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The evaluation of context middleware systems is a challenging endeavour. On the one 
hand, testbed investigations suffer from an unrealistic environment in terms of number 
of users, high implementation effort for changes and questionable portability of results.
On the other hand simulation of middlew are systems is complex due to the high abstrac- 
tion of impleme ntation. This article contributes to the understanding of a broker based 
context provisioning system based on black-box measure ments of a testbed which are fur- 
ther utilised to increase the accuracy of a simulation model. Both simulations and mea- 
surements help in understanding the comp lex behaviour of a context provisioning 
middleware and enable the evaluation of comp lex distributed systems. The presented 
investigations identify significant parameters and corresponding models for the response 
delay of the key components of a context provisioning middleware and discuss their inte- 
gration into an overall simulation model.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction 

Weiser’s [1] vision of the proximate future depicts a world where interconnected smart entities are able to provide infor- 
mation on ‘‘anything, any time, anywhere’’. Since the inception of this concept nearly two decades ago, ubiquitous comput- 
ing research has been dealing with the possibilities of the future; its progress has faced not only technologic al challenges but 
is also concerned with anticipation of future trends of human behaviour. Research ers have tackled this combined challenge 
by prototypi ng systems and applications in laboratory environments, even creating live-in laboratories with researche rs as 
inhabitants of a futuristic abode. While our everyday environment has not transformed into such a world yet, continuing 
advances in communi cation technology, microelectronics and materials science indicate that the Internet of Things (IoT) is 
fast approaching realisation. Central to the theme of IoT is the processin g and communicati on of informat ion between smart 
objects. The information may relate to inhabitants of the environment, smart appliances or physical characterist ics of the 
environment itself and is labelled as context. Due to the heterogeneous nature of digital and physical objects that may inter- 
act using IoT technologie s, the vast scale they may encompass and resource managemen t related issues, there is a need for 
the development of supportive context provisioning infrastructu res so that the digital artefacts embedde d in our smart envi- 
ronments can be fully utilised to support our seamless interaction with technolo gy.
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A number of such infrastructu res, e.g. in the form of middlew ares, have been proposed and many facets of context pro- 
visioning have been investigated during the last two decades. Different approach es in terms of communicati on paradigms,
context modelling and representation , extendibilit y, entity diversity as well as processing and management scalability have 
been well addressed from the functional and qualitative point of view. Nevertheless, most of the proposed solutions have not 
proven their large-scal e capabiliti es either by simulations or prototype deployment. Previous results ***in [2] have indicated 
that a simulatio n can aid in proving specific aspects of a context provisioning system (CPS) but is inadequate just at the func- 
tional level. In addition it is required to derive an appropriate model from testbed implementati ons and assessme nts. This 
model includes a functional model of the investigated context provision ing middleware and the related context, as well as a
performanc e model of the underlying application server. Common problems in building a simulation model are caused by 
the need to build complex models of the real system, thus resulting in uncertainty, potential inconsistenc y and time consum- 
ing processes as well. Therefore many simulatio ns have clear boundaries of the model validity and focus only on aspects of 
the system which can be abstracted more easily [3]. Moreove r, prototypes provide only a very limited evidence with regard 
to scalability since creating a realistic environment is almost impossible in terms of heterogenei ty, numbers of context 
sources and sinks, network traffic, etc. If assessed appropriate ly testbeds can reveal system-level behaviour as measureme nt 
results include hardware and software characterist ics.

Our approach is to overcome the currently incomplete understanding of functiona lly described and evaluated context 
provisioning systems by improved simulation models based on black-box tests in a testbed. The measureme nts allow for 
identifying significant parameters and are utilised in order to build a realistic simulatio n model. The investigated model will 
guide us towards a deeper understand ing of our proposed broker based CPS and will also assist in discoveri ng and avoiding 
performanc e bottlenecks. Our context provisioning system has been impleme nted using Java Enterprise Edition (JavaEE)
technologie s and the performanc e of these technologie s will also come under investigatio n in this article. The aim of our sim- 
ulation model and the holistic evaluation is to evaluate a context provisioning middleware from different performance re- 
lated angles and analyse the experimental results for elicitation of guidelines for further research and developmen t in the 
domain of context provisioning in the IoT.

The rest of the article is structured as follows. Section 2 discusses related work in the field of the evaluation of context 
provisioning systems and relates to the general evaluation of JavaEE applicati ons as well. Afterwards, Section 3 outlines
our proposed broker-based context provision ing framework (entitled C-ProMiSE). The evaluation methodology is derived 
in Section 3.1. Section 4 presents prototype black-bo x assessments. The simulation models and results are discussed (Section
5) before Section 6 finally concludes the article.

2. Related work 

Context provisioning systems (CPSs) aim at supporting heterogeneous context-awa re applicati ons/services systemati- 
cally. In order to transparent ly facilitate access to context, they typically comprise the following set of functionaliti es: Sensor 
Data Acquisition, Context Modelling and Representat ion, Context Lookup and Discovery, Context Storage, Context Diffusion 
and Distribut ion, Context Processing and Reasoning [4]. A survey of how to evaluate such systems has been presente d in our 
earlier work [4], in which a multidiscipli nary assessme nt methodol ogy is introduced and suitable performanc e metrics are 
suggested based on the analysis of surveyed systems. In detail, prototyping (e.g. [5–7], field trials including Experience Sam- 
pling Method (ESM) (e.g. [8–10]), context emulation (e.g. [11–13]), emulatio n of middleware components (e.g. [12,13]) and 
the emulation of actuation (e.g. [14,15]) are proposed.

However, context-awa re applicati ons/services are likely to follow location-bas ed services and step out of the lab and into 
the real world in the proximate future. Due to the increasing market penetrati on of technologically advanced smartphones 
being the users’ everyday companion and primary device the number of context sources and context sinks will grow tremen- 
dously. This is why scalabilit y has evolved – together with security and privacy – as one of the key concerns. To investigate 
the scalability of a CPS not only qualitatively but quantitatively, the authors strongly recommend a system-level simulation 
based on Discrete Event Simulation (DES). Since only a very limited number of works (e.g. [2,16]) have applied DES in the 
domain of context provisioning , we aim at contributing to the correspondi ng understand ing, model development and sim- 
ulation parameter setting.

Multiplicity of different influence factors in programm ing platforms such as Java and C++ make it very difficult to esti- 
mate the overall performanc e correctly. The performance of JavaEE based Application Servers has been studied in several 
different ways [17]. The majority of related work focusses on a specific Application Server while other researchers compare 
different Application Servers with each other ([18]). Further efforts have been carried out in the category of optimisation by 
identifying influence factors such as the thread pool size or the number of deployed beans [19]. Comparis ons of cluster per- 
formances are investiga ted, for instance in [20]. Software analysis includes examination of different Enterprise Java Beans 
(EJBs) systems, types of beans, local vs. remote invocations , transaction and security options (e.g. [21]).

Performance analysis requires either load and stress tests on a real testbed or a performance model. Since load test are 
often non-trivial to produce in a realistic manner, performance models have their advantages in terms of complexity and 
simplicity. Several researchers have tried to build analytical models of an EJB environment based on queuing network mod- 
els [22,23], Petri networks [24], Markov Models [25] or workflow discovery [26]. Apart from analytical models little contri- 
bution exists in the area of simulatio n of EJB based servers. Neverthel ess some work has been presente d, e.g. by Mc Guinness 
et al. [27] who have evaluated a DES model for multi-server EJB servers based on a Hyperformi x Workbench.
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3. Evaluation of the C-ProMiSE middleware

The Context Provisioning Middleware with Support for Evolving Awareness (C-ProMiSE) [28,29] has been designed to pro- 
vide coherent access to manifold context information and to transparently support various application domains. Due to the 
gradual extendibilit y and self-manageme nt capabilities, it supports device, sensor, network, and application heteroge neity.

For context managemen t, the well known producer–consumer role model is applied in conjunction with the broker soft- 
ware design pattern. Therefore, the following component types are defined:

� Context Consumer (CxC): Being a context sink, the CxC can request context either on-dema nd (synchronously) or based on 
subscription (asynchronously) and utilise it to adapt or actuate accordingly. Each context-awa re application/s ervice is 
categorised as a CxC.
� Context Provider (CxP): A CxP provides a synchronous interface for context queries. Each CxP supplies a so called context 

scope (e.g. location) and must be invoked with the required input parameters (e.g. WiFi signal strengths).
� Context Source (CxS): A CxS is the asynchronous counterpart of a CxP. It does not provide an interface for external invo- 

cation but asynchronousl y pushes context to a broker or storage service.
� Context Broker (CxB): The CxB has been introduced for mediating between CxC, CxP and CxS. Most importantly, it pro- 

vides a CxP registry and lookup service and a proxy query service. Although a CxC may directly interact with a CxP, usu- 
ally it will query with the CxB as single point of contact and utilise its functionaliti es. The CxB collects all required context 
on behalf of the CxC and aggregat es it autonomous ly.

Interaction between the components is based on RESTful [30] interfaces, i.e. all components use the Hypertext Transport 
Protocol (HTTP). For representing context as well as coordination messages, the XML based Context Meta Language (Contex-
tML) [31] is applied. Fig. 1 illustrates a specific prototype testbed that has been impleme nted to evaluate the design concepts.

3.1. Evaluation methodology 

The analysis of the C-ProMiSE prototype testbed particularly aims at identifying paramete rs which effect and character- 
ise the context query response delays of the central CxB and associated CxP components. In the scope of this article, the User
Profile Context Provider (UserProfi leCxP ) is selected as the representat ive CxP. Testbed measureme nts are utilised to iden- 
tify the response time influence factors. The purpose is to isolate an abstraction model which (1) describes the testbed and 
component behaviour adequately and (2) can be integrated in an already established functional simulatio n model of the 
C-ProMiSE architectur e (cp. [2]). The results of the simulatio n can be compared with the testbed measure ments afterwards 
in order to assess its correctness. This fosters an improved understa nding of the simulation as well as the impleme ntation 
approach and can be further utilised for rapid and quantifiable system improvements . The next subsectio n explains the 
testbed measureme nt methodology and the target system parameters.
Fig. 1. C-ProMiSE prototype testbed.
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The aim is to model the performanc e of a JavaEE environment in order to create a suitable simulation model including the 
C-ProMiSE functional logic on top of it. Therefore, black-box tests are applied. This allows measureme nt and simulatio n of 
the JavaEE environm ent without detailed knowledge and, more importantly , with a simplified model that can be divided into 
sub-models for further investigatio ns. It is neither the goal to build a complex model nor to build a generally valid model.
Hence, the measureme nt results and the models can not be easily transferred to other testbed and application environments.
However, we derive and apply an evaluation methodology which is generally applicable and assess its suitability for a dis- 
tributed context provisioning system.

As discussed in Section 3, the context request interfaces are based on a RESTful interface. Therefore, the Apache Bench- 
mark1 (AB) tool has been chosen to emulate context request . AB is capable of conduc ting performance tests for HTTP/HTT PS 
based requests and supplies informa tion about the request-resp onse delay. In addition several simultan eous request s can be 
emulated in order to identify the number of requests that can be served concurre ntly. Another tool that has been included 
in our evaluatio n is the GNU wget2 package. The program is invoked within custom Perl3 scripts we developed to create and 
delete database items based on HTML GET for evaluating the effect of database read/write access on the overall system 
performan ce.
4. Testbed measurement s

Our investiga tions are focused on the CxB and the registered CxPs forms the functional backbone of the system; CxS and
CxC processing is out of scope of this study. From the simulation modelling point of view, CxSs are only utilised to emulate 
and provide primitive context, CxCs are responsible for requesting context. The prototype testbed consists of two separate 
servers. One server hosts the CxB while the other one hosts the UserProfileCxP which has been selected as a typical CxP,
and includes the databases access functionality. Both physical servers have the following hardware and software 
configuration:

� Intel Xeon CPU X3323 @2.5 GHz 
� 4096 MB RAM 
� Ubuntu 8.04.4 LTS Server 
� JBoss 4.2.3.GA with 1024 MB Cache and max. 250 threads 

The first step of our evaluation is to identify appropriate influence factors of our broker based framework. The initial 
parameter set is as follows:

� ContextML based context representation 
� Database access time 
� Load, i.e. number of concurrent requests 

The context data is represented in the XML based ContextML [31] model, which comprises hierarchical compounds of 
simple, structured and arrayed context parameters. Accordingly, not only the size but also the complexi ty of the context doc- 
ument varies. The database access of the CxP and the CxB is also worth examining since both components use databases for 
managing persistent objects. The behaviour model of: (1) how many and, (2) at which delay concurrent requests can be 
served is our major investiga tion since it will play a key role when approximat ing the overall performanc e. The next subsec- 
tion highlights the measured parameters of a typical CxP and a first abstracti on model is introduce d. Afterwards the CxB
measureme nt results are presente d.
4.1. Context Provider 

The UserProfi leCxP is able to add, change and delete profiles as well as to respond to profile context requests. It stores 
the user profiles in a MySQL database. The first measure ment series identifies the influence of the profiles, i.e. the context,
being requested . The measureme nt consists of 10,000 requests each and distinguishes between (1) querying the same con- 
text and (2) requestin g different context instances. The resulting relative frequencies are shown in Fig. 2. The ordinate is lim- 
ited to 1.5 � 10�3 for a better readability although the occurrence probability of the first interval between 4.875 and 
6.625 ms is about 0.998. The results indicate that there is only statistical variance but no significant influence. Therefore,
we clarified that the application server did not cache the requested context or the correspondi ng database values internally.
This simplifies the design and generation of requests since there is no need to generate and query user profiles randomly;
identical queries are sufficient.
1 http://httpd.apache.o rg/docs/2.0/programs/ab.html .
2 http://www.gnu.org/so ftware/wget/ .
3 http://www.perl.org/.
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Server based frameworks are optimised to handle several tasks and process queries at nearly the same time. Within 
C-ProMiSE, concurrent requests have to be processed in many situations. Multiple context requests may arrive at the 
CxP simultaneously . In addition to that, CxSs transmit context updates and CxPs register at the CxB with regular advertise- 
ment messages (see [28] for details). All these requests have to be processed at the same time. Fig. 3 illustrates the influence
of concurrent requests on the CxP response time. The figure shows the relative frequenc y of the response times as a function 
of the number of concurrent requests. For reasons of clarity and readability the distribut ion envelope is plotted. Two effects 
can be observed: (1) an increasing number of concurrent requests results in a larger mean response time and (2) the devi- 
ation of the response time grows with an increasing number of concurrent requests. This is obviously expected since the 
server processing capabilities are shared autonomous ly amongst more threads if a larger number of concurrent requests oc- 
curs. The series of measure ments with a low number of concurrent requests can be interpreted as an approximat ed normal 
distribution . Fig. 4 clarifies this interpretation with a selected series of measure ments with 100 concurrent requests (100 CR).
As illustrated, the utilisation of a single normal distribution is not adequate enough. Right next to the absolute maximum of 
the graph we identified a second local maximum whose amplitud e increases with an increasing number of concurrent re- 
quests. Therefore, we decided to model the behaviou r with two overlapping normal distribution s which are separated, in 
this case (100 CR) at 154 ms. Eq. 1 describes the mathematical model with mean l and standard deviation r of the Gaussian 
distribution function N where x is a uniformly distributed random variable. The response time function f(li,n,ri,n) has been 
modelled as a function of the number of concurrent requests n. The comparison of simulation model and prototype measure -
ment shows a satisfactory match (cp. Fig. 4).
f ðli;n;ri;nÞ ¼
Nðl1;n;r1;nÞ; x < t
Nðl2;n;r2;nÞ; x P t
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The results are valid for different context sizes (cp. Fig. 5). Two different measureme nts have been conducted; the first one 
reflects a minimal user profile (min context size ) with a size of 1,388 Bytes. The second context instance contains a maximal 
user profile (max context size ) with a size of 2461 Bytes. The minimal profile includes only basic profile data, i.e. forename 
and surname , email address and birthday and the maximal profile comprises additional profile information , including ad- 
dress, social network IDs, messenger IDs and self description. Both context instances are formatted in ContextML. The mea- 
surement results are almost equal between 10 and 160 concurrent requests. Afterwards the influence of side effects (e.g. the 
garbage collector and general performanc e limitations of the JavaEE environment) results in a higher variance but still indi- 
cates similar results between the max context size and the min context size profiles.
4.2. Context Broker 

The measure ments of the CxB focus on the proxy query mechanism, i.e. context requests are forwarded to the responsible 
CxP. The influences of an optional caching mechanism have been analysed in [2] and are out of scope of this article. Two 
different measureme nts are conducte d with the max context size case applied in Fig. 5. One set of measureme nts is generated 
with an increasing number of concurrent requests (ascending number of requests ) while the other one has been realised with 
a descending number of concurrent requests. The resulting mean response time is illustrated in Fig. 6. The measure ments are 
aborted if the response time exceeds 30s which is often the case at the end of the measure ment series. The measurements 
are stopped after 190 (ascending number of requests ) and after 40 (descendin g number of requests ) concurrent requests, respec- 
tively. The results of the ascending number of requests case reveal a smaller mean response time. This indicates that the per- 
manent load has a high influence on the performance of the CxB. The descending no. of requests curve is selected for further 
simulations . This choice is made due to the assumption of the inter-arriva l time of new requests (cp. [2]). In the simulation,
the context requests are instantiated with an exponential distribut ion of the inter-arriva l time accordin g to a Poisson 
process. This results in likely occurrence of burst requests and seems to be modelled best with the descendin g no. of requests 
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run since there are high request rates at the beginning. However the model has some shortcomin gs: it might perform better 
than in reality if a large number of concurrent requests arrives and might be too pessimistic at low load situations. For a
deeper analysis future measurements should also take CPU and RAM load into account.

5. Simulation model and results 

5.1. Simulation environmen t

The simulation models have been impleme nted as OMNeT++ modules. OMNeT++ is a DES toolkit that offers an Eclipse 
based Integrated Development Environment (IDE). An OMNET++ simulatio n model generally consists of modules that can 
communicate via messages. Several components may be utilised to form a compound module. The modules are imple- 
mented in C++ while the simulation model structure (architectural design) is defined in an OMNeT++ specific language called 
NED. The concept of DES is realised based on messages that may be transmitted from one module to another or be self-mes- 
sages triggering events in the future. This way, state transitions of a finite state automation can be represented. Fundame ntal 
events to start/stop the simulation as well as message arrival or module specific events are defined and triggered by indi- 
vidual modules. Different from classical communi cation engineering simulations which focus on OSI layer 1–5, the C-ProM-
iSE simulation model omits the detailed modelling of these layers. This is motivated due to the reason that the overall 
model is based on empirical models derived from prototype assessme nts. Therefore, the underlyin g protocol overhead is al- 
ready included in the measured response time. Furthermore, the influence of the communi cation protocol stack is out of fo- 
cus and assumed to be negligible for our purposes .

5.2. Overview of simulation model 

The model overview of the C-ProMiSE simulation is shown in Fig. 7. According to the conceptu al design the modules for 
the CxS, CxC, CxP and the CxB are instantiated. All modules interact via a common communi cation link with a channel 
Fig. 7. Network simulation model.
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whose delay can be defined. Logically the CxC, CxS and CxP are connected through the CxB module. For reasons of clarity the 
shown network does not reflect the whole simulation network; the simulated C-ProMiSE topology comprises 13 CxP and 7
CxS module instances .

The following subsections explain the simulation modules and the selected examples highlight how the models are de- 
rived from the testbed measurements . Table 1 summarises the most important simulation paramete rs.

5.3. Simulation modules 

5.3.1. Context Consumer 
The CxC module triggers the CxB module (that consecutive ly invokes the CxP modules) by sending context queries. Due 

to the assumed independence of requests from different CxCs the inter-arrival time of context requests is modelled to follow 
a Poisson process. Consequently the context requests occurrence time can be represented with an exponential distribution 
with a query rate k ¼ 1

lDtQ
where lDtQ

refers to the mean time duration between two consecutive requests. Hence, all CxC are

represented by one abstract CxC module. In addition to the inter-arriva l rate, the content of the context request, i.e. the con- 
text query parameters entityID and scopeID, are highly relevant. By default the entityID follows a uniform distribution be- 
tween zero and the maximum defined entityID. The scopeID is selected according to Zipf’s law. This law can be 
interpreted as the discrete counterpart of the continuous Pareto distribut ion and takes into account that some context infor- 
mation (e.g position) might be far more requested than others. The CxC module is in charge of starting the simulatio n with 
the first context request and stopping the entire simulation after the configurable number of requests have been processed.
The context responses from the CxB are stored in terms of delay and success/failur e for statistical analysis.

5.3.2. Context Source 
The CxS module generate s context instances randomly and sends them to the CxB. One CxS module represents all sim- 

ulated entityIDs and produces all context instances of the specified scope consequently. Its settings (cp. Tables 1 and 2) are 
inspired from the prototype testbed. The CxS module has been included for the sake of completeness and is required for 
investigatio ns with regard to the context caching mechanism of the CxB.

5.3.3. Context Provider 
The overall simulation model comprise s a configurable number of CxP modules, all being equipped with a communica- 

tion gate. Their abstract model covers (1) registering with the CxB module by sending an advertisem ent message periodically 
and (2) responding to synchronous context requests originating from the CxB. Each CxP module instance is associated to one 
context scope. The most important parameters are outlined in Tables 1 and 3. The parameter set comprises the output con- 
text scope, a list of input context scopes it depends on and the expiration time of the context instance. Moreover, a failure 
rate is defined to take into account that a provider might not be able to supply context for all entities.

Upon reception of a message, a CxP module calculates the response delay and creates a corresponding event. Due to the 
observed influence of concurrent requests, the processing time has to be recalculated each time a new request arrives or a
request leaves the request queue. This procedure is sketched in Fig. 8. Upon receipt of a message the CxP module distin- 
guishes between messages sent by the CxB and by itself. If a context request for a specific entity is received the CxP will
Table 1
Selected simulation parameters.

Mod. Nom. Default value (s) Description 

CxC N 105 Number of context requests 
p(S) pzipf PDF for random selection of the queried scopeID 
p(E) puni(E;N) PDF for random selection of the entityID 
p(DtQ) pexp(k = 0.2/ s) PDF for random calculation of the query inter-arrival time 

CxS ID (s) –a ID of the scope provided by the source 
S(id) –a Size of the ContextML document 
DTvalid(id) –a Context instance validation duration 
DTupdate(id) –a Interval between two consecutive context updates 
pfail(id) –a Probability of erroneous context instance replies 

CxP ID(s) –a ID of the scope provided by the provider 
S(id) –a Size of the ContextML document 
DTvalid(id) –a Context instance validation duration 
ID = {idi, idi+1, . . .} –a IDs of the scopes the CxP depends on 
DTadvert(id) 120 s Duration between two (keep-alive) advertisements 
fresp(id,cc) –a PDF used to calculate the response delay 
CCmax 250 The number of requests the provider is capable of processing simultaneously 
pfail(id) –a The probability of erroneous replies, i.e. a NACK is returned instead of a context instance 

CxB dpq(cc) –a Distribution determining the delay of forwarding proxy queries 

a The default values are read from a configuration file and depend on the specific module instance. See Tables 2 and 3 for details.



Table 2
Default parameters of C � S simulation modules.

Scope name Scope ID a CML validity (s) CML size (B) Failure prob. Update interval (s)

DeviceStatus 5 600 1056 10 �4 600 
TasksInfo 8 300 2507 10 �4 300 
DeviceSettings 9 600 1002 10 �4 600 
Motion 16 120 950 10 �2 120 
WiFi 17 300 1482 5 � 10�2 300 
Cell 19 600 787 10 �3 600 
BT 20 300 789 2 � 10�2 300

a The ScopeID is particularly relevant. Due to the application of Zipf’s law, a lower ID increases the number of context queries for this specific scope.

Table 3
Default parameters of C � P simulation modules.

Scope name Scope ID a Input scope IDs CML validity (s) CML size (B) Failure prob.

Position 1 14,17,19 300 748 10 �2

UserProfile 2 1800 1711 10 �4

CivilAddress 3 1 600 867 10 �2

Place 4 1 600 2995 10 �2

Time 6 3 60 1092 10 �2

Activity 7 2,4,6,16 120 982 10 �2

Weather 10 3 1800 1779 10 �2

Group 11 –b 300 654 5 � 10�2

Environment 12 14 300 1032 10 �3

Social 13 2 600 2174 10 �2

Indoorposition 14 17 300 784 10 �3

Proximity 15 1 300 850 10 �3

Music 18 2 1800 3733 10 �2

a The Scope ID is highly relevant. Due to the application of Zipf’s law, a lower ID increases the number of context queries for this specific scope.
b Instead of synchronous invocation with context parameters, this CxP acquires context as CxC.
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either calculate the response time or send a Negative Acknowledgem ent (NACK) based on the defined failure rate pfail(id). In 
case of context availability, a new request is added to the query queue – together with a processin g progress value and an 
estimated response time. In addition, the query queue is updated for each context request. Afterwards, the context request 
with the smallest estimated response time is selected in order to trigger the next self-messag e. This self-messag e enables the 
sending of the context response at the calculated simulation time and also ensures that the query queue entries will be up- 
dated at this point in time.
check if entity 
available

send NACK 
self-message

(re)-calculate 
response time(s) 

schedule 
send event(s)

receive 
message

send message
to CxB

self-
message

CxB 
request

not 
available available

Fig. 8. Simulation model of the C � P context response.
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As outlined in Section 4.1 the CxP response time is only strongly influenced by the number of concurrent requests. There- 
fore, the calculatio n of the estimated response delay is approximated with two overlapping normal distributions in order to 
generate Figs. 3 and 9. A linear regression is utilised to abstract the simulation model and ensure a continuous function be- 
tween 1 and 250 concurrent requests.

5.3.4. Context Broker 
The CxB response delay is modelled with two influence factors: (1) the number of concurrent requests and (2) the size of 

the requesting context (ContextML size). The first paramete r is modelled with a normal distribution and the associated mean 
and standard deviation. Fig. 10 illustrates the standard deviation of the measurements and the approximation of the descend-
ing no. of requests curve with a third order polynomial. The size of the requesting context influences the delay of the response.
In contrast to the CxP, the CxB needs to interpret and react to the content of the ContextML encoded context in order to fulfil
the CxC request. The influence of the context size of the response delay is modelled with a linear equation.

The internal processing of the CxB module in terms of context request-resp onse shares some similarities with the CxP
module. In both modules the progress and the estimated response time of each context request is stored in a queue and each 
time a new element enters or leaves the queue the progress and the estimated response time for each context request is (re)-
calculated. Unlike the CxP module the CxB stores previous context responses from the CxP and CxS and makes it possible to 
respond to context requests from the cache without invoking the correspondi ng CxP. This application flow is also modelled 
within the simulation but the cached context response time is not discussed in this article.

5.4. Simulation results 

The system-level simulatio n is implemented based on OMNeT++. A functional and a performanc e model of CxC, CxS, CxB,
and CxP have been designed. In addition, the CxC is extended to a request model which is similar to the AB tool in order to 
prove the correctnes s of the investiga ted simulation model. The simulatio n is conducted with an increasing concurrent re- 
quest amount compara ble to the measure ment with 10,000 requests per run and is repeated 25 times. Fig. 11 illustrates the 
simulated response delay of the CxP as a function of the number of concurrent requests. The curve represents the envelope 
distribution of the response time. The characteristics clearly reveal a strong analogy to the measured values outlined in Fig. 3.
Nevertheles s the decreasing of the maximum at the occurrence probability is more likely to be exponential than linear. Influ-
ences either from the simulation environment or imperfect implementation can be the reasons for this circumstance.

Similar results can be observed from the simulation of the CxB. The simulated mean response times are shown in Fig. 12 .
The curve simulation is compared with the measureme nts taken in the prototype testbed. The simulated curves have a
slightly larger mean response time. This is caused by the fact that the CxB has modified the ContextM L frame slightly at 
the testbed measureme nt resulting in a larger size. This functiona l step is not modelled in our simulator.

Our proposed model has been shown that black-box testbed measureme nts can be utilised to build a performanc e model 
of the application server and the investigated context provisioning middlew are. Nevertheless, the model of the CxP is based 
on the UserProfi leCxP and even though many CxPs have similar architectur es in terms of database interaction, modelling 
of context, communication interfaces, etc., it is not expected that the performance is equal. We believe that the simulation 
model of the UserProfi leCxP can be easily adopted in order to model different CxPs and we are testing this hypothesis in 
our ongoing work. A large-scale evaluation of different types of CxPs (web based, database- centred, involving complex pro- 
cessing etc.) and CxB under different load conditions (e.g. concurrent requests) and features (e.g. cache enabled) is presented 
in [32]. This large-scal e evaluation, which is carried out both as a system-leve l simulatio n and in a real-worl d middleware 
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deployment (cp. [32, Chapter 6] ), reinforces the conclusions drawn from the work reported in this article i.e. the utility of 
black-box testing for abstracti ng testbed performanc e models and combining prototype assessment with discrete event sim- 
ulation for estimating system-level performance.
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6. Conclusion and outlook 

This article has argued the need for quantitat ive evaluation of context provisioning systems since related work is often 
restricted to qualitative, i.e. functional, evaluation. Our experime nts lend weight to the argument that prototype assessment 
and discrete event simulation can be combined in order to estimate the system-leve l performanc e of such a middleware or 
framework.

Specifically, measurements from a real testbed implementation have been used in order to design and build realistic sim- 
ulation models. The measureme nts methodology is based on black-box tests and key influence paramete rs of the context 
query response performance of the Context Provider (CxP) and the Context Broker (CxB) have been identified. One key 
parameter has been identified for CxPs and two for the CxB. The resulting response time of the CxP is modelled with two 
overlapping normal distribution s as a function of the concurrent requests. The mean and standard deviation of the response 
time of the CxP is simulated with polynomial functions up to third order. In addition to the influence of the concurrent re- 
quests, the CxB also relies on the size of the requested context size. The proposed abstraction is implemented and evaluated 
within the event based simulation environm ent OMNeT++. The results indicate a large match with the testbed measure- 
ments and prove that black-box tests can be utilised to abstract controlla ble and adequate models of testbed performance.

The introduced simulation and evaluation process contributes to a better understand ing and validation of functional and 
architectural models in the area of context provisioning . However, our evaluation has only employed a limited number of 
interacting components, which provides a functiona lly complete system for analysis but we envision that there will be a con- 
siderably large number of such components in practical deploym ents of the CPS on top of the IoT technologie s. Therefore, our 
primary efforts are currently directed towards expanding the scale of our simulatio n and prototype system, and analysing 
the effects of scale on our evaluation model and conclusions drawn from this study. Specifically, a realistic large-scale eval- 
uation with exemplary context request and processing characterist ics of our system is presented in [32].

Furthermore, there are emerging technologie s and platforms that may assist in improved deployment-ti me performanc e
and scalability of a complex software system, e.g. Cloud platforms [33]. A similar evaluation of the CPS in a Cloud deploy- 
ment can be carried out to assess the suitability of Cloud-based context provisioning, which poses an interesting question 
regarding the compromise between the need for scalability/cost effectivenes s (rendered by the Cloud platform [34]) and 
the overhead of additional middlew are layers in the system.

Our evaluation has only considered an isolated deployment of CPS with a single CxB. The computing resources in the IoT
environment are more than likely to fall under different administrat ive authorities, giving rise to issues of privacy, security,
ownership association and the collabora tion between different administ rative domains. These issues can be coordinated by 
using a federation of CxBs, under different administrat ive domains, which apply administrative policies for resource sharing 
and coordinate communication amongst remote components across the domain boundaries. This arrangem ent not only in- 
duces administrative overhead in the component interaction, but also increases the scale at which the consumer–broker–
provider interaction takes place. The evaluation of such a large-scale deployment of a context provisioning middleware is 
also a target of our future work.
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