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Abstract. With the increasing adoption of next generation sequenc-
ing technology in the medical practice, there is an increasing demand
for faster data processing to gain immediate insights from the patient’s
genome. Due to the extensive amount of genomic information and its big
data nature, data processing takes long time and delays are often expe-
rienced. In this paper, we show how to exploit in-memory platforms for
big genomic data analysis, with focus on the variant analysis workflow.
We will determine where different in-memory techniques are used in the
workflow and explore different memory-based strategies to speed up the
analysis. Our experiments show promising results and encourage further
research in this area, especially with the rapid advancement in memory
and SSD technologies. AQ1
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1 Introduction

Genomics based medicine, referred to as personalized or precision medicine,
became an important component in the healthcare system. This is basically
due to the recent advancements in next generation sequencing (NGS) technol-
ogy, which reduced the cost and time of reading the genome. NGS is currently
used in the clinic to find variants (mutations) related to the disease to improve
the diagnosis, prognosis, or to find optimized treatment plans.

For computational scientists, the wide use of NGS in the clinic has introduced
new challenges. The clinical grade data analysis requires more optimized algo-
rithms to reach reliable results, which accordingly increases the running time.
Moreover, to reach a list of variants with the necessary information for the clinic,
a sophisticated computational workflow of many software tools should be used.
c© Springer International Publishing AG, part of Springer Nature 2018
I. Rojas and F. Ortuño (Eds.): IWBBIO 2018, LNBI 10813, pp. 1–10, 2018.
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The input to this workflow is the list of NGS reads and the output is the list of
significant annotated variants related to the disease.

The output of an NGS machine is a large set of short reads (DNA fragments).
The number of these reads depends on the technology and the model of the NGS
instrument. For Ion technology, one expects around 80 million reads per run for
the Ion Proton model. For Illumina technology, one expects up to 20 billion reads
per run for the recent NovaSeq model. Processing such huge number of reads
entails huge I/O operations, especially when a workflow of multiple independent
programs is used. This causes two problems: First, a considerable fraction of
the analysis time is spent in reading/writing of the data. Second, such intensive
I/O mode of operation reduces the lifetime of the hard disks, which interrupts
the operation and increases the operational costs. To solve these problems, it is
important to avoid reading and writing to the mechanical hard disk and to keep
the processing in the RAM as much as possible.

Fortunately, the recent advancements in hardware and computer architec-
ture coupled with modern operating systems make this possible. Currently, one
can find commercially available servers at an affordable price with a RAM size
reaching tens of terabytes. Parallel to this, we observe a continuous advancement
in the software side as well. One can find many options for RAM resident data
structures and in-memory database systems, where issues like fault-tolerance,
efficient synchronized read-write, and data integrity are addressed.

In this paper, we discuss how the in-memory techniques can be used in the
clinical bioinformatics workflows. We will focus on the variant analysis workflow,
which is the mostly used workflow in the clinic. We will explain the mode of use of
in-memory systems at each step of the workflow, either within the program itself
or to pass the data from one tool to the next. We will also show by experiment
that the use of in memory systems at different steps indeed leads to improved
running times.

This paper is organized as follows: In the following section, we shortly review
different technologies like high size RAM computers and new storage technology.
In the same section, we will briefly review in-memory data systems and some of
their use in bioinformatics. In Sect. 3, we will also discuss the variant analysis
workflow and its basic steps. In Sect. 4, we will show how in-memory techniques
can used in the variant analysis workflow. Finally, Sects. 5 and 6 include exper-
imental results and conclusions.

2 Background

2.1 Advanced Hardware Architecture

It is already well known that accessing data in memory is much faster than doing
so on hard disks. A memory access by one CPU can take up to 200 ns, while one
disk access can take up to 10 million nanoseconds (10 ms). Although different
protocols to speed up the transfer of hard disk data have been developed (like
SAS with 12 Gbps and SATA with 6 Gbps), reading or writing to disks is still
many orders of magnitude slower than memory access.
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Modern commercial servers can be equipped with huge memory; for exam-
ple Dell PowerEdge R940 can have up to 6 TB RAM. Furthermore, distributed
shared memory architecture combine memories from different physical machines
into one logical address space. The machines in this case are linked with high
speed low latency interconnection. The operating system can still see this sys-
tem as a single computing server with collective number of processors and RAM.
This architecture can lead to a server with much higher RAM size in the range
of tens of terabytes. Interestingly, these architectures also provide battery pow-
ered non-volatile RAM (NVDIMM), but with limited size, which could help keep
important information in case of power failure.

To narrow the gap between RAM and hard disk, solid state drives (SSD) (and
the new 3D XPoint of Intel) have recently become available with faster interface
based on the NVMe (Non-volatile memory express) protocol. NVMe is based
on PCIe and it assumes the SSDs are mounted to physical slot architecture;
i.e., direct connection to the CPU. While the maximum throughput of SATA
is 6 Gbps and that of SAS is 12 Gbps, the throughput of NVMe based on PCIe
Gen3 can reach 24 Gbps. It is expected by many researchers that the performance
of SSD will converge to that of the RAM. That is, in the near future we will
have huge non-volatile high speed memory.

2.2 In-memory Data Processing

Linux Pipes: Linux systems offer two options for using the RAM instead of
the disk. The first is through the folder /dev/shm (tmpfs), where data in this
folder resides actually in the RAM and not in the disk. The second option is
through the use of pipes where the output of one program is fed to the next
through intermediate buffering in the RAM. Another interesting feature about
the piping is that the two involved processes run actually in parallel, where the
data items are processed whenever they are ready. For example, assume a task B
is piped to task A (i.e., A|B). The data item A(Di) output by A can be processed
by B while A still processes the data item Dj , i < j. This characteristic is of great
advantage when the data set is a list of items that can be processed independent
of one another, like our NGS reads and variants.

In-memory database systems: The emergence of in-memory database sys-
tems dates back to 1980s [1–4]. Recent in-memory systems can come in different
flavors: There are relational databases, column-oriented, key-value, document,
and graph-oriented. There are also systems that can offer many of these mod-
els, like Apache Ignite, Couchbase, Arange DB, SAP-HANA among others. This
is in addition to systems supporting memory resident data structures, like the
Redis system. For a survey on these systems, we refer the reader to [5,6]. For
genome analysis, Schapranow et al. [7] demonstrated how in-memory systems
can be used to speed up the alignment of NGS reads.
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4 Z. A. Shah et al.

3 The Variant Analysis Workflows

The variant analysis workflow is the mostly used workflow in the clinical practice.
The workflow is used to identify the variants in the patient’s genome and to
annotate them with as much information as possible to enable interpretation
and clinical decisions. In Fig. 1, we show the basic steps of the workflow. The
input to the workflow is a set of NGS reads coming from the sequencing machine.
The first step is to check the quality of the reads and to exclude those with
low quality. The second step includes the alignment (mapping) of the reads
to a reference genome. This alignment arranges the reads with respect to the
reference genome to assemble the target genome, a step sometimes referred to
as reference-based assembly. The program BWA [8] is the most commonly used
tool for this task. Once the reads are mapped, variant calling is performed to
spot the variants and to distinguish them from sequencing errors using different

Fig. 1. The variant analysis workflow. The upper part is schematic diagram. The lower
part as it is designed in the canvas of Tavaxy.
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statistical models, taking technology specific parameters into consideration. The
most commonly used tool for variant calling is the GATK pipeline [9]. In fact,
the variant calling process is a sub-workflow that involves many steps, as shown
in the figure. The final step includes the annotation of the variants using different
information and knowledge databases.

One way to implement the variant analysis workflow is to write a (shell)
script to run one phase after another. Another means is to use workflow man-
agement systems, where the workflow is visualized and the non-IT experts can
modify the analysis parameters without any scripting or programming skills.
Example workflow management systems with a graphical user interface include
Galaxy [10], Taverna [11], and Tavaxy [12,13], among others. In the workflow
systems, the programs run according to certain dependency plan and the results
of one program is fed to the next one. These workflow systems have also an
advantage of running on a high performance computing infrastructure, where
many independent tasks can run in parallel. In the lower part of Fig. 1, we show
the implementation of the variant analysis workflow in Tavaxy. In Tavaxy, each
major step is represented by a node (which is actually a sub-workflow).

A drawback of these systems (including the current version of Tavaxy) is that
the output of one step in the workflow is passed as input to the next step via
intermediate files written to certain folders. Another drawback is that one task
in the workflow cannot start before the completion of all the previous tasks it
depends on. That is, these workflow systems do not directly support the use of
Linux piping and the use of the main memory. In the following section, we will
discuss how to overcome these limitations within these workflow systems using
linux piping and in-memory systems.

4 In-memory Systems in Action

4.1 Linux Piping

The first steps in the variant analysis workflow involving the quality check and
alignment can readily use Linux piping. The output of the program fastx for
quality check can be piped to the alignment program BWA. With piping, the
quality check and the alignment step can run in parallel, where any good quality
read reported by fastx is directly processed by BWA. (Note that there might be
some delay until BWA loads the index in the RAM). For distributed computation
on a computer cluster, the set of NGS reads can be decomposed into subsets that
can be processed on different compute nodes, and within each node the quality
check and alignment can be still piped.

After the alignment, samtools can be used to format the output and decom-
pose the results if required into subsets to be processed in parallel. Fortunately,
samtools supports Linux piping.

Piping from the alignment to GATK cannot be achieved on the read level,
because GATK computes some background statistics on the whole read set. One
idea to overcome this limitation is to decompose the set of reads into different
subsets. Each sub-set includes the reads covering large segment of the genomes
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(the reads are sorted by samtools). In [14], a segment size of about 50 Mbp was
suggested. Each of these subsets can be processed in parallel and fed one after
another whenever ready. In other words, the piping will work on the subset level
rather than the reads level.

The output of GATK is a set of variants. These variants can then be piped to
the subsequent annotation step. Piping and online processing of the annotation
step is addressed in more detail later in the paper.

To sum-up, piping can be used on the read level from the beginning of the
workflow until the alignment. From the alignment to variant calling using GATK,
piping is done on the level of blocks of reads. From GATK to variant annotation,
piping can be used again on the read level.

Piping in workflow management systems: The workflow management sys-
tems based on a data flow model (like Galaxy and Tavaxy) do not support such
mode of operation. Usually, for the two tasks A → B, where B depends on A,
the data flow model assumes that task B cannot start before the completion of
task A and the whole output of A become available. Usually intermediate files
are used to store the output of A which will be in turn the input of B. In the
piping or streaming model, we can allow that B starts processing once some
result data from A becomes available. That is A and B can run in parallel.

Instead of changing the workflow engine itself, one can overcome this problem
by defining a new workflow node representing a sub-workflow where tasks A and
B run using Linux pipes. That is the command to be executed in association
with this node is the command including piping in the form run(A)|run(B).
Combining this with parallel processing of A → B on subsets/blocks of the
reads will lead to considerable speedup.

4.2 In Memory Systems for the Variant Annotation

The Annovar system [15] is used to annotate the variants with all possible infor-
mation. The pieces of annotation information include the respective gene and
the coding region, the frequencies in population databases, the structural effect
of the mutation, and the relation to the disease. The Annovar system compiles
public databases including this information and uses them for the annotation
process. For hg19, Annovar has 32 text files including these databases of total
size ≈350 GB. To complete the annotation, each variant should be searched for
in these files to extract the respective record, if exists. Optimizing Annovar can
be achieved in two ways:

– Decompose the list of variants into different sub-lists and process each list
independently. The Annovar system uses Perl threads to achieve this. This
can indeed speedup the annotation, because the queries can run quickly in
parallel on the loaded databases.

– Query each variant against the different databases in parallel. This solution is
not implemented in Annovar yet as it has the following challenge: To query the
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databases in parallel, all the 350 GB files should be cached in the RAM and
that caching time could outweigh the disk-based search. For large number of
files to annotate, this strategy might pay off. If there is enough RAM, another
possible solution is to keep these databases in the RAM and use them once
an annotation is needed. There are two means to do this:

1. Use of tmpfs: One uses the /dev/shm folder to host the annotation databases.
2. Use of in-memory database: In this case, the Annovar databases should

be hosted in an in-memory database. This option necessitates the re-
implementation of the Annovar system, because some of the computation
required to report the variants according to the HGVS nomenclature (www.
hgvs.org). (mostly for handling ambiguities associated with indels.) In the
following, we introduced an in-memory based strategy without changing the
code of Annovar, and this strategy works for large scale genome projects
requiring the annotation of large number of variant files.

Our optimization strategy is based on the observation that there is a large
number of variants that are common in the population. Our strategy is that
once a variant is annotated, we keep a copy of it in an in-memory database.
We use the Redis in-memory system to handle the annotated variants. Redis
uses key-value pairs to define and retrieve the objects. The key of the variant
is its physical location in the genome and the base change, defined by the tuple
(chromosome, start position, end position, reference base(s), alternative base(s)).
The value is the annotation information related to the variant. When annotating
a variant, we first check whether the variant is in the Redis database or not. If
it exists, we report it. Otherwise, it is added to a list L. After collecting all new
variants in L, we run Annovar on them. Once the new variants are annotated,
they are reported and added to the Redis database. The size of the database in
the main memory can be kept constant by deleting less frequent variants on a
regular basis. Frequency of the variant can be kept in a separate Redis table,
where the key is defined as above and the value is the number of times the variant
was observed in that annotation process. As we will demonstrate by experiment,
this strategy has proven very effective in reducing the annotation time.

4.3 Fault tolerance

One of the main concerns about in-memory processing is the loss of data, due to
power loss, hardware malfunctioning or software errors. Fault tolerance mecha-
nisms are critical to assure the transactions’ consistency during the occurrence
of failures. For introducing an additional layer of fault tolerance, a copy of result
data in each step in the workflow can be written in parallel to another stable
storage, preferrably of type SSD. Logging information about each step enables
resumption of workflow in case of any failure without re-computation of already
finished tasks. “Write-ahead-logging” techniques can be traditionally used to
keep copy of the variants in Redis in permanent storage and/or in battery-
powered non-volatile RAM.
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5 Experimental Results

5.1 Experiment 1: Linux Piping

The performance gain for using the Linux pipes has been addressed before in
[16]. We could also achieve similar results on similar test data like the standard
human NGS exome dataset (NA12878) [9], whose size is about 9 Gbp. Using
the pipes, a speed up of about 30% could be achieved for the steps of quality
check followed by read mapping; and for the formatting the final BAM file after
alignment to be ready for removing duplicates and variant calling. Combining
this to the usual parallelizaion for processing the data achieves more speedup as
shown in Table 1.

Table 1. Running times in minutes using different number of cores. For these compu-
tations, we used a machine of 64 Cores, 512 GB RAM, and 8 TB disk.

Mode Nodes

16 32 64

Without piping 452 min 237 min 170 min

With piping 385 min 194 min 139 min

5.2 Experiment 2: In-memory Databases

In this experiment, we tested our strategy for speeding up Annovar. Table 2
shows the results of our approach using different scenarios. We measured the exe-
cution of Annovar on hard disk and measured the performance when the whole
databases are hosted in the RAM (tmpfs). We also measured our optimization
strategy where we stored 200 previously annotated variant files (with about 8
million variants) in-memory using the Redis and MySQL (memory-based). For
about 1000 exomes and 3000 gene panel files that have been annotated, we
observed an average hit rate of 93%. That is, only around 10% new variants has
to go for Annovar for annotation for each file.

We also measured the time assuming all variants are in the database; i.e.,
we have hit rate of 100%. This is the best case, and it unlikely happens in
practice even with large number of variants are in the database due to individual
variations.

From the results in the table, we can confirm the advantage of hosting the
Annovar databases in the RAM compared to storing it in the hard drive. We
can confirm that our strategy based on using memory-based database (Redis or
MySQL) significantly speeds up the annotation process. Overall, the annotation
time could be reduced by 50% compared to the use of tmpfs only and by 80%
compared to the hard-disk based version. We also observe that Redis performs
slightly better than the memory-based version of MySQL.

It is important to note that we did not observe much time reduction when
processing small gene panel files. This can be attributed to the overhead of
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Table 2. Running times in seconds using different variant files from Illumina and Ion
Technology (Exome and Gene Panels). The column titled “HDD” includes time when
using hard drives, the column titled “tmpfs” is when the Annovar system including
its databases is hosted in the RAM. The columns titled “Redis100” and MySQL100
includes the time when we store previously annotated variants in Redis and MySQL
assuming hit rate of 100%, respectively. The column titled “Redis90” includes the time
when we have an average hit rate of ≈90%. For these computations, we used a machine
of 64 Cores, 512 GB RAM, and 8 TB disk.

Input #Variants (FileSize) HDD tmpfs Redis100% MySQL100% Redis (90%)

VF1 Illumina Exome 84287 (18M) 1351 474 26 34 241

VF2 Illumina Exome 88387 (19M) 1275 480 28 34 251

VF3 Illumina Exome 88410 (19M) 1351 490 28 31 259

VF4 Illumina Exome 85307 (19M) 1275 481 27 33 246

VF5 Ion Exome 54249 (27M) 870 305 17 23 185

VF6 Ion Exome 55265 (27M) 844 307 18 21 188

VF7 Ion GP 1344 (622K) 619 213 2 3 150

VF8 Ion GP 1498 (642K) 623 215 2 3 150

reading the annotation databases. To overcome this problem for gene panels, we
recommend to merge multiple gene panel files and processing them as one big
variant file to eliminate that overhead.

6 Conclusions

In this paper, we explored how in-memory systems (both hardware and software)
can be exploited for clinical genomics data, with focus on the variant analysis
workflow. We have shown the points in the workflow where the in-memory tech-
niques in the form of Linux piping and memory-resident databases can be used.

We demonstrated that piping techniques leads to speeding up the variant
analysis workflow. We also explained how the piping techniques can be wrapped
in the workflow management systems, even those based on the data flow com-
putational model.

For the annotation step, we introduced a new strategy based on storing
previously annotated variants in in-memory databases. Interestingly, with a rea-
sonable number of stored variants, we can reduce the running time by about
80% compared to the disk based systems.

The use of SSDs based on the NVMe protocol is very effective and it should
be exploited on a large scale in genome analysis. In fact, SSD can be soon
extend the RAM, and this implies that the sequence analysis tools should be
re-engineered to make use of this feature.

Acknowledgments. This publication was supported by the Saudi Human Genome
Project, King Abdulaziz City for Science and Technology (KACST).
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