selecting the requested scopes (α) is varied to select a certain

percentage of short validity (SV) and long validity (LV)
category scopes. The simulation is repeated for each caching

strategy and the query satisfaction time, the time elapsed

between issuance of a query from a consumer and receipt

of a response to that query, being recorded. Hence, the

performance of the selected cache strategies is investigated

with varying scope distribution in the context requests.

Table I
SIMULATION PARAMETERS

CxP:ScopeID Processing time[ms] Validity[s] Category

CxP:1 70 60 Short

CxP:2 70 60 Short

CxP:3 80 80 Short

CxP:4 80 80 Short

CxP:5 90 180 Short

CxP:6 90 240 Short

CxP:7 70 360 Long

CxP:8 70 400 Long

CxP:9 80 600 Long

CxP:10 80 900 Long

CxP:11 90 1200 Long

CxP:12 90 1200 Long

B. Results

The mean query satisfaction times of 5000 context queries

with different caching strategy are plotted in Fig. 3. We

analyze the mean query satisfaction time of these caching

strategies in the cases where scope distribution varies from

being fully focused on short validity (SV) scopes to long

validity (LV) scopes in increments of 25% i.e. the distri-

butions range from (1.0 SV/0.0 LV), (0.75 SV/0.25 LV),

(0.5 SV/0.5 LV), (0.25 SV/0.75 LV) and (0.0 SV/1.0 LV).

The reference cases of having an unlimited and no cache

406

show the maximum performance improvement possible with

our setup. The mean query satisfaction time across different

combinations of SV/LV scope distributions improves from

487ms to 292.8ms, with a cache-hit ratio of approximately

46%. However, an unlimited cache size is impractical, hence

we focus our attention to various cache replacement policies

that are evaluated with a fixed cache size of 500 items

maximum i.e. 1/10th of the total number of context items

that will be generated during an experimental iteration.

The caching sub-component in the broker keeps track of

the number of times an item in the cache has found use

i.e. cache-hits that have occurred. It also records the time

of arrival of a context-item in the cache and time left in

the expiry of an items validity. When space is needed in

a full cache for a newer item, the LU cache replacement

policy removes an existing item from the cache that has

been accessed the least number of times. The chart in Fig.

3 shows that LU results in mean query satisfaction time

of 358.8ms (with ˜33.5% cache-hit ratio) and provides a

fairly even performance for both the short validity scope and

long validity scope focused context queries. The OF cache

replacement policy provides an improvement over LU with

a mean query-satisfaction time of 341.8ms. However, it is

evident by considering the results in Fig. 3 that OF delivers

a better query satisfaction time when the scope distribution

in the contextual queries is biased towards SV scopes. This

can be explained by the fact that under a querying pattern

where most of the queries contain requests for SV scopes,

the SV context data items will dominate the cache store. But

since these data items have shorter validity durations, by the

time they are removed due to the OF policy they would be

closer to the expiry instant and hence been offered a greater

chance of generating a cache-hit by spending most of their

validity period in the cache. In the reciprocal case of high

concentration LV scopes in the context queries, OF policy

results in the longer validity data items from the cache that

are not often closer to their expiry instant and hence have

not been offered a fuller chance to result in a cache-hit.

250

300

350

400

450

500

$%&���'�&%&���� &%()���'�&%*)���� &%)���'�&%)���� &%*)���'�&%()���� &%&���'�$%&����

�
��

��
�	

�

��
��

�
��
��

��
��
�
��
+�

,
�

��������� ����������������
��-�������������+����������,� ��-�������������+�������������,�
��-�������������+��������-����� �����,�

Figure 3. Mean query satisfaction times, different caching strategies and
scope distribution scenarios

The SE cache replacement policy removes an item from

the cache that is the closest to its validity expiration. This

policy delivers an improved mean query satisfaction time

of 331.4ms (with ˜36.25% cache-hit ratio) across all scope

distributions but a closer inspection reveals that SE performs

better for LV scoped queries than SV scoped queries. This

policy is biased towards replacing an SV scoped item from

the cache store because the validity expiry time for such

items is more than likely to be closer than LV items.

Moreover, an LV scoped removal candidate item would have

spent most of its validity duration in the cache and thus given

a good chance to result in a cache-hit.

0.75 SV/0.25 LV 0.5 SV/0.5 LV 0.25 SV/0.75 LV

LV
SV

OF

Scope distribution (SV vs. LV) in queries

%
 o

f S
V

 a
nd

 L
V

 s
co

pe
d

ite
m

s
0

20
40

60
80

10
0

0.75 SV/0.25 LV 0.5 SV/0.5 LV 0.25 SV/0.75 LV

LV
SV

SE

Scope distribution (SV vs. LV) in queries

%
 o

f S
V

 a
nd

 L
V

 s
co

pe
d

ite
m

s
0

20
40

60
80

10
0

Figure 4. OF/SE replacement policies and cache-hit rate of SV vs. LV in
different scope distribution scenarios

The OF and SE policies can be further examined by

comparing the validity categories of data items that resulted

in a cache-hit. Figure 4 illustrates the relative percentage of

SV and LV scoped items in the cache-hit resulting items.

Under the OF policy, SV scoped data items occupy a share

of the context-hit space that is greater than their percentage

in the context queries i.e. under the OF policy it takes a

78% share in the case of 0.75 SV/0.25 LV, 52% in case of

0.5 SV/0.5 LV and a 28% share in the case of 0.25 SV/0.75

LV. Contrastingly, under the SE policy, LV scoped data items

occupy a greater share of the context-hit space i.e. under the

SE policy it takes a 30% share in the case of 0.75 SV/0.25

LV, 58% in case of 0.5 SV/0.5 LV and a 80% share in

the case of 0.25 SV/0.75 LV. These trends demonstrate the

suitability of OF and SE policies for SV and LV scoped

context data respectively. We have used these observations

to devise a novel caching mechanism for contextual data that

is suitable for both short and long validity scoped context

data, which is discussed in the following section.

C. The Bipartite Context Cache

Taking into consideration the suitability of different cache

replacement policies for SV and LV scope categories, we

split the physical cache into two parts, one catering for the

SV scoped context data items and the other for LV scoped

items. The caching strategy is then configured to utilize OF
replacement policy for SV scoped data and SE policy for

LV scoped data items. The performance of the bipartite

407

context cache is evaluated under the same experimental

conditions discussed earlier and the results are plotted in

Fig. 5. The bipartite cache provides a marginally improved

overall performance over the OF and SE, with a mean query

satisfaction time of 326ms (˜38.1% cache-hit ratio). This

use of two different cache replacement policies suited to

the scope validity durations of the data items results in

improved performance and provides a fairly constant mean

query satisfaction time across all scope distribution patterns.

We have further evaluated the bipartite caching mechanism

with a dynamic scaling of the size of the two partitions

that is based on the distribution of scopes in the incoming

context queries. Dynamically increasing or decreasing the

size of a partition based on the ratio of a particular scope

validity category in the incoming queries tunes the cache to

accommodate the pattern of queries that exist in a particular

situation. The query satisfaction times improve marginally

under bipartite caching with dynamic partitioning from the

case of equally sized bipartite cache. The mean query

satisfaction time in our experiments is 318.4ms (˜39.4%

cache hit-ratio) and the results display a consistent pattern

across all scope validity scenarios (Fig. 5).

!"#�

!$#�

!!#�

!%#�

!&#�

!'#�

"(#�����#(#���� ((&�����#($&���� #(&�����#(&���� #($&�����#((&���� #(#�����"(#�����
��
��
��

�	

�
��
��
�
��
��

��
�
��
��

��
�

��������������	��
������������� �������������	��
�����������������������

�������������	��
����������� �������������	��
�������������������	����

Figure 5. Inclusion of Bipartite with Dynamic Size cache strategy in the
earlier comparison

V. CONCLUSIONS AND FUTURE WORK

We have evaluated the relative performance of differ-

ent caching strategies in a distributed context provisioning

system. Our analysis has revealed that different caching

strategies display contrasting behavior under different scope

distribution scenarios, with OF policy performing better for

short scoped context and SE performing better for long

scoped context. Based on this observation, we have devised a

novel bipartite caching strategy for context provisioning that

allows utilization of the OF and SE policies for SV and LV

scoped context data during context provisioning. The bipar-

tite cache is further improved by allowing dynamic resizing

of the cache partitions based on the scope distribution sce-

nario of the context queries. The novel caching strategy can

assist in designing a cloud based context provisioning system

that effectively utilizes the temporal validity characteristic of

the context data, exploit the principle of locality to improve

query-response times and therefore positively influence the

quality of service of the context-aware system as a whole.

The study described in this paper has been carried out

using an OMENT++ based simulation model that mirrors a

real-world deployment of the Context Provisioning System

prototype. The experiments have been carried out under

controlled conditions with a limited number of context

scopes. Our primary future work is the integration and

analysis of the bipartite caching mechanism in a cloud based

deployment of the Context Provisioning System and carry

out a large-scale analysis of the viability of the caching

mechanism under real-world conditions.

REFERENCES

[1] M. Weiser, “The computer for the twenty-first century,”
Scientific American, vol. 265, no. 3, pp. 94–104, Sept 1991.

[2] H. Chen, T. Finin, and A. Joshi, “An intelligent broker for
context-aware systems,” Adjunct Proceedings of Ubicomp
2003, pp. 183–184, October 2003, (poster paper).

[3] J. E. Bardram, “The java context awareness framework
(JCAF) - a service infrastructure and programming framework
for context-aware applications,” in Pervasive Computing, ser.
LNCS. Springer, 2005, vol. 3468, pp. 98–115.

[4] P. Floreen, M. Przybilski, P. Nurmi, J. Koolwaaij, A. Tarlano,
M. Wagner, M. Luther, F. Bataille, M. Boussard, B. Mrohs
et al., “Towards a context management framework for Mo-
biLife,” 14th IST Mobile & Wireless Summit, 2005.

[5] T. Buchholz, A. Küpper, and M. Schiffers, “Quality of con-
text: What it is and why we need it,” in Workshop of the HP
OpenView University Association, 2003.

[6] M. Ebling, G. D. H. Hunt, and H. Lei, “Issues for context ser-
vices for pervasive computing,” in Workshop on Middleware
for Mobile Computing, Heidelberg, 2001.

[7] S. K. Mostéfaoui, A. Tafat-Bouzid, B. Hirsbrunner et al.,
“Using context information for service discovery and com-
position,” in 5th Intl. Conf. on Information Integration and
Web-based Applications and Services, vol. 3, pp. 15–17.

[8] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli,
“A mobile computing middleware for location and context-
aware internet data services,” ACM Transactions on Internet
Technology (TOIT), vol. 6, no. 4, p. 380, 2006.

[9] S. L. Kiani, M. Knappmeyer, E. Reetz, and N. Baker, “Effect
of caching in a broker based context provisioning system,”
in Proceedings of The 5th European Conf. on Smart Sensing
and Context, vol. 6446. LNCS, Nov 2010, pp. 108–121.

[10] M. Knappmeyer, R. Tönjes, and N. Baker, “Modular and ex-
tendible context provisioning for evolving mobile applications
and services,” in 18th ICT Mobile Summit, 2009.

[11] S. L. Kiani, M. Knappmeyer, N. Baker, and B. Moltchanov,
“A federated broker architecture for large scale context dis-
semination,” in 2nd Int’l Symp. on Advanced Topics on
Scalable Computing, Bradford, UK, June 2010.

[12] M. Knappmeyer, S. L. Kiani, C. Frá, B. Moltchanov, and
N. Baker, “A light-weight context representation and context
management schema,” in Proceedings of IEEE International
Symposium on Wireless Pervasive Computing, May 2010.

408

