
Representing Variant Calling Format as Directed Acyclic Graphs to enable the use of
cloud computing for efficient and cost effective genome analysis

Sanna Aizad, Ashiq Anjum
Department of Computer Science

University of Derby
Derby, UK

s.aizad@derby.ac.uk
a.anjum@derby.ac.uk

Rizos Sakellariou
School of Computer Science

University of Manchester
Manchester, UK

rizos@manchester.ac.uk

Abstract— Ever since the completion of the Human Genome
Project in 2003, the human genome has been represented as a
linear sequence of 3.2 billion base pairs and is referred to as
the “Reference Genome”. Since then it has become easier to
sequence genomes of individuals due to rapid advancements in
technology, which in turn has created a need to represent the
new information using a different representation. Several
attempts have been made to represent the genome sequence as
a graph albeit for different purposes. Here we take a look at
the Variant Calling Format (VCF) file which carries
information about variations within genomes and is the
primary format of choice for genome analysis tools. This short
paper aims to motivate work in representing the VCF file as
Directed Acyclic Graphs (DAGs) to run on a cloud in order to
exploit the high performance capabilities provided by cloud
computing.

Keywords- DAGs; VCF; genome analysis; cloud computing

I. INTRODUCTION
The Human Genome Project, started in 1990 and

concluded in 2003, aimed to sequence the entire human
genome. It resulted in an official gene map, also known as
the “reference genome” which consists of 3.2 billion base
pairs present in a human genome [1]. Although this boosted
genomics in unimaginable ways, the existing linear gene
map looks at only one way the human genome could be
viewed. The current research in genomics demands a “map”
or arrangement of the genome such that thousands of
genomes may be combined to effectively solve multiple
types of research problems. The scientific community has
come to an understanding that the best way round it is to
map a “pan genome” [18] which represents all the variations
in genomes with respect to the reference genome. This
would help give the larger picture of genomes with respect to
each other as compared to the traditional view of looking at
genome variations with respect to their nucleotide positions
mapped to a reference genome.

The stage has been set by initiatives such as 1000
Genomes Project [2] and The 100,000 Genomes Project [3]
along with an advancement of sequencing technologies.
Companies like Illumina [4] use Next-Generation
Sequencing (NGS) to sequence genomes in a cost- and time-

effective manner. The NGS information is distributed in
Variant Calling Format (VCF) [5], [25]. The VCF files are
used for diagnosing genetic disorders by running the
variations through a series of analysis in addition to clinical
annotations to bring out meaningful insights [6]. There are
different platforms available such as the Omacia Platform [6]
and CAPER 3.0 [7], which address data-intensive analysis
on a cloud-based environment.

As a standard introduced by 1000 Genomes Project [2],
the Variant Calling Format (VCF) [5], [25] stores small-scale
variant information such as that about SNPs, insertions and
deletions. In other words, the VCF file contains genetic
variation data/DNA polymorphism data. The VCF file has
many advantages, the most important of which is that it is
standardized [5]. The VCF stores only the variations along
with the reference genome, eliminating redundancy of data
by not storing the portions of the genome which are the same
as the reference genome. At the same time, it is flexible
enough to contain structural variants. The variations are
listed along with the reference haplotype allowing VCF to
express any type of variation. It explicitly states the type of
variation along with the sequence of variation, as well as the
genotypes of multiple samples, if they are available, for the
particular variation. Since VCF is usually associated with
Next-Generation Sequencing data (such as that generated
from the 1000 Genomes Project [2]), it is, therefore, the
primary format choice for genome analysis tools.

However, the VCF is a plain text file containing highly
detailed information. It is somewhere between human
readable and machine readable [25] and, therefore,
understanding the data that a VCF file contains is in itself a
challenge. Usually, genome analysis requires looking at
more than one VCF file whereby a personal computer may
struggle to load and process the data in its memory which is
why, analysis tools like Omicia [6] and CAPER 3.0 [7] turn
to cloud computing.

Here, we explore the possibility of representing the VCF
files as a graph model, thus making it easy to move the data
in memory and, thus, eliminating the need to load and read
VCF files every time analysis is to be done. It will also make
possible to represent every possible path within a genome in
memory, making analysis faster, less expensive, and more
accurate.

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.116

784

II. TYPES OF GRAPHS
Different types of graph representations of the genome

can be found in literature. Listed below are some of these
genome graphs and the data they represent.

A. Sequence Graphs
A Sequence Graph allows representation of different

orientations of homology of a genome [26]. It lets a multiple
sequence alignment capture structural variations which may
go undetected in a matrix representation. Currently, the main
application of sequence graphs is in multiple sequence
alignment where each genome is represented as acyclic
breakpoint graph [8].

B. Population Graphs
A Population graph captures variations between many

individuals. Multiple sequences are represented as a graph
[27] which is aligned to new reads containing variations.
Since coordinates have to be extracted from a reference
genome to get an alignment, the reference coordinates are
carried to the graph. This type of graph may miss structural
variations such as novel insertions in a reference genome.

C. Assembly Graphs
A set of unaligned sequences can be represented as an

assembly graph. [28]. Assembly graphs are popularly used to
assemble fragments of a single genome to get the original
sequence in sequence technology. de Bruijn graphs have also
been used for sequence assembly.

D. Variation Graphs
A Variation Graph (VG) is able to represent many

genomes in the same context by aligning a sequence graph of
a genome to the variations. The principle of Variation
Graphs is same as Sequence Graphs, as they also look to link
successive sequences through directed edges while
representing the sequence as nodes.

E. Compressed de Bruijn Graphs
The relationship between genomes is graphically

represented using maximal exact matches (MEMs) using
compressed de Bruijn Graphs [9]. It helps reveal highly
conserved or segregated sequences across a population
which play an important role in determining phenotypical
roles.

III. REPRESENTING THE VARIANT CALLING FORMAT AS A
DIRECTED ACYCLIC GRAPH (DAG)

Cloud computing is being used to solve large-scale

problems in science [16]. With exabytes of data being
generated by genomics, researchers are turning towards
cloud computing to answer important biological questions.
Applications which are run on clouds can be modeled by
Directed Acyclic Graphs (DAGs) representing workflows
[19] of tasks to be run on the cloud [16]. A DAG uses its
vertices to represent the number of jobs that need to be
processed in order to complete a task, while its edges are
used to define the precedence constraints. This model of

workflow works well for High Performance Computing [17].
There are a number of studies available [9], [10], [11] which
show that high performance can be achieved when executing
DAG-based workflows on parallel clusters [12], [19].

The challenge here is to represent the VCF files as a
graph model which can be converted to DAG so that high
performance may be achieved for genome analysis using
cloud computing. De Bruijn graphs have been used in
genome assembly as well as in population studies to
represent overlapping information. The de Bruijn graph is a
directed graph which is able to capture variations as disjoint
cycles in the graph. Assembly graphs can be represented as
variation graphs, by converting a de Bruijn graph to a
variation graph. Since, one way or another, it is possible to
represent the different types of genome graphs as variation
graphs, the question arises whether it is possible to represent
a VCF as a variation graph, and then convert the variation
graph to a directed acyclic graph?

Given the information present in a VCF, it cannot be
directly converted to variation graph. However, it is possible
to map a VCF file to a reference genome, which, together
will make a variation graph. The reference genome is
available as a FAST-All (FASTA) sequence format (which is
a text file representing the nucleotide or protein sequence).
The VCF file does not contain sequences which are same as
the reference genome, but only those sequences which are
different along with the position information of this
occurrence. This means that the variations must be aligned to
the genome.

The reference genome is first converted to a sequence
graph. To convert a sequence graph to a variation graph, the
variations need to be incorporated. To do this, the sequence
graph is cut where a variation occurs (this information is
picked from the VCF file) generating an alternative graph
with the variant sequence known as the variation graph. To
know where to cut the sequence graph, the VCF is aligned to
the sequence graph through partial order alignment [14].
Figure 1 below shows a partial order alignment of two
sequences.

Figure 1. Sequence Alignment in the Partial Order Alignment (POA)
representation (a) Row-Column Alignment representation of a pairwise

protein sequence. (b) Partial Order alignment of a pairwise protein
sequence alignment [14].

The basic data structure of a variation graph will contain
nodes, edges and paths (Figure 2). Each variation will follow
a different path within the graph. Once the variation graph is
constructed, each variation path can be treated as a sub-
graph. Since the path will traverse each node once, the
subgraph can be now treated as a Directed Acyclic Graph or
DAG. The DAGs consisting of nodes, edges and one path

785

can now be moved in memory. These subgraphs can be
reassembled when required because the path is now known.

Figure 2. The data structure of a Variation Graph showing nodes, edges

and paths.

The subgraphs are basically representing the variations
that occur in different genomes with respect to the reference
genome. Figure 3 shows the different paths a variation graph
can take (which are also the subsequent subgraphs (or
DAGs) of the variation graph).

Figure 3. (a) Variation Graph of two sequences [14]. (b) Variation graph

broken down to subgraphs. Each graph contains nodes, edges and paths.
The subgraphs are constructed as DAGs to be run in memory within a

cloud environment.

Using the VG tool by VGteam [15], the reference
sequence hs37d.fa and VCF file for phase 3 of the 1000
Genomes Project [5] generates VG by cutting the reference
genome at the variation and adding the alternate sequence to
it. It indexes the sequence as a key-value store. For this step,
64GB of RAM or more are required. It then constructs the
VG by aligning one chromosome at a time and takes half an
hour when using 24 cores. It is at this stage that the VG is
producing many partially ordered subgraphs. These can be
interpreted as DAGs. Intoducing a workflow at this stage

will allow the DAGs to move in memory [13]. The
workflow will be able to coordinate the DAGs and
reconstruct the variation graph, if required.

The DAGs can be processed in memory to exploit the
high performance of cloud computing. DAGs have been
used in the past to harness the power of multicore and
hybrid platforms [21], [22], [23], [24]. DAGs allow
processing to be broken down to parallel tasks which can
then be assigned to different kernels. Communication
between tasks is implicit, allowing the use of data
dependecies of DAG. This means that global
synchronization of tasks can be avoided, and in turn, this
increases scalability [20].

IV. CONCLUSION

The VCF file is the standard starting point of genome
analysis. Since it represents a huge amount of data, and
more than one VCF file is required during the analysis, it
makes sense to shift the analysis process to a cloud. This
enables the genome analysis to make use of high
performance computing to generate analysis efficiently and
in almost real time. But in order to further facilitate this,
taking a step back and representing the VCF files as DAGs
will enhance the analysis by shifting the data on to a cloud
from almost the beginning of the process.

REFERENCES
[1] International Human Genome Sequencing Consortium, “Finishing the

euchromatic sequence of the human genome,” Nature, vol. 431, pp.
931-945, 2004.

[2] “1000 Genomes Project,” [Online]. Available:
http://www.internationalgenome.org/.

[3] Genomics England, “The 100000 Genomes Project,” [Online].
Available: https://www.genomicsengland.co.uk/the-100000-genomes-
project/. [Accessed 8 1 2017].

[4] Illumina, “Illumina,” [Online]. Available:
http://www.illumina.com/technology/next-generation-
sequencing.html. [Accessed 8 1 2017].

[5] “IGSR: The International Genome Sample Resource,” [Online].
Available: http://samtools.github.io/hts-specs/VCFv4.2.pdf.
[Accessed 6 1 2017].

[6] E. M. Coonrod, R. L. Margraf, A. Russel, K. V. Voelkerding and M.
G. Reese, “Clinical analysis of genome next-generation sequencing
data using the Omicia platform,” Expert Rev Mol Diagn., 2013.

[7] S. Yang, X. Zhang, L. Diao, F. Guo, D. Wang, Z. Liu, H. Li, J.
Zheng, P. Jingshan , E. C. Nice, D. Li and F. He, “CAPER 3.0: A
Scalable Cloud-Based System for Data-Intensive Analysis of
Chromosome-Centric Human Proteome Project Data Sets,” J.
Proteome Res, vol. 14, no. 9, pp. 3720-3728, 2015.

[8] M. A. Alekseyev and P. A. Pevzner, “Breakpoint graphs and ancestral
genome reconstructions,” Genome Res. , vol. 19, no. 5, p. 943–957,
2009.

[9] S. Marcus, H. Lee and M. Schatz, “SplitMEM: Graphical pan-
genome analysis with suffix skips,” Bioinformatics, vol. 30, no. 24,
pp. 3476-3483, 2014.

[10] G. Cordascoa, R. D. Chiarab and A. L. Rosenberg, “On scheduling
DAGs for volatile computing platforms: Area-maximizing
schedules,” Journal of Parallel and Distributed Computing, vol. 72,
no. 10, pp. 1347-1360, 2012.

786

[11] G. Malewicz, A. L. Rosenberg and M. Yurkewych, “Toward a theory
for scheduling dags in Internet-based computing,” IEEE Transactions
on Computers, vol. 55, no. 6, pp. 757 - 768, 2006.

[12] A. L. Rosenberg, “On scheduling mesh-structured computations for
Internet-based computing,” IEEE Transactions on Computers, vol.
53, no. 9, pp. 1176 - 1186, 2004.

[13] M. Taufer and A. L. Rosenberg, “Scheduling DAG-based workflows
on single cloud instances: High-performance and cost effectiveness
with a static scheduler,” The International Journal of High
Performance Computing Applications, vol. 31, no. 1, pp. 19-31, 2017.

[14] C. Lee, C. Grasso and M. F. Sharlow, “Multiple sequence alignment
using partial order graphs,” Bioinformatics, vol. 18, no. 3, pp. 452-
464, 2002.

[15] E. Garrison, “VGteam,” [Online]. Available:
https://github.com/vgteam/vg. [Accessed 8 1 2017].

[16] D. Kliazovich, J. E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan and
A. Y. Zomaya, “CA-DAG: Communication-Aware Directed Acyclic
Graphs for Modeling Cloud Computing Applications,” in 2013 IEEE
Sixth International Conference on Cloud Computing, 2013.

[17] M. F. Wheeler, G. Pencheva, R. Tavakoli, Z.-Y. Shae, H. Jamjoom, J.
Sexton, V. Sachdeva, K. E. Jordan, H. Kim, M. Parashar and M.
AbdelBaky, “Enabling High-Performance Computing as a Service,”
Computer, vol. 45, pp. 72-80, 2012.

[18] The Computational Pan-Genomics Consortium, “Computational pan-
genomics: status, promises and challenges,” Briefings in
Bioinformatics, pp. 1-18, 2016.

[19] E. Deelman, D. Gannon, M. Shields and I. Taylor, “Workflows and e-
Science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528-540,
2009.

[20] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier and J.
Dongarra, “DAGuE: A generic distributed DAG engine for high
performance computing,” in 2011 IEEE International Parallel &
Distributed Processing Symposium, 2011.

[21] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S.
Tomov, “The impact of multicore on math software,” in Applied
Parallel Computing. State of the Art in Scientific Computing, 8th

InternationalWorkshop, PARA, ser. Lecture Notes in Computer
Science, vol. 4699.Springer, 2006, pp. 1–10.

[22] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ort´�, G.
QuintanaOrt´�, and R. van de Geijn, “Supermatrix: a multithreaded
runtime scheduling system for algorithms-by-blocks,” in PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming. ACM, 2008, pp. 123–132.

[23] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” in Euro-Par 2009 Euro-par’09 Proceedings, ser.
LNCS, Delft Pays-Bas, 2009. [Online]. Available:
http://hal.inria.fr/inria-00384363/en/

[24] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A hybrid multi-core
parallel programming environment,” in Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU 2007),
2007.

[25] P. Danecek, A. Auton, G. Abecasis, C. A.Albers, E. Banks, M. A.
DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T.Sherry, G.
McVean, R. Durbin and 1000 Genomes Project Analysis Group, “The
variant call format and VCFtools,” Bioinformatics, vol 27, no. 15, pp.
2156-2158, 2011.

[26] B. Paten, A. Novak and D. Haussler, “Mapping to a Reference
Genome Structure,” arXiv:1404.5010, 2014.

[27] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, O.
Kohlbacher and D. Weigel, “Simultaneous alignment of short reads
against multiple genomes,” Genome Biology, vol 10, no. 9, pp.
R98.1-12, 2009.

[28] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A.
S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski,
A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev
and P. A. Pevzner, “SPAdes: A New Genome Assembly Algorithm
and Its Applications to Single-Cell Sequencing,” Journal of
Computational Biology, vol 19, no. 5, pp. 455-477, 2012.

787

