
Simulation Modelling Practice and Theory 34 (2013) 208–220
Contents lists available at SciVer se ScienceD irect

Simulat ion Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat
Performance simulation of a context provisioning middleware
based on empirical measurements
1569-190X/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2012.03.002

⇑ Corresponding author. Tel.: +44 1332592108.
E-mail address: n.bessis@derby.ac.uk (N. Bessis).
Eike Steffen Reetz b, Michael Knappmeyer a,b, Saad Liaquat Kiani a, Ashiq Anjum c,
Nik Bessis c,⇑, Ralf Tönjes b

a Faculty of Engineering and Technology, University of the West of England, Bristol, UK
b Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück, Osnabrück, Germany
c School of Computing and Mathematics, University of Derby, Derby, UK
a r t i c l e i n f o

Article history:
Received 21 December 2011
Received in revised form 7 March 2012
Accepted 10 March 2012
Available online 10 April 2012

Keywords:
Context
Pervasive
Middleware
Evaluation
Simulation
a b s t r a c t

The evaluation of context middleware systems is a challenging endeavour. On the one
hand, testbed investigations suffer from an unrealistic environment in terms of number
of users, high implementation effort for changes and questionable portability of results.
On the other hand simulation of middlew are systems is complex due to the high abstrac-
tion of impleme ntation. This article contributes to the understanding of a broker based
context provisioning system based on black-box measure ments of a testbed which are fur-
ther utilised to increase the accuracy of a simulation model. Both simulations and mea-
surements help in understanding the comp lex behaviour of a context provisioning
middleware and enable the evaluation of comp lex distributed systems. The presented
investigations identify significant parameters and corresponding models for the response
delay of the key components of a context provisioning middleware and discuss their inte-
gration into an overall simulation model.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Weiser’s [1] vision of the proximate future depicts a world where interconnected smart entities are able to provide infor-
mation on ‘‘anything, any time, anywhere’’. Since the inception of this concept nearly two decades ago, ubiquitous comput-
ing research has been dealing with the possibilities of the future; its progress has faced not only technologic al challenges but
is also concerned with anticipation of future trends of human behaviour. Research ers have tackled this combined challenge
by prototypi ng systems and applications in laboratory environments, even creating live-in laboratories with researche rs as
inhabitants of a futuristic abode. While our everyday environment has not transformed into such a world yet, continuing
advances in communi cation technology, microelectronics and materials science indicate that the Internet of Things (IoT) is
fast approaching realisation. Central to the theme of IoT is the processin g and communicati on of informat ion between smart
objects. The information may relate to inhabitants of the environment, smart appliances or physical characterist ics of the
environment itself and is labelled as context. Due to the heterogeneous nature of digital and physical objects that may inter-
act using IoT technologie s, the vast scale they may encompass and resource managemen t related issues, there is a need for
the development of supportive context provisioning infrastructu res so that the digital artefacts embedde d in our smart envi-
ronments can be fully utilised to support our seamless interaction with technolo gy.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.simpat.2012.03.002&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2012.03.002
mailto:n.bessis@derby.ac.uk
http://dx.doi.org/10.1016/j.simpat.2012.03.002
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220 209
A number of such infrastructu res, e.g. in the form of middlew ares, have been proposed and many facets of context pro-
visioning have been investigated during the last two decades. Different approach es in terms of communicati on paradigms,
context modelling and representation , extendibilit y, entity diversity as well as processing and management scalability have
been well addressed from the functional and qualitative point of view. Nevertheless, most of the proposed solutions have not
proven their large-scal e capabiliti es either by simulations or prototype deployment. Previous results ***in [2] have indicated
that a simulatio n can aid in proving specific aspects of a context provisioning system (CPS) but is inadequate just at the func-
tional level. In addition it is required to derive an appropriate model from testbed implementati ons and assessme nts. This
model includes a functional model of the investigated context provision ing middleware and the related context, as well as a
performanc e model of the underlying application server. Common problems in building a simulation model are caused by
the need to build complex models of the real system, thus resulting in uncertainty, potential inconsistenc y and time consum-
ing processes as well. Therefore many simulatio ns have clear boundaries of the model validity and focus only on aspects of
the system which can be abstracted more easily [3]. Moreove r, prototypes provide only a very limited evidence with regard
to scalability since creating a realistic environment is almost impossible in terms of heterogenei ty, numbers of context
sources and sinks, network traffic, etc. If assessed appropriate ly testbeds can reveal system-level behaviour as measureme nt
results include hardware and software characterist ics.

Our approach is to overcome the currently incomplete understanding of functiona lly described and evaluated context
provisioning systems by improved simulation models based on black-box tests in a testbed. The measureme nts allow for
identifying significant parameters and are utilised in order to build a realistic simulatio n model. The investigated model will
guide us towards a deeper understand ing of our proposed broker based CPS and will also assist in discoveri ng and avoiding
performanc e bottlenecks. Our context provisioning system has been impleme nted using Java Enterprise Edition (JavaEE)
technologie s and the performanc e of these technologie s will also come under investigatio n in this article. The aim of our sim-
ulation model and the holistic evaluation is to evaluate a context provisioning middleware from different performance re-
lated angles and analyse the experimental results for elicitation of guidelines for further research and developmen t in the
domain of context provisioning in the IoT.

The rest of the article is structured as follows. Section 2 discusses related work in the field of the evaluation of context
provisioning systems and relates to the general evaluation of JavaEE applicati ons as well. Afterwards, Section 3 outlines
our proposed broker-based context provision ing framework (entitled C-ProMiSE). The evaluation methodology is derived
in Section 3.1. Section 4 presents prototype black-bo x assessments. The simulation models and results are discussed (Section
5) before Section 6 finally concludes the article.

2. Related work

Context provisioning systems (CPSs) aim at supporting heterogeneous context-awa re applicati ons/services systemati-
cally. In order to transparent ly facilitate access to context, they typically comprise the following set of functionaliti es: Sensor
Data Acquisition, Context Modelling and Representat ion, Context Lookup and Discovery, Context Storage, Context Diffusion
and Distribut ion, Context Processing and Reasoning [4]. A survey of how to evaluate such systems has been presente d in our
earlier work [4], in which a multidiscipli nary assessme nt methodol ogy is introduced and suitable performanc e metrics are
suggested based on the analysis of surveyed systems. In detail, prototyping (e.g. [5–7], field trials including Experience Sam-
pling Method (ESM) (e.g. [8–10]), context emulation (e.g. [11–13]), emulatio n of middleware components (e.g. [12,13]) and
the emulation of actuation (e.g. [14,15]) are proposed.

However, context-awa re applicati ons/services are likely to follow location-bas ed services and step out of the lab and into
the real world in the proximate future. Due to the increasing market penetrati on of technologically advanced smartphones
being the users’ everyday companion and primary device the number of context sources and context sinks will grow tremen-
dously. This is why scalabilit y has evolved – together with security and privacy – as one of the key concerns. To investigate
the scalability of a CPS not only qualitatively but quantitatively, the authors strongly recommend a system-level simulation
based on Discrete Event Simulation (DES). Since only a very limited number of works (e.g. [2,16]) have applied DES in the
domain of context provisioning , we aim at contributing to the correspondi ng understand ing, model development and sim-
ulation parameter setting.

Multiplicity of different influence factors in programm ing platforms such as Java and C++ make it very difficult to esti-
mate the overall performanc e correctly. The performance of JavaEE based Application Servers has been studied in several
different ways [17]. The majority of related work focusses on a specific Application Server while other researchers compare
different Application Servers with each other ([18]). Further efforts have been carried out in the category of optimisation by
identifying influence factors such as the thread pool size or the number of deployed beans [19]. Comparis ons of cluster per-
formances are investiga ted, for instance in [20]. Software analysis includes examination of different Enterprise Java Beans
(EJBs) systems, types of beans, local vs. remote invocations , transaction and security options (e.g. [21]).

Performance analysis requires either load and stress tests on a real testbed or a performance model. Since load test are
often non-trivial to produce in a realistic manner, performance models have their advantages in terms of complexity and
simplicity. Several researchers have tried to build analytical models of an EJB environment based on queuing network mod-
els [22,23], Petri networks [24], Markov Models [25] or workflow discovery [26]. Apart from analytical models little contri-
bution exists in the area of simulatio n of EJB based servers. Neverthel ess some work has been presente d, e.g. by Mc Guinness
et al. [27] who have evaluated a DES model for multi-server EJB servers based on a Hyperformi x Workbench.

210 E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220
3. Evaluation of the C-ProMiSE middleware

The Context Provisioning Middleware with Support for Evolving Awareness (C-ProMiSE) [28,29] has been designed to pro-
vide coherent access to manifold context information and to transparently support various application domains. Due to the
gradual extendibilit y and self-manageme nt capabilities, it supports device, sensor, network, and application heteroge neity.

For context managemen t, the well known producer–consumer role model is applied in conjunction with the broker soft-
ware design pattern. Therefore, the following component types are defined:

� Context Consumer (CxC): Being a context sink, the CxC can request context either on-dema nd (synchronously) or based on
subscription (asynchronously) and utilise it to adapt or actuate accordingly. Each context-awa re application/s ervice is
categorised as a CxC.
� Context Provider (CxP): A CxP provides a synchronous interface for context queries. Each CxP supplies a so called context

scope (e.g. location) and must be invoked with the required input parameters (e.g. WiFi signal strengths).
� Context Source (CxS): A CxS is the asynchronous counterpart of a CxP. It does not provide an interface for external invo-

cation but asynchronousl y pushes context to a broker or storage service.
� Context Broker (CxB): The CxB has been introduced for mediating between CxC, CxP and CxS. Most importantly, it pro-

vides a CxP registry and lookup service and a proxy query service. Although a CxC may directly interact with a CxP, usu-
ally it will query with the CxB as single point of contact and utilise its functionaliti es. The CxB collects all required context
on behalf of the CxC and aggregat es it autonomous ly.

Interaction between the components is based on RESTful [30] interfaces, i.e. all components use the Hypertext Transport
Protocol (HTTP). For representing context as well as coordination messages, the XML based Context Meta Language (Contex-
tML) [31] is applied. Fig. 1 illustrates a specific prototype testbed that has been impleme nted to evaluate the design concepts.

3.1. Evaluation methodology

The analysis of the C-ProMiSE prototype testbed particularly aims at identifying paramete rs which effect and character-
ise the context query response delays of the central CxB and associated CxP components. In the scope of this article, the User
Profile Context Provider (UserProfi leCxP) is selected as the representat ive CxP. Testbed measureme nts are utilised to iden-
tify the response time influence factors. The purpose is to isolate an abstraction model which (1) describes the testbed and
component behaviour adequately and (2) can be integrated in an already established functional simulatio n model of the
C-ProMiSE architectur e (cp. [2]). The results of the simulatio n can be compared with the testbed measure ments afterwards
in order to assess its correctness. This fosters an improved understa nding of the simulation as well as the impleme ntation
approach and can be further utilised for rapid and quantifiable system improvements . The next subsectio n explains the
testbed measureme nt methodology and the target system parameters.
Fig. 1. C-ProMiSE prototype testbed.

E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220 211
The aim is to model the performanc e of a JavaEE environment in order to create a suitable simulation model including the
C-ProMiSE functional logic on top of it. Therefore, black-box tests are applied. This allows measureme nt and simulatio n of
the JavaEE environm ent without detailed knowledge and, more importantly , with a simplified model that can be divided into
sub-models for further investigatio ns. It is neither the goal to build a complex model nor to build a generally valid model.
Hence, the measureme nt results and the models can not be easily transferred to other testbed and application environments.
However, we derive and apply an evaluation methodology which is generally applicable and assess its suitability for a dis-
tributed context provisioning system.

As discussed in Section 3, the context request interfaces are based on a RESTful interface. Therefore, the Apache Bench-
mark1 (AB) tool has been chosen to emulate context request . AB is capable of conduc ting performance tests for HTTP/HTT PS
based requests and supplies informa tion about the request-resp onse delay. In addition several simultan eous request s can be
emulated in order to identify the number of requests that can be served concurre ntly. Another tool that has been included
in our evaluatio n is the GNU wget2 package. The program is invoked within custom Perl3 scripts we developed to create and
delete database items based on HTML GET for evaluating the effect of database read/write access on the overall system
performan ce.
4. Testbed measurement s

Our investiga tions are focused on the CxB and the registered CxPs forms the functional backbone of the system; CxS and
CxC processing is out of scope of this study. From the simulation modelling point of view, CxSs are only utilised to emulate
and provide primitive context, CxCs are responsible for requesting context. The prototype testbed consists of two separate
servers. One server hosts the CxB while the other one hosts the UserProfileCxP which has been selected as a typical CxP,
and includes the databases access functionality. Both physical servers have the following hardware and software
configuration:

� Intel Xeon CPU X3323 @2.5 GHz
� 4096 MB RAM
� Ubuntu 8.04.4 LTS Server
� JBoss 4.2.3.GA with 1024 MB Cache and max. 250 threads

The first step of our evaluation is to identify appropriate influence factors of our broker based framework. The initial
parameter set is as follows:

� ContextML based context representation
� Database access time
� Load, i.e. number of concurrent requests

The context data is represented in the XML based ContextML [31] model, which comprises hierarchical compounds of
simple, structured and arrayed context parameters. Accordingly, not only the size but also the complexi ty of the context doc-
ument varies. The database access of the CxP and the CxB is also worth examining since both components use databases for
managing persistent objects. The behaviour model of: (1) how many and, (2) at which delay concurrent requests can be
served is our major investiga tion since it will play a key role when approximat ing the overall performanc e. The next subsec-
tion highlights the measured parameters of a typical CxP and a first abstracti on model is introduce d. Afterwards the CxB
measureme nt results are presente d.
4.1. Context Provider

The UserProfi leCxP is able to add, change and delete profiles as well as to respond to profile context requests. It stores
the user profiles in a MySQL database. The first measure ment series identifies the influence of the profiles, i.e. the context,
being requested . The measureme nt consists of 10,000 requests each and distinguishes between (1) querying the same con-
text and (2) requestin g different context instances. The resulting relative frequencies are shown in Fig. 2. The ordinate is lim-
ited to 1.5 � 10�3 for a better readability although the occurrence probability of the first interval between 4.875 and
6.625 ms is about 0.998. The results indicate that there is only statistical variance but no significant influence. Therefore,
we clarified that the application server did not cache the requested context or the correspondi ng database values internally.
This simplifies the design and generation of requests since there is no need to generate and query user profiles randomly;
identical queries are sufficient.
1 http://httpd.apache.o rg/docs/2.0/programs/ab.html .
2 http://www.gnu.org/so ftware/wget/ .
3 http://www.perl.org/.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.gnu.org/software/wget/
http://www.perl.org/

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5
x 10

−3

Response Time [ms]

R
el

at
iv

e
Fr

eq
ue

nc
y

different context requests
same context request

Fig. 2. Probability density function – prototype measured C � P response times. The graph examines the influence of requesting different or the same
context.

212 E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220
Server based frameworks are optimised to handle several tasks and process queries at nearly the same time. Within
C-ProMiSE, concurrent requests have to be processed in many situations. Multiple context requests may arrive at the
CxP simultaneously . In addition to that, CxSs transmit context updates and CxPs register at the CxB with regular advertise-
ment messages (see [28] for details). All these requests have to be processed at the same time. Fig. 3 illustrates the influence
of concurrent requests on the CxP response time. The figure shows the relative frequenc y of the response times as a function
of the number of concurrent requests. For reasons of clarity and readability the distribut ion envelope is plotted. Two effects
can be observed: (1) an increasing number of concurrent requests results in a larger mean response time and (2) the devi-
ation of the response time grows with an increasing number of concurrent requests. This is obviously expected since the
server processing capabilities are shared autonomous ly amongst more threads if a larger number of concurrent requests oc-
curs. The series of measure ments with a low number of concurrent requests can be interpreted as an approximat ed normal
distribution . Fig. 4 clarifies this interpretation with a selected series of measure ments with 100 concurrent requests (100 CR).
As illustrated, the utilisation of a single normal distribution is not adequate enough. Right next to the absolute maximum of
the graph we identified a second local maximum whose amplitud e increases with an increasing number of concurrent re-
quests. Therefore, we decided to model the behaviou r with two overlapping normal distribution s which are separated, in
this case (100 CR) at 154 ms. Eq. 1 describes the mathematical model with mean l and standard deviation r of the Gaussian
distribution function N where x is a uniformly distributed random variable. The response time function f(li,n,ri,n) has been
modelled as a function of the number of concurrent requests n. The comparison of simulation model and prototype measure -
ment shows a satisfactory match (cp. Fig. 4).
f ðli;n;ri;nÞ ¼
Nðl1;n;r1;nÞ; x < t
Nðl2;n;r2;nÞ; x P t

(
ð1Þ
0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Response Time [ms]

R
el

at
iv

e
Fr

eq
ue

nc
y

10 CR
50 CR
90 CR
130 CR

Fig. 3. Probability density function – measured C � P response times with different number of concurrent requests.

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Response Time [ms]

R
el

at
iv

e
Fr

eq
ue

nc
y

model
measurement

Fig. 4. Probability density function – measured and modelled C � P response time with 100 concurrent requests.

E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220 213
The results are valid for different context sizes (cp. Fig. 5). Two different measureme nts have been conducted; the first one
reflects a minimal user profile (min context size) with a size of 1,388 Bytes. The second context instance contains a maximal
user profile (max context size) with a size of 2461 Bytes. The minimal profile includes only basic profile data, i.e. forename
and surname , email address and birthday and the maximal profile comprises additional profile information , including ad-
dress, social network IDs, messenger IDs and self description. Both context instances are formatted in ContextML. The mea-
surement results are almost equal between 10 and 160 concurrent requests. Afterwards the influence of side effects (e.g. the
garbage collector and general performanc e limitations of the JavaEE environment) results in a higher variance but still indi-
cates similar results between the max context size and the min context size profiles.
4.2. Context Broker

The measure ments of the CxB focus on the proxy query mechanism, i.e. context requests are forwarded to the responsible
CxP. The influences of an optional caching mechanism have been analysed in [2] and are out of scope of this article. Two
different measureme nts are conducte d with the max context size case applied in Fig. 5. One set of measureme nts is generated
with an increasing number of concurrent requests (ascending number of requests) while the other one has been realised with
a descending number of concurrent requests. The resulting mean response time is illustrated in Fig. 6. The measure ments are
aborted if the response time exceeds 30s which is often the case at the end of the measure ment series. The measurements
are stopped after 190 (ascending number of requests) and after 40 (descendin g number of requests) concurrent requests, respec-
tively. The results of the ascending number of requests case reveal a smaller mean response time. This indicates that the per-
manent load has a high influence on the performance of the CxB. The descending no. of requests curve is selected for further
simulations . This choice is made due to the assumption of the inter-arriva l time of new requests (cp. [2]). In the simulation,
the context requests are instantiated with an exponential distribut ion of the inter-arriva l time accordin g to a Poisson
process. This results in likely occurrence of burst requests and seems to be modelled best with the descendin g no. of requests
0 50 100 150 200 250
0

50

100

150

200

250

300

Number of Concurrent Requests

M
ea

n
R

es
po

ns
e

Ti
m

e
[m

s]

min context size

max context size

Fig. 5. Measured C � P mean response time for different context sizes.

0 50 100 150 200 250
0

5

10

15

Number of Concurrent Requests

M
ea

n
R

es
po

ns
e

Ti
m

e
[s

]
ascending no. of requests

descending no. of requests

Fig. 6. Measured CxB mean response time with ascending and descending number of context requests.

214 E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220
run since there are high request rates at the beginning. However the model has some shortcomin gs: it might perform better
than in reality if a large number of concurrent requests arrives and might be too pessimistic at low load situations. For a
deeper analysis future measurements should also take CPU and RAM load into account.

5. Simulation model and results

5.1. Simulation environmen t

The simulation models have been impleme nted as OMNeT++ modules. OMNeT++ is a DES toolkit that offers an Eclipse
based Integrated Development Environment (IDE). An OMNET++ simulatio n model generally consists of modules that can
communicate via messages. Several components may be utilised to form a compound module. The modules are imple-
mented in C++ while the simulation model structure (architectural design) is defined in an OMNeT++ specific language called
NED. The concept of DES is realised based on messages that may be transmitted from one module to another or be self-mes-
sages triggering events in the future. This way, state transitions of a finite state automation can be represented. Fundame ntal
events to start/stop the simulation as well as message arrival or module specific events are defined and triggered by indi-
vidual modules. Different from classical communi cation engineering simulations which focus on OSI layer 1–5, the C-ProM-
iSE simulation model omits the detailed modelling of these layers. This is motivated due to the reason that the overall
model is based on empirical models derived from prototype assessme nts. Therefore, the underlyin g protocol overhead is al-
ready included in the measured response time. Furthermore, the influence of the communi cation protocol stack is out of fo-
cus and assumed to be negligible for our purposes .

5.2. Overview of simulation model

The model overview of the C-ProMiSE simulation is shown in Fig. 7. According to the conceptu al design the modules for
the CxS, CxC, CxP and the CxB are instantiated. All modules interact via a common communi cation link with a channel
Fig. 7. Network simulation model.

E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220 215
whose delay can be defined. Logically the CxC, CxS and CxP are connected through the CxB module. For reasons of clarity the
shown network does not reflect the whole simulation network; the simulated C-ProMiSE topology comprises 13 CxP and 7
CxS module instances .

The following subsections explain the simulation modules and the selected examples highlight how the models are de-
rived from the testbed measurements . Table 1 summarises the most important simulation paramete rs.

5.3. Simulation modules

5.3.1. Context Consumer
The CxC module triggers the CxB module (that consecutive ly invokes the CxP modules) by sending context queries. Due

to the assumed independence of requests from different CxCs the inter-arrival time of context requests is modelled to follow
a Poisson process. Consequently the context requests occurrence time can be represented with an exponential distribution
with a query rate k ¼ 1

lDtQ
where lDtQ

refers to the mean time duration between two consecutive requests. Hence, all CxC are

represented by one abstract CxC module. In addition to the inter-arriva l rate, the content of the context request, i.e. the con-
text query parameters entityID and scopeID, are highly relevant. By default the entityID follows a uniform distribution be-
tween zero and the maximum defined entityID. The scopeID is selected according to Zipf’s law. This law can be
interpreted as the discrete counterpart of the continuous Pareto distribut ion and takes into account that some context infor-
mation (e.g position) might be far more requested than others. The CxC module is in charge of starting the simulatio n with
the first context request and stopping the entire simulation after the configurable number of requests have been processed.
The context responses from the CxB are stored in terms of delay and success/failur e for statistical analysis.

5.3.2. Context Source
The CxS module generate s context instances randomly and sends them to the CxB. One CxS module represents all sim-

ulated entityIDs and produces all context instances of the specified scope consequently. Its settings (cp. Tables 1 and 2) are
inspired from the prototype testbed. The CxS module has been included for the sake of completeness and is required for
investigatio ns with regard to the context caching mechanism of the CxB.

5.3.3. Context Provider
The overall simulation model comprise s a configurable number of CxP modules, all being equipped with a communica-

tion gate. Their abstract model covers (1) registering with the CxB module by sending an advertisem ent message periodically
and (2) responding to synchronous context requests originating from the CxB. Each CxP module instance is associated to one
context scope. The most important parameters are outlined in Tables 1 and 3. The parameter set comprises the output con-
text scope, a list of input context scopes it depends on and the expiration time of the context instance. Moreover, a failure
rate is defined to take into account that a provider might not be able to supply context for all entities.

Upon reception of a message, a CxP module calculates the response delay and creates a corresponding event. Due to the
observed influence of concurrent requests, the processing time has to be recalculated each time a new request arrives or a
request leaves the request queue. This procedure is sketched in Fig. 8. Upon receipt of a message the CxP module distin-
guishes between messages sent by the CxB and by itself. If a context request for a specific entity is received the CxP will
Table 1
Selected simulation parameters.

Mod. Nom. Default value (s) Description

CxC N 105 Number of context requests
p(S) pzipf PDF for random selection of the queried scopeID
p(E) puni(E;N) PDF for random selection of the entityID
p(DtQ) pexp(k = 0.2/ s) PDF for random calculation of the query inter-arrival time

CxS ID (s) –a ID of the scope provided by the source
S(id) –a Size of the ContextML document
DTvalid(id) –a Context instance validation duration
DTupdate(id) –a Interval between two consecutive context updates
pfail(id) –a Probability of erroneous context instance replies

CxP ID(s) –a ID of the scope provided by the provider
S(id) –a Size of the ContextML document
DTvalid(id) –a Context instance validation duration
ID = {idi, idi+1, . . .} –a IDs of the scopes the CxP depends on
DTadvert(id) 120 s Duration between two (keep-alive) advertisements
fresp(id,cc) –a PDF used to calculate the response delay
CCmax 250 The number of requests the provider is capable of processing simultaneously
pfail(id) –a The probability of erroneous replies, i.e. a NACK is returned instead of a context instance

CxB dpq(cc) –a Distribution determining the delay of forwarding proxy queries

a The default values are read from a configuration file and depend on the specific module instance. See Tables 2 and 3 for details.

Table 2
Default parameters of C � S simulation modules.

Scope name Scope ID a CML validity (s) CML size (B) Failure prob. Update interval (s)

DeviceStatus 5 600 1056 10 �4 600
TasksInfo 8 300 2507 10 �4 300
DeviceSettings 9 600 1002 10 �4 600
Motion 16 120 950 10 �2 120
WiFi 17 300 1482 5 � 10�2 300
Cell 19 600 787 10 �3 600
BT 20 300 789 2 � 10�2 300

a The ScopeID is particularly relevant. Due to the application of Zipf’s law, a lower ID increases the number of context queries for this specific scope.

Table 3
Default parameters of C � P simulation modules.

Scope name Scope ID a Input scope IDs CML validity (s) CML size (B) Failure prob.

Position 1 14,17,19 300 748 10 �2

UserProfile 2 1800 1711 10 �4

CivilAddress 3 1 600 867 10 �2

Place 4 1 600 2995 10 �2

Time 6 3 60 1092 10 �2

Activity 7 2,4,6,16 120 982 10 �2

Weather 10 3 1800 1779 10 �2

Group 11 –b 300 654 5 � 10�2

Environment 12 14 300 1032 10 �3

Social 13 2 600 2174 10 �2

Indoorposition 14 17 300 784 10 �3

Proximity 15 1 300 850 10 �3

Music 18 2 1800 3733 10 �2

a The Scope ID is highly relevant. Due to the application of Zipf’s law, a lower ID increases the number of context queries for this specific scope.
b Instead of synchronous invocation with context parameters, this CxP acquires context as CxC.

216 E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220
either calculate the response time or send a Negative Acknowledgem ent (NACK) based on the defined failure rate pfail(id). In
case of context availability, a new request is added to the query queue – together with a processin g progress value and an
estimated response time. In addition, the query queue is updated for each context request. Afterwards, the context request
with the smallest estimated response time is selected in order to trigger the next self-messag e. This self-messag e enables the
sending of the context response at the calculated simulation time and also ensures that the query queue entries will be up-
dated at this point in time.
check if entity
available

send NACK
self-message

(re)-calculate
response time(s)

schedule
send event(s)

receive
message

send message
to CxB

self-
message

CxB
request

not
available available

Fig. 8. Simulation model of the C � P context response.

E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220 217
As outlined in Section 4.1 the CxP response time is only strongly influenced by the number of concurrent requests. There-
fore, the calculatio n of the estimated response delay is approximated with two overlapping normal distributions in order to
generate Figs. 3 and 9. A linear regression is utilised to abstract the simulation model and ensure a continuous function be-
tween 1 and 250 concurrent requests.

5.3.4. Context Broker
The CxB response delay is modelled with two influence factors: (1) the number of concurrent requests and (2) the size of

the requesting context (ContextML size). The first paramete r is modelled with a normal distribution and the associated mean
and standard deviation. Fig. 10 illustrates the standard deviation of the measurements and the approximation of the descend-
ing no. of requests curve with a third order polynomial. The size of the requesting context influences the delay of the response.
In contrast to the CxP, the CxB needs to interpret and react to the content of the ContextML encoded context in order to fulfil
the CxC request. The influence of the context size of the response delay is modelled with a linear equation.

The internal processing of the CxB module in terms of context request-resp onse shares some similarities with the CxP
module. In both modules the progress and the estimated response time of each context request is stored in a queue and each
time a new element enters or leaves the queue the progress and the estimated response time for each context request is (re)-
calculated. Unlike the CxP module the CxB stores previous context responses from the CxP and CxS and makes it possible to
respond to context requests from the cache without invoking the correspondi ng CxP. This application flow is also modelled
within the simulation but the cached context response time is not discussed in this article.

5.4. Simulation results

The system-level simulatio n is implemented based on OMNeT++. A functional and a performanc e model of CxC, CxS, CxB,
and CxP have been designed. In addition, the CxC is extended to a request model which is similar to the AB tool in order to
prove the correctnes s of the investiga ted simulation model. The simulatio n is conducted with an increasing concurrent re-
quest amount compara ble to the measure ment with 10,000 requests per run and is repeated 25 times. Fig. 11 illustrates the
simulated response delay of the CxP as a function of the number of concurrent requests. The curve represents the envelope
distribution of the response time. The characteristics clearly reveal a strong analogy to the measured values outlined in Fig. 3.
Nevertheles s the decreasing of the maximum at the occurrence probability is more likely to be exponential than linear. Influ-
ences either from the simulation environment or imperfect implementation can be the reasons for this circumstance.

Similar results can be observed from the simulation of the CxB. The simulated mean response times are shown in Fig. 12 .
The curve simulation is compared with the measureme nts taken in the prototype testbed. The simulated curves have a
slightly larger mean response time. This is caused by the fact that the CxB has modified the ContextM L frame slightly at
the testbed measureme nt resulting in a larger size. This functiona l step is not modelled in our simulator.

Our proposed model has been shown that black-box testbed measureme nts can be utilised to build a performanc e model
of the application server and the investigated context provisioning middlew are. Nevertheless, the model of the CxP is based
on the UserProfi leCxP and even though many CxPs have similar architectur es in terms of database interaction, modelling
of context, communication interfaces, etc., it is not expected that the performance is equal. We believe that the simulation
model of the UserProfi leCxP can be easily adopted in order to model different CxPs and we are testing this hypothesis in
our ongoing work. A large-scale evaluation of different types of CxPs (web based, database- centred, involving complex pro-
cessing etc.) and CxB under different load conditions (e.g. concurrent requests) and features (e.g. cache enabled) is presented
in [32]. This large-scal e evaluation, which is carried out both as a system-leve l simulatio n and in a real-worl d middleware
0 50 100 150 200 250
0

50

100

150

200

250

300

Number of Concurrent Requests

Fi
rs

t M
ax

im
um

 o
f R

es
po

ns
e

Ti
m

e
[m

s]

measurements 10 CR − 170 CR
measurements 170 − 250 CR
linear reg. 170 CR − 250 CR
linear reg. 1 CR − 170 CR

y =1.4801x−5.0956
y =−0.060714x+239.4286

Fig. 9. Analytical model based on the empirical measurements of the first maxima of the C � P response times.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Number of Concurrent Requests

St
an

da
rd

 D
ev

ia
tio

n
[m

s]

ascending no. of requests
descending no. of requests
polynomial regression

y =0.00010586x3−0.03726x2+4.6418x−1.036

Fig. 10. Empirical model based on measurements of the standard deviation of the CxB.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Response Time [ms]

R
el

at
iv

e
Fr

eq
ue

nc
y

10 CR
50 CR
90 CR
130 CR

Fig. 11. Probability density function – simulated response times of the Profile-C � P.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Number of Concurrent Requests

M
ea

n
R

es
po

ns
e

Ti
m

e
[s

]

measurement

simulation

Fig. 12. Comparison between simulated and measured mean response time of the C � B.

218 E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220
deployment (cp. [32, Chapter 6]), reinforces the conclusions drawn from the work reported in this article i.e. the utility of
black-box testing for abstracti ng testbed performanc e models and combining prototype assessment with discrete event sim-
ulation for estimating system-level performance.

E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220 219
6. Conclusion and outlook

This article has argued the need for quantitat ive evaluation of context provisioning systems since related work is often
restricted to qualitative, i.e. functional, evaluation. Our experime nts lend weight to the argument that prototype assessment
and discrete event simulation can be combined in order to estimate the system-leve l performanc e of such a middleware or
framework.

Specifically, measurements from a real testbed implementation have been used in order to design and build realistic sim-
ulation models. The measureme nts methodology is based on black-box tests and key influence paramete rs of the context
query response performance of the Context Provider (CxP) and the Context Broker (CxB) have been identified. One key
parameter has been identified for CxPs and two for the CxB. The resulting response time of the CxP is modelled with two
overlapping normal distribution s as a function of the concurrent requests. The mean and standard deviation of the response
time of the CxP is simulated with polynomial functions up to third order. In addition to the influence of the concurrent re-
quests, the CxB also relies on the size of the requested context size. The proposed abstraction is implemented and evaluated
within the event based simulation environm ent OMNeT++. The results indicate a large match with the testbed measure-
ments and prove that black-box tests can be utilised to abstract controlla ble and adequate models of testbed performance.

The introduced simulation and evaluation process contributes to a better understand ing and validation of functional and
architectural models in the area of context provisioning . However, our evaluation has only employed a limited number of
interacting components, which provides a functiona lly complete system for analysis but we envision that there will be a con-
siderably large number of such components in practical deploym ents of the CPS on top of the IoT technologie s. Therefore, our
primary efforts are currently directed towards expanding the scale of our simulatio n and prototype system, and analysing
the effects of scale on our evaluation model and conclusions drawn from this study. Specifically, a realistic large-scale eval-
uation with exemplary context request and processing characterist ics of our system is presented in [32].

Furthermore, there are emerging technologie s and platforms that may assist in improved deployment-ti me performanc e
and scalability of a complex software system, e.g. Cloud platforms [33]. A similar evaluation of the CPS in a Cloud deploy-
ment can be carried out to assess the suitability of Cloud-based context provisioning, which poses an interesting question
regarding the compromise between the need for scalability/cost effectivenes s (rendered by the Cloud platform [34]) and
the overhead of additional middlew are layers in the system.

Our evaluation has only considered an isolated deployment of CPS with a single CxB. The computing resources in the IoT
environment are more than likely to fall under different administrat ive authorities, giving rise to issues of privacy, security,
ownership association and the collabora tion between different administ rative domains. These issues can be coordinated by
using a federation of CxBs, under different administrat ive domains, which apply administrative policies for resource sharing
and coordinate communication amongst remote components across the domain boundaries. This arrangem ent not only in-
duces administrative overhead in the component interaction, but also increases the scale at which the consumer–broker–
provider interaction takes place. The evaluation of such a large-scale deployment of a context provisioning middleware is
also a target of our future work.

References

[1] M. Weiser, The computer for the 21st century, in: Human–computer interaction: toward the year 2000, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1995, pp. 93–940.

[2] S.L. Kiani, M. Knappmeyer, E.S. Reetz, N. Baker, R. Tönjes, Effect of caching in a broker based context provisioning system, in: Proceedings of the 5th
European conference on Smart Sensing and Context, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 108–121.

[3] H.A. Henning, A., J. Tyack, Performance prototyping - generating and simulating a distributed IT-system from UML models, in: Proceedings of the 17th
European Simulation Multiconference, ESM’03, Nottingham, UK, June 2003.

[4] M. Knappmeyer, S. Kiani, N. Baker, A. Ikram, R. Tönjes, Survey on evaluation of context provisioning middleware, in: Proceedings of the Second
Workshop on Context-Systems Design, Evaluation and Optimisation, in conjunction with the 24th International Conference on Architecture of
Computing Systems (ARCS), VDE VERLAG GmbH, 2011.

[5] B. Schilit, M. Theimer, Disseminating active map information to mobile hosts, IEEE Network 8 (1994) 22–32.
[6] R. Want, A. Hopper, V. Falc ao, J. Gibbons, The active badge location system, ACM Transactions on Information Systems 10 (1) (1992) 91–102.
[7] G.D. Abowd, C.G. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton, Cyberguide: a mobile context-aware tour guide, Wireless Networks 3 (5) (1997)

421–433.
[8] J. Froehlich, M.Y. Chen, S. Consolvo, B. Harrison, J.A. Landay, MyExperience: a system for in situ tracing and capturing of user feedback on mobile

phones, in: MobiSys ’07: Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, ACM, New York, NY, USA, 2007,
pp. 57–70.

[9] S. Carter, J. Mankoff, J. Heer, Momento: support for situated UbiComp experimentation, in: CHI ’07: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, New York, NY, USA, 2007, pp. 125–134.

[10] S.S. Intille, J. Rondoni, C. Kukla, I. Ancona, L. Bao, A context-aware experience sampling tool, in: CHI ’03 Extended Abstracts on Human Factors in
Computing Systems, ACM, Ft. Lauderdale, Florida, USA, 2003, pp. 972–973.

[11] Siafu: An Open Source Context Simulator. <http://siafusimulator.sourceforge.net/> (last accessed 27.02.12).
[12] J. Barton, V. Vijayaraghavan, A Simulator for Ubiquitous Computing Systems Design, Tech. Rep. HPL-2003-93, Hewlett-Packard Labs, 2003.
[13] E. O’Neill, M. Klepal, D. Lewis, T. O’Donnell, D. O’Sullivan, D. Pesch, A testbed for evaluating human interaction with ubiquitous computing

environments, in: Proceedings of the 1st International Conference on Testbeds and Research Infrastructures for the Development of Networks and
Communities (Tridentcom), IEEE, 2005, pp. 60–69.

[14] S. Jang, Y. Lee, W. Woo, CIVE: Context-based interactive system for distributed virtual environment, in: Proceedings of the 14th International
Conference on Artificial Reality and Telexistence, ICAT, 2004, pp. 495–498.

[15] H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Kitani, N. Shibata, K. Yasumoto, M. Ito, UbiREAL: Realistic smartspace simulator for systematic
testing, in: P. Dourish, A. Friday (Eds.), UbiComp 2006: Ubiquitous Computing, vol. 4206 of Lecture Notes in Computer Science, Springer, Heidelberg,
Berlin, 2006, pp. 459–476.

http://siafusimulator.sourceforge.net/

220 E.S. Reetz et al. / Simulation Modelling Practice and Theory 34 (2013) 208–220
[16] J. Barbosa, R. Hahn, D. Bonatto, F. Cecin, C. Geyer, Evaluation of a large-scale ubiquitous system model through peer-to-peer protocol simulation, in:
Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications, IEEE, 2007, pp. 175–181.

[17] D.M. Guinness, Performance Modelling of an EJB System: A Simulation Approach, Master’s Thesis, Department of Computer Sciences, University
College Dublin, August 2005.

[18] E. Cecchet, J. Marguerite, W. Zwaenepoel, Performance and scalability of EJB applications, ACM SIGPLAN Notices 37 (2002) 246–261.
[19] Y. Liu, I. Gorton, A. Liu, S. Chen, Evaluating the scalability of Enterprise JavaBeans technology, in: Proceedings of the 9th Asia–Pacific Software

Engineering Conference, IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 2002, pp. 74–83.
[20] I. Gorton, A. Liu, Evaluating the performance of EJB components, IEEE Internet Computing 7 (2003) 18–23.
[21] A. Stylianou, G. Ferrari, P. Ezhilchelvan, A comparative evaluation of EJB implementation methods, in: 10th IEEE International Symposium on Object

and Component Oriented Real–Time Distributed Computing (IOSRC), IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 2007, pp. 204–213.
[22] S. Kounev, Performance modeling and evaluation of distributed component-based systems using queueing Petri Nets, IEEE Transactions on Software

Engineering 32 (2006) 486–502.
[23] W. Xiong, T. Altiok, An analytical approach for performance analysis of J2EE application servers. <http://ie.rutgers.edu/resource/research_paper/

paper_07-016.pdf> (last accessed 27.02.12).
[24] F.N. Souza, R.D. Arteiro, N.S. Rosa, P.R.M. Maciel, Using stochastic Petri Nets for performance modelling of application servers, in: Proceedings of the

20th International Conference on Parallel and Distributed Processing, 2006, pp. 332–332.
[25] N. Sharifimehr, S. Sadaoul, Markovian workload modeling for enterprise application servers, in: Proceedings of the 2nd Canadian Conference on

Computer Science and Software Engineering, ACM, New York, NY, USA, 2009, pp. 161–168.
[26] P.C. Brebner, Real-world performance modelling of enterprise service oriented architectures: delivering business value with complexity and

constraints, in: Proceedings of the 2nd Joint WOSP/SIPEW International Conference on Performance Engineering, ACM, New York, NY, USA, 2011, pp.
85–96.

[27] D.M. Guinness, L. Murphy, A simulation model of a multi-server EJB system, in: ACM SIGSOFT Software Engineering Notes, vol. 30, ACM, 2005, pp. 1–7.
[28] M. Knappmeyer, N. Baker, S. Liaquat, R. Tönjes, A context provisioning framework to support pervasive and ubiquitous applications, in: Proceedings of

the 4th European Conference on Smart Sensing and Context (EuroSSC), Springer-Verlag, Berlin, Heidelberg, 2009, pp. 93–106.
[29] M. Knappmeyer, S.L. Kiani, R. Tönjes, N. Baker, Modular context processing and provisioning: prototype experiences, in: Proceedings of the 4th ACM

International Workshop on Context-Awareness for Self-Managing Systems, CASEMANS ’10, ACM, New York, NY, USA, 2010, pp. 8:53–8:58.
[30] R.T. Fielding, Architectural Styles and the Design of Network-based Software Architectures, Ph.D. Thesis, University of California, 2000.
[31] M. Knappmeyer, S.L. Kiani, C. Frá, B. Moltchanov, N. Baker, ContextML: a light-weight context representation and context management schema, in:

Proceedings of IEEE International Symposium on Wireless Pervasive Computing, ISWPC’10, IEEE Press, Piscataway, NJ, USA, 2010, pp. 367–372.
[32] M. Knappmeyer, A Context Provisioning Middleware with Support for Evolving Awareness, Ph.D. Thesis, University of the West of England, Bristol, UK

(January 2012).
[33] I.A. Moschakis, H.D. Karatza, Enterprise HPC on the clouds, in: Z. Mahmood, R. Hill (Eds.), Cloud Computing for Enterprise Architectures, Computer

Communications and Networks, Springer, London, 2011, pp. 227–246.
[34] I. Moschakis, H. Karatza, Evaluation of gang scheduling performance and cost in a cloud computing system, The Journal of Supercomputing 59 (2012)

975–992.

http://ie.rutgers.edu/resource/research_paper/paper_07-016.pdf
http://ie.rutgers.edu/resource/research_paper/paper_07-016.pdf

	Performance simulation of a context provisioning middleware based on empirical measurements
	1 Introduction
	2 Related work
	3 Evaluation of the C-ProMiSE middleware
	3.1 Evaluation methodology

	4 Testbed measurements
	4.1 Context Provider
	4.2 Context Broker

	5 Simulation model and results
	5.1 Simulation environment
	5.2 Overview of simulation model
	5.3 Simulation modules
	5.3.1 Context Consumer
	5.3.2 Context Source
	5.3.3 Context Provider
	5.3.4 Context Broker

	5.4 Simulation results

	6 Conclusion and outlook
	References

