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Abstract 

 Neuroimaging research is increasingly shifting 
towards distributed computing architectures for the 
processing of ever growing neuroimaging datasets. At 
present compute and data intensive neuroimaging 
workflows often use cluster-based resources to analyse 
datasets. For increased scalability however, 
distributed grid-based analysis platforms may be 
required. Such an analysis infrastructure necessitates 
robust methods of grid-aware planning and 
optimisation in order to efficiently execute often highly 
complex workflows. This paper presents the 
approaches used in neuGRID to plan the workflow 
gridification and enactment for neuroimaging 
research. Experiments show that grid-aware workflow 
planning techniques can achieve significant 
performance gains. Turn-around time of a typical 
neuroimaging workflow reduces by 30% compared to 
the same workflow enacted without grid-aware 
planning. Data efficiency also increases by more than 
25%.  The use of workflow planning techniques in the 
neuGRID infrastructure may enable it to process 
larger neuroimaging datasets and therefore allow 
researchers to carry out more statistically significant 
analysis. 
 
1. Introduction 
 
 Large-scale computing infrastructures such as 
clouds and grids enable the execution of applications 
that are both data and compute intensive. Such 
computing paradigms have played a part in 
accelerating advances in e-Science research. One 
domain that has started to leverage such infrastructures 
is that of neuroimaging analysis. Neuroimaging 
techniques extract features or information from brain 
scans.  Recent progress in neuroimaging has led to a 
rapid growth of digital data and opportunities for 
sophisticated image analysis. This is particularly true 

in the case of images such as magnetic resonance (MR) 
imaging, positron emission tomography (PET), 
ultrasound imaging and others. Currently, large 
datasets of MR images are being collected worldwide 
that will eventually lend themselves to full scientific 
study. Such data repositories include the Alzheimer’s 
Disease Neuroimaging Initiative [1]  and the NIH MRI 
Study of Normal Brain Development [2]. These 
repositories and various specialised neuroimaging 
research centres around the world hold thousands of 
images and cumulatively hold dataset sizes of hundreds 
of terabytes.  
 The wealth of data acquired from the brain with 
state-of-the-art scanners has necessitated the 
development of a number of semi-automatic 
processing algorithmic toolkits. These  have  enabled 
the analysis of specific image features [3] [4] and  
provided collections of algorithms that chain together 
to form a  neuroimaging workflow. Such workflows 
can analyse 2D or 3D maps of the brain according to 
features of interest. Often a number of hours are 
required to process each brain scan using traditional 
personal computers. Some toolkits [5] [6]  can enact 
neuroimaging pipelines using  more powerful cluster-
based resources. This may well improve the overall 
processing time but a significant processing period is 
still often necessary. 
 The neuGRID Project[7]  is an initiative which  
builds on existing research in neuroimaging based Grid 
infrastructures. The infrastructure will initially 
incorporate a base dataset of around 5000 brain scans. 
Processing this number of images using complex data 
and compute intensive neuroimaging workflows places 
a strong emphasis on efficient workflow planning. As 
an example, the CIVET cortical thickness analysis 
pipeline will be considered in this paper. CIVET may 
consist of up to 120 tasks depending on the 
configuration that is used. The turn-around time for 
this using a modern dual-core processor is around 8 
hours for a single brain scan. The workflow also 
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produces ten times more data than it consumes. To 
enable neuroimaging researchers to quickly extract 
knowledge from thousands of brain scans and ensure 
short workflow turn-around times, an efficient use of 
computational and data resources is necessary and this 
cannot be achieved without smart workflow planning 
techniques 
 The focus of workflow planning in neuGRID is to 
increase the compute and data efficiency of a 
workflow.  There are several workflow planning 
techniques. Some approaches focus on reducing the 
granularity of a workflow by clustering or grouping 
tasks. Other approaches concentrate on enhancing the 
data efficiency of a workflow by reducing or 
eliminating data transfers in a workflow. Some 
approaches are  integrated with components of a given 
Grid middleware to make them application-aware [8] 
[9] [10]. The neuGRID project has adopted several 
workflow planning approaches that are intended to 
improve scalability and speed up the neuroimaging 
analysis. The component in the neuGRID architecture 
that is responsible for the authoring, planning and 
enactment of task based neuroimaging workflows is 
the Pipeline Service[8] . 
 This paper proceeds as follows. Section 2 briefly 
details related work in this area. Section 3 discusses the 
neuGRID Pipeline Service architecture. Section 4 
considers the pipeline planning, and optimisation 
techniques that are employed to scale up the 
neuroimaging analysis process in the Pipeline Service. 
Section 5 presents results of the planned and optimised 
CIVET workflow compared with the existing CIVET 
implementation. Section 6 presents the conclusions and 
briefly highlights the future directions for this work. 
 
2. Related Works  

In terms of workflow planning and optimisation for 
neuroimaging analysis related work includes [11-13]. 
NeuroLOG uses MOTEUR [10]  to plan service-based 
neuroimaging workflows. MOTEUR supports various 
service workflow planning techniques such as 
asynchronous service execution, data parallelism and 
workflow parallelism based techniques.   Service-based 
workflows introduce some limitations to planning. For 
instance, services are stationary and they cannot be 
staged to any other Grid site. Hence input data has to 
be transferred towards the services. In the 
bioinformatics myGrid[14] project, this problem is 
solved by streaming data rather than transferring the 
entire input data set. In the case of task-based 
workflows none of this is required, as tasks can be 
migrated to the source of the data. Hence tasks based 
workflows enable the use of a full spectrum of 

planning techniques, which often lead to a more 
efficient optimisation.  

Another related effort is the Computational 
Neuroscience Applications Research Infrastructure 
(CNARI) [12]. In the CNARI workflows are defined in 
the parallel scripting language SwiftScript [15]. Swift 
enables the declaration of abstract workflows and 
supports abstract to concrete workflow 
transformations. Richer planning is required for more 
complex neuroimaging workflows. Another related 
work is from S. Kolbe [13]. The paper details a Grid 
platform for neuroimaging analysis. In this 
infrastructure the neuroimaging workflows are 
formulated as a parameter sweep application. The 
focus in this infrastructure is highly parallel execution 
of relatively simple pre-processing workflows on a 
large number of images. In neuGRID optimisation for 
large custom-built workflows is required. 

 
3. neuGRID Pipeline Service 

The neuGRID Pipeline Service enables the 
authoring, specification, planning and enactment of 
neuroimaging pipelines. These workflows consist of a 
large number of atomic tasks performing several types 
of operations. These include segmentation, extraction 
of specific image features, linear or nonlinear 
normalisation, basic arithmetic on brain scans and 
others. The neuGRID Pipeline Service supports task-
based neuroimaging workflow planning and 
enactment. Service-based workflows will be supported 
in the neuGRID infrastructure in future. This paper 
deals primarily with the task-based workflow planning, 
distribution and optimisation issues. Figure 1 shows 
the Pipeline Service architecture. 

 
Figure 1: Pipeline Service Architecture 
 
 The user-facing component of the Pipeline Service  

supports numerous workflow-authoring environments, 
such as the LONI Pipeline [5]  and Kepler [16]. These 
workflow-authoring environments use the Pipeline 
Service Translation component to interact with the 
Pipeline Service and the neuGRID infrastructure. Users 
may author workflows in one of these environments. 
The Pipeline Service then plans the workflow for 
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efficient enactment and submits it to the Glueing 
Service for execution. 
 This service shields the Pipeline Service and other 
neuGRID generic services from direct lock-in to a 
specific Grid middleware. The Glueing Service is a 
web service binding of the OGF SAGA 
specification[17]. The OGF SAGA specification 
provides a unified API for accessing heterogeneous 
Grid middleware.  It promotes an adaptor-
based architecture for accessing different Grids 
platforms in an interoperable way. The Glueing service 
is detailed in [7].  

4. Workflow Planning in the 
neuGrid Pipeline Service 

  In order to execute user-authored pipelines 
efficiently in a Grid environment the workflow needs 
to be transformed into a grid executable state. This 
transformation is often termed as “planning”, “grid-
aware distribution” or “grid-enabling”. The workflow 
formalism used in the Pipeline Service is the directed 
acyclic graph. Other workflow formalisms such as 
Petri-nets enable richer workflow specifications such 
as iteration structures however neuroimaging 
workflows rarely require them. This is because the 
main purpose of neuroimaging workflows is to string 
together processing algorithms in order to extract and 
compute certain features from brain scans.  
 The workflow planning approach that is 
appropriate for a given case depends on the nature of 
application specific workflows. Some applications 
have large and complex workflows and the input data 
set sizes are relatively small such as a single brain 
scan. Other applications in e-Science however have 
relatively small workflows but the input data set sizes 
are in the giga-byte range. The planning techniques 
that are applicable for both of these types of 
applications are different. Therefore to determine the 
applicable workflow planning techniques relevant to 
neuroimaging anlaysis, a study of a workflow that will 
be extensively used in neuGRID was carried out.  
 In the neuGRID infrastructure neuroimaging 
researchers can use CIVET to calculate cortical 
thickness at each vertex on both registered and native 
spaces on hemispheric surfaces that have been non-
linearly registered. Moreover, CIVET is used to 
retrieve a number of related measurements from brain 
scans.  It is a compute intensive workflow that 
generates up to 1000 percent more data than it 
consumes and in a modern dual core CPU it takes 
around 8 hours to process. CIVET uses the PMP 
framework[6] for execution on cluster resources 
managed by the Sun Grid Engine[18]. Figure 2, maps 

the distribution of run-times of the tasks in the CIVET 
pipeline when enacted with a T1 weighted brain scan. 
From the results, apparently CIVET consists of a 
significant number of granular tasks. Granular tasks are 
tasks that have a very short execution time. 

Figure 2: Distribution of the runtime of jobs in 
CIVET 
 

 
Figure 3: Visualization of the run-times of 

coarse grained jobs and cumulative fine 
grained jobs 
 
 These tasks number 44 in total. As numerous 
overheads [19]  are associated with each task 
submission in a Grid environment, these granular tasks 
will severely affect the runtime performance of the 
workflow.  Figure 3 shows the processing times of 
various tasks in the workflow as a percentage of the 
whole workflow turn-around time. The most compute 
intensive tasks are the grey matter extraction from the 
right and left cortex hemispheres, taking respectively 
19% and 21% processing times (coloured in grey) of 
the entire workflow. Surface registration tasks for both 
hemispheres take 12% of the processing each (coloured 
in blue), while white matter extraction in each 
hemisphere takes 11% of the processing time (in 
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white). These tasks are coarse-grained tasks.  Fine 
grained tasks on the other hand, number 44 and 
cumulatively perform 8% of the computations 
(highlighted in yellow).  
 In order to avoid unnecessary latencies for granular 
tasks, the granularity of the workflow needs to be 
reduced. Another requirement from the neuroimaging 
researchers is that neuGRID should support data 
efficient enactment of workflows. Workflow should be 
enacted which leverage existing data available in the 
Grid environment efficiently. 
 Given the requirements of the application the 
following two types of workflow planning approaches 
were identified as suitable.  

4.1 Task Reduction Based Approaches 
The primary approach that is used to reduce the 

granularity of the workflow is task clustering or 
grouping approaches. Various workflow 
planner/enactment engines [8]  [20] provide task 
clustering methods.  Two primary types of task 
clustering have been implemented in state-of-the-art 
planners. Both approaches are evaluated in section 6. 

1. Automated Horizontal Clustering: Horizontal 
clustering is efficient when multiple tasks are 
associated at each level of processing. The planner 
determines the levels in a workflow by performing a 
breadth-first based graph traversal of the workflow 
starting from the root nodes. For each level, the jobs 
are grouped and each group is submitted to a single site 
for execution. Planners provide capabilities to 
customise the behaviour of automated horizontal 
clustering. For example, in Pegasus [8] users can 
define two factors to control the behaviour of the 
automated clustering. The user can define a collapse 
factor, which specifies the maximum number of jobs 
that can be part of a single cluster. The other parameter 
is the bundle factor, which denotes the number of 
clusters to be generated per level. Both of these 
parameters can be used to configure the granularity of 
the automated clustering. 

 2. User Defined Clustering: In this type of 
clustering, the user manually defines the task cluster in 
the workflow. All jobs that are manually grouped into 
a cluster by the user are dispatched as a single job to 
the Grid. This clustering method is useful when users 
are expert in their domain and are aware of the 
behaviour of specific workflow tasks and can 
formulate appropriate clusters manually.  

 
4.2 Data Efficiency based techniques 
 Data efficiency based techniques try to minimise 

data transfers. This is achieved by either eliminating 
tasks which produce data that already exist in the Grid 
environment or schedule computations in a manner that 

is more efficient in terms of data. A widely deployed 
approach, and one which is used in neuGRID, is to 
determine if the data outputs to be generated in a 
workflow already exist in the Grid environment. A 
planner determines the availability of the output based 
on the logical file names supplied by the user when 
defining a workflow. The planner queries the Grid 
replica catalogue to find instances of data outputs that 
will be generated in the workflow. If such instances are 
found, the tasks that lead up to the generation of the 
data are eliminated. Another approach is termed as 
“data diffusion” [9]. During execution of a workflow, a 
planner that is integrated with a Grid scheduler, 
acquires compute and storage resources dynamically 
and stages data sets which may be required by the 
workflow in future. When a relevant task is to be 
scheduled it is sent to a resources which is close to a 
replica of the data, hence reducing data transfer latency 
and wait times for the task.  

 Data efficiency based approaches are often 
beneficial for planning neuroimaging workflows. This 
is because numerous workflows in a neuroimaging 
analysis have related operations. For instance in 
neuGRID, the pre-processing steps required for both 
creating the cortical mask for a T1 weighted brain scan 
and extracting white matter hemispheric masks have 
the same pre-processing steps that span ten tasks. If 
both workflows are executed separately on the same 
image, the latter workflow will only execute three tasks 
as opposed to the thirteen step execution process that 
otherwise may be required for final results. Many of 
these tasks can be eliminated and data generated by the 
execution of a previous workflow could be reused. 
This leads to more efficient use of the available data in 
the Grid infrastructure. 

5. Planning, Optimization and 
Gridification of the CIVET Pipeline 

 CIVET is a typical neuroimaging workflow that is 
being deployed in the neuGRID infrastructure. The 
planning techniques highlighted in section 4 were used 
to plan and optimise the workflow. The aim of the 
experiments is to determine the efficacy of various 
workflow planning techniques. Table 1 highlights the 
infrastructure that was used to carry out the 
experiments. A set of 10 virtual machines run on 
VMware Server 2 was used to create 3 pools of Condor 
clusters and a 10 node SGE cluster. The specification 
of each virtual machine was identical and is stated in 
Table 1 . The planned workflow was executed in a 
Grid of three Condor cluster pools. The workflow was 
planned with Pegasus and enacted through DAGman. 
The standard CIVET workflow was executed in a 10-
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node SGE Cluster. The enactment was performed by 
PMP. Pegasus is a suitable planner for neuGRID, 
because it supports user defined and automated task 
clustering as well as task elimination based on data 
availability. Apart from the compute nodes, a NFS 
server was used for shared storage in case of both the 
SGE cluster and the Condor cluster pools. 
 Figure 5 shows the turn-around time results for the 
example workflow. The workflow was executed using 
automated horizontal clustering. Figures 5, 6 and 7 
respectively show the results of automated clustering, 
user defined label based clustering and the standard 
CIVET. In the automated clustering the workflow was 
executed with collapse and bundle factors of 2, 3 and 
4.  The factor limit of 4 was chosen based on the 
structure of the workflow. The maximum number of 
tasks at any single level in the workflow was eight. 
Based on this the significance of the results would 
diminish with increased factor values, as either very 
few jobs would be submitted per level or a large 
number jobs would be generated. In the subsequent 
sections, an analysis of the results of the automated 
clustering as well as the label based clustering is 
presented. 
 Pegasus  

Hardware setup 

 3 Condor Clusters 

 Each Cluster:  
 1 Master and 
compute Node 
 2 compute Nodes 

SGE  

Hardware 
setup 

 10 Node SGE Pool 
1 SGE Master Node 
9 SGE Exec Nodes 

Each node, a virtual 
machine consisting of: 
 2.4Ghz single core 
 1GB RAM 
 20GB dedicated Hard 
disk (7200RPM, 
SATA II) 
 1Gbps Ethernet 
connectivity 
 

NFS  
 
Shared 
Storage 

500GB, 
on a System of  
 AMD Phenom 9850 1 Core 
 8GB RAM, 
 1GBps connectivity 

Table 1: Experimental infrastructure details 

 
5.1 Automated Workflow Planning 
 From Figure 5, 6 and 7 it is apparent that there are 
significant differences in terms of the behaviour of 
workflows when enacted with a bundle or a collapse 
factor. 
 As we can observe increasing the value of the 
collapse factor from 2 to 3 increases the workflow 
turn-around time by more than 30 minutes or 14.7%. 
Increasing the collapse factor further increases the 
turn-around time by a further 4 minutes. Collapse 
factor based automated clustering created more 
computationally inefficient workflows than the 

standard non-workflow planned CIVET workflow. At 
the same time, increasing values of the collapse factor 
produces increasingly more data efficient workflows. 
As we can see in figure 6, the workflow consumes 402 
MB of data per image when enacted with a collapse 
factor of 2, increasing this value to 3, reduces the 
amount of data read by the workflow by 8.8%. At a 
collapse factor of 4 the amount of data read drops 
further by 2.9%. The scheduling latency decreases as 
well with an increasing collapse factor value, a 
reduction of 12.5% is noted at a collapse factor of 3 
and at a collapse factor of 4 the scheduling latency 
decreases by a further 6.7%. The results show that 
increasing the value of the collapse factor has direct 
correlation with reduced scheduling latency and 
reduced data retrieval at the expense of increased 
workflow turn-around time.  Bundle factor, as 
previously stated, defines the number of clusters per 
level to be created.  As we can observe increasing the 
bundle factor has an opposite effect on the workflow 
enactment to that of the collapse factor. A bundle 
factor of 2 produces a workflow which is efficient in 
terms of computation and has a reduced turn-around 
time at close to 139 minutes.  
 By increasing the values of the bundle factor the 
turn-around time of the workflow increases moderately 
by 3.5%  (at a bundle factor of 3) and then by a further 
4.1%  (at a bundle factor of 4). In terms of data 
efficiency increasing the bundle factor creates less data 
efficient workflows.  A total amount of 384 MB is 
retrieved from the NFS server at a bundle factor of 2, 
while 412MB is retrieved at a bundle factor of 4, an 
increase of 7.2%. The scheduling latency increases 
significantly as the bundle factor grows. An increase of 
33.3% is noted at a bundle factor of 4 compared to the 
scheduling latency at a bundle factor of 2.   
 Larger values of the collapse factor increase the 
size of clusters, and hence reduce the workflow 
granularity. Clustering, groups a number of tasks into a 
single Grid submission, and adversely affects the 
parallelism and potential distribution of a workflow.  
Jobs that are clustered together are executed 
sequentially by Condor. For instance compute 
intensive operations such as surface registration and 
gray matter extraction occur in the same horizontal 
level of the workflow. Due to the value of the collapse 
factor these tasks are grouped together and executed 
sequentially.  
 Both of these tasks are compute intensive and 
hence executing them sequentially increases the turn-
around time of the workflow. However both of these 
sets of compute intensive operations retrieve a number 
of common data sets, such as the cortical mask or 
linear transformation of the original brain scan. 
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 These data sets are only retrieved once form the 
central storage and are read from the cluster pool cache 
for subsequent jobs. Hence increasing cluster sizes 
produces more data efficient workflows. However, due 
to increased sequential execution of tasks within a 
cluster the turn-around time of the workflow is also 
increased.  
 The bundle factor on the other hand apparently 
creates computationally efficient workflows at the 
expense of both data efficiency and scheduling latency. 
A bundle factor of 2 creates at most 2 clusters per 
level, while a bundle factor of 4, defines the clustering 
granularity of 4 per level. Increasing the bundle factor, 
creates more and more clusters per level, increasing the 
parallelism in a workflow and potential for 
distribution.   Compute intensive tasks occurring at the 
same level such as surface registration and gray matter 
extraction are grouped in separate clusters and 
executed in parallel. However, because these clusters 
are executed in parallel, the input data required by both 
clusters is retrieved independently by each cluster, 
increasing the amount of data retrieved during the 
execution of the workflow. As the workflow 
granularity decreases with increasing values of the 
bundle factor, more and more jobs are scheduled to the 
Grid, which affects the cumulative scheduling latency 
of the workflow. 
 It is apparent that in order to deploy automated 

clustering a trade-off between compute efficiency and 
data efficiency must be considered. If data efficiency is 
of more value then a workflow must be executed with 
larger clusters, hence an increased collapse factor 
value. However, when a better workflow turn-around 
time is required, a large number of clusters are more 
suitable. 

6.2 User defined Workflow Clustering 
    Current planners support only automated 
horizontal clustering. In order to explore planning 
techniques which support both horizontal and vertical 
clusters, label based clustering in Pegasus was used to 
set up 11 clusters in the workflow. Most clusters group 
fine-grained tasks together as well as tasks which have 
a high number of data interdependencies. Fine grained 
tasks were grouped with compute intensive tasks in 
order to eliminate scheduling latencies and improve 
parallelism. The label based workflow is compared 
with the standard CIVET workflow.  
 As shown in figure 5, the turn-around time of 
standard CIVET workflow was 204 ±2 minutes of 
execution, while the turn-around time for the manually 
planned workflow was 140 ± 6 minutes of execution.  
In terms of raw turn-around times the CIVET 
workflow that has been planned using user defined 
clustering is more efficient on the same computing 
infrastructure. Figure 8 depicts the number of jobs that 
were being executed over time. The manually planned 
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workflow was able to execute more jobs in a shorter 
time span when compared to the unplanned workflow. 
However the workflow turn-around time is similar to 
the turn-around time of the workflow using automated 
horizontal clustering at a bundle factor of 2.  In the 
planned workflow, an efficient use of the resources has 
enabled the planner to quickly execute a workflow. 
This allows us to process more imaging data in a 
relatively shorter period of time. Such methods 
therefore may play a key role in facilitating the e-
science community during large-scale data analyses. 
 Figure 6 shows the amount of data retrieved from 
the shared NFS server. A shared NFS storage was used 
to store input data sets as well as intermediate data 
generated during the execution of the workflow. The 
standard CIVET Workflow read 404 MB of data 
during the execution life-time. The clustered workflow 
on the other hand read 297 MB of data from the central 
storage, while other required data was read from local 
cacheFS cache in the condor hosts. The most data 
intensive cluster was the cluster which grouped quality 
assurance tasks. The quality assurance tasks consume a 
great amount of data and perform fine-grained 
computations on them. For example, the task 
create_verify_image, the primary verification task in 
the CIVET pipeline, consumes about 50MB data, and 
outputs a single PNG graphic file which concatenates 
all intermediary processed brain scans in the workflow. 
Researchers use the final output to determine the 
correctness of the workflow output. Due to the 
clustering of tasks with high data interdependencies the 
total amount of data read from a shared storage was 
107MB less for a single image. 
 

 
Figure 8: Number of tasks executing over time 

In terms of computation, the turn-around time of 
the clustered workflow was more than 1 hour less than 
the standard PMP based workflow. In the neuGRID 
infrastructure the CIVET pipeline processes hundreds 
of images simultaneously, and this can lead to huge 
savings in terms of data transfers and turn-around 

times.  The infrastructure deployed for these 
experiments was purpose built, and dedicated for the 
use of these experiments. Mean queue waiting time for 
a workflow was 19 seconds, which is not 
representative of queue waiting times in Production 
Grids. Production Grids such as EGEE, according to a 
recent study [21] have a scheduling latency of 121 
seconds, with the median of 119 seconds, while some 
jobs may take up to 45 minutes of scheduling latency. 
Figure 7 shows the normalised results of the 
scheduling latencies compared to all clustering 
approaches. The user defined clustered workflow was 
efficient both in terms of data efficiency and compute 
efficiency. Automated clustering did produce a 
similarly compute efficient workflow, however the 
same workflow was less data efficient.  

Creating a user defined concrete workflow plan 
requires a rigorous effort. Each task in a workflow 
needs to be studied in order to measure the compute 
and data footprint of a task. After such a study users 
author a workflow and label each task as part of an 
appropriate cluster. Various iterations of this process 
are then required. The new cluster instances must be 
studied and possible strands for parallel data 
processing identified and may be split into another 
cluster instance. Some clusters may be merged in order 
to optimise scheduling latencies and enhance data 
reuse. This process is impractical for large workflows 
or for workflows which consist of dynamic tasks which 
change their behaviour in response to user input or data 
sets. The automated workflow planning 
techniques, however, result in workflows that are 
computationally efficient or data efficient but not both.  
Hence a lot of challenges still remain in workflow 
planning. Scalable planning of large workflows, 
planning of workflows for enhanced data efficiency 
and enhanced decision making at the planner level to 
merge user, performance and application requirements 
still remain open research issues [22]. 
 
7. Conclusions and Future Work 

 This paper investigated the use of grid-aware 
planning techniques for neuroimaging analysis in the 
neuGRID project. The neuGRID project is an effort 
that builds on existing research on neuroimaging-based 
Grid infrastructures. It aims at providing an 
infrastructure that is designed to support and enhance 
research, which is necessary for the analysis of neuro-
degenerative diseases. The paper discussed the 
Pipeline Service and its role in enabling parallelization, 
distribution and gridification of neuro-imaging 
pipelines. An analysis of the CIVET workflow, a 
compute intensive neuroimaging pipeline to measure 
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cortical thickness, was presented. It has been 
discovered that significant performance gains can be 
achieved if jobs are clustered together in cases where a 
number of small granularity jobs are destined for the 
same computational resource. The use of workflow 
planning techniques such as data-reuse, data-aware site 
selection, resource and data-aware parallelization, job 
grouping and clustering may led to huge savings in 
terms of turn-around times and data transfers of 
workflows.  

In the future, we aim to explore the use of dynamic 
and intelligent planners for neuroimaging analysis and 
other related domains. As can be determined form the 
results, existing automated workflow planning 
approaches offer a trade-off between compute and data 
efficiency. Achieving both is a multi-dimensional 
search problem as a number of parameters are involved 
that need traversing across a number of possible 
optimisation techniques. This may lead to more 
intelligent workflow planning approaches envisioned 
by researchers in the domain [22]. 
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