
Large-scale Context Provisioning
A Use-case for Homogenous Cloud Federation

Saad Liaquat Kiani
Faculty of Engineering and Technology

University of the West of England
Bristol, UK

saad2.liaquat@uwe.ac.uk

Ashiq Anjum, Nik Bessis, Rich rd Hill
School of Computing and Mathematics

University of Derby
Derby, UK

{a.anjum, n.bessis, r.hill}@derby.ac.uk

Abstract—The ability to seamlessly bridge clouds across
organisational and administrative boundaries will play a
vital role in establishing the utility of cloud computing for
large-scale collaborative processes. Managing human and
environmental contexts across geographical, network and
administrative boundaries is a process that can benefit from
a federation of cloud platforms. In the absence of a mature
standard that defines access, control, management and
coordination mechanisms between clouds in a federation, we
explore these issues through a use-case of managing the
dissemination and consumption of contextual information.
The use-case is driven by the deployment of a broker-based
context provisioning system, for homogenous cloud
deployments that reside in different administrative domains.
The discussion is driven by the aim to highlight key issues
and challenges for enabling cloud federation for large-scale
context provisioning, which forms the main contribution of
this article.

Keywords-component; cloud federation; context
management; federated brokers

I. INTRODUCTION
Context provisioning is the communication and

coordination of contextual information amongst context
consuming, producing and management components in a
context-aware system. Context provisioning has usually
been actioned by context brokers, which enable context-
consuming components in the system to retrieve
contextual information. A number of prototype context-
aware systems have been developed that showcase
context-awareness in several domains, but large-scale
context provisioning and adoption of context-aware
applications and services has proved elusive so far, due to
multi-faceted challenges in this area. Existing context-
aware systems are not ideally placed to meet the domain
challenges, and facilitate their use in the emerging
ubiquitous computing scenarios. Prominent shortcomings
in existing systems include, 1) using a central context
management component e.g. a context broker, for
coordinating context-awareness related functions, 2) a
predominant focus upon designing for static topologies of
the interacting distributed components, 3) a presumption
of a single administrative domain or authority and context
provisioning within a single administrative, geographic or

network domain, 4) a limited support for accommodating
mobility of context providing and consuming components,
and, 5) a lack of standardisation with respect to simple,
flexible and extensible context models, for the exchange of
contextual and control information between heterogeneous
actors.

In this article, we will mainly focus on the third aspect
from the aforementioned shortcomings that is to say, in the
domain of large-scale context provisioning: consideration
of only a single administrative authority and context
provisioning within a single administrative, geographic or
network domain. This limitation exists in part due to the
design constraints in existing context-aware systems e.g.
the use of central server/broker for managing context flow
amongst context consumers and providers. One of the
most significant impacts of this shortcoming is that the
collection, aggregation, dissemination and usage of the
context-aware system is then limited to a) the context
information within that authoritative entity, b) to users of
that administrative domain, or c) within the
geographic/network scope of that administrative boundary.
This impacts the range of the context-aware systems, as
mobile users move out from the geographic boundary, but
also it impacts the richness, usability and the quality of
context information due to the limited number of context
related resources available in a certain domain. These
interrelated issues will continue to limit the adoption of
context-aware systems and applications in future smart
environments.

To overcome these limitations, context-aware systems
need to implement mechanisms that permit context
information owned or produced by entities under different
administrative controls to share such information across
the administrative boundaries. At a technological level,
this requirement translates into the coordination
mechanisms between the context management components
of the context-aware systems i.e. context brokers or
servers forming a federation for context coordination..
Such a federated broker based coordination mechanism is
in line with Weiser’s vision of providing contextual
information about anything, anytime and anywhere [1], or
an infrastructure that can reliably collect, aggregate and
disseminate contextual information related to a very large
user base over a large scale. Cloud computing is ideally
placed to provide infrastructural support for meeting this

a

2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems

978-0-7695-4687-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CISIS.2012.161

241

challenge through its key characteristics of reliability,
scalability, performance and cost effectiveness. These
benefits can be utilized by individual organisations to
deploy their context management and provisioning
services in private Cloud instances. However, context-
aware systems have not yet taken advantage of this recent
progress in the computing arena. Moreover, the federation
of disparate Cloud instances is still in early stages of
conceptual and technological maturity. This article
illustrates a federation of homogenous context-aware
systems deployed in two separate Cloud instances. The
use-case of inter-Cloud federation is presented with the
help of our Context Provisioning Architecture (CPA),
which is a broker based context-aware system. The focus
of this discussion is limited to the administrative
federation aspects; the internal details regarding
performance and configuration are out of the scope of this
article.

The remainder of the article is organized as follows:
Section II presents the background and work related to our
discussion. Section III presents an overview of the
federated broker-based Context Provisioning Architecture.
Finally, a discussion pertaining to the key issues and
challenges in a federated Cloud-based deployment of the
Context Provisioning Architecture is presented in Section
IV.

II. BACKGROUND AND RELATED WORK

A. Federation in Dsitributed Systems
In software systems that are designed as a monolith,

the whole set of functionality is embedded in the
architecture and any extension and scalability is limited to
pre-specification by the designers. Future evolution of
such systems, with changing needs or interaction with
newer systems, is costly in terms of re-design and
implementation. To overcome extension limitations, large
systems are usually designed as separate components
encompassing different functionalities. The unit of
replacement (or re-design) in component based systems is
not then the whole system, but rather individual
components, and the evolution in system behaviour is
achieved by either adding or further specialising
components. To provide scalability, multiple instances of
such systems interoperate to form a larger whole and
provide the same functionality as the original individual
system. This approach is termed as federation [2], where
two or more similar services/systems interoperate in a
scalable manner. A federation may consist of similar
subsystems with matching interfaces, or may provide a
mediation mechanism to accommodate and achieve
interoperability between subsystems, whose interfaces
may have evolved to be different than others.

A number of distributed systems utilise the concept of
federation to achieve scalability. Motivating factors behind
the distribution of whole functionality sets (sub-systems),
and then federating them, includes variation in scope and
lifetime of different services in different domains. The
CORBA specification describes General Inter-ORB

Protocol (GIOP) for communication between ORBs [3],
which also enables ORBs provided by different vendors to
communicate in a federation. DNS is also an example of a
federation of servers. Clients in a geographical or network
boundary are served by a limited number of DNS servers
to provide name resolution of systems within the
boundary. For name resolution of systems that are outside
the boundary, local DNS servers collaborate with other,
outside boundary servers. This federation allows
scalability, fault tolerance and replication in the DNS.
Various broker-based messaging systems and research
prototypes also discuss broker federation e.g. ActiveMQ
[4], Gryphon[5], SIENA [6], JEDI [7] and HERMES [8].
The common aim of the federation function in these
systems is either geographical distribution or achievement
of inter-operability between different (sub-)systems.
Apache Qpid [9], an enterprise messaging system,
supports a mechanism by which large messaging networks
can be built using multiple brokers for the connection of
disparate locations across a wide area network, using
departmental brokers and bridging disjoint networks.
Marsh et al. [10] have also proposed the federation of
Advanced Message Queuing Protocol (AMQP) message
brokers, to decentralise the Message Oriented Middleware
technologies used in financial markets to help scale
performance across large clusters.

Federation of brokers or servers in context-aware
systems has not been demonstrated as such, though a small
number of works have mentioned it in their future aims.
The possibility of federating multiple active spaces
together using the Gaia middleware has been documented,
but such an attempt has not been realized [11]. In CoBrA,
the design philosophy dictates that only one context broker
is to be employed as the focus is on small indoor
environments [12]. A theoretical model is presented where
a team of context brokers can be deployed, but the
reasoning behind that approach centres on redundancy
within a single domain rather than scalability and multi-
domain coverage [12].

B. The need for Inter-Cloud Federation
At present, the Cloud computing focus centres around

public clouds i.e. exposing platform, infrastructure or
software as services to public entities such as users and
enterprises. But there is a parallel momentum developing
in terms of large enterprises setting up private-cloud
instances for in-house utilisation. For example, two
different departments in a company may carry out
computational fluid dynamics simulations and the
computer-aided design of a new aircraft. The two
departments may also share their cloud resources,
depending on the demand, amongst each other or scaling
out to public clouds if their internal capacity is exhausted.
There may also be a business or functional requirement of
collaboration with third party private or public cloud
instances e.g. with that of a partner organisation which is
designing the engine for the new aircraft. Scenarios such
as these require collaboration and coordination between

242

public and private cloud instances. The challenge lies in
establishing the semantics of this collaboration and
coordination, which can involve service level agreements,
translation between heterogeneous Cloud API, etc.

Another scenario, related to user-centric services, is
one in which telecom service providers offer context-
aware services to mobile users through their Cloud
infrastructures. Saturation of revenue from telephony
services is well established; telecom operators and third
party service providers are increasingly dependent on data
and other value added services for customer attraction,
satisfaction and brand loyalty. Cloud based services are
being readily marketed by telecom operators [13, 14],
OEM manufacturers [15] and third party service/platform
providers [16]. Context-aware services present an
opportunity to these enterprises for providing relevant and
pro-active services for their user-base. We envision a not
so distant realisation of context-aware Clouds maintained
by such enterprises that host context provisioning, data
aggregation/reasoning and personalisation services for
their mobile customers. Moreover, these public context-
aware services may also be augmented with those hosted
in private Clouds e.g. one maintained by a customer’s
employer for providing business context e.g.
organisational calendars, document storage, job
submission and monitoring. These use-cases point towards
a need for inter-Cloud cooperation, in public-public,
public-private or private-private configurations, if a
holistic context provisioning is to be achieved.

While the idea of Cloud federation has been
conceptualised recently, its standardisation and practical
demonstration in real world settings is very limited.
Rochwerger et al. [17], during their work in the EU FP7
Reservoir project, have elicited the requirements of inter-
Cloud federation in the context of business service
management. Interoperability between different Cloud
instances is also specified as a key requirement by the
Open Cloud Computing Interface working group [18].
Goiri et al. [19] have attempted to characterise cloud
federation in terms of enhancing a Cloud provider’s
operating profit. Their focus lies in making the decision
when to outsource resources to other providers (and vice-
versa) rather than how to form a federation. Similarly,
Buyya et al. [20] and Bessis et al. [21] discuss inter-Cloud
cooperation in terms of only scalability under a variety of
load conditions. Celesti et al. [22] discuss federation
amongst Cloud instances in terms of ‘hot’ or ‘cold’ disk
image migration and also state that current Cloud
computing platforms are monolithic [23] i.e. Cloud
services are based on independent, proprietary
architectures. They reason that the next evolutionary stage
is the vertical supply chain, in which Cloud providers will
leverage Cloud services from other providers. Their
proposed eventual stage for Cloud platforms is the
horizontal federation in which Cloud providers will
federate amongst each other to achieve economies of scale
and expansion of their capabilities. Based on this
categorisation of evolutionary stages, they present a
federation solution based on a Cross-Cloud Federation

Manager (CCFM) component for establishing trust
contexts, asset optimisation, power saving and on-demand
resource provisioning. Their wholesome approach utilises
discovery, match-making and authentication agents for
looking up resources in foreign Clouds, choosing
convenient foreign Clouds for establishing federation and
creating a security trust [24] amongst the federated Clouds.
In contrast of Celesti et al.’s independent CCFM
component, Ranjan and Buyya [25] have demonstrated a
peer-to-peer approach to Cloud federation that utilises a
coordinating component in each Cloud instance. Their
solution, entitled Aneka-Federation, is a decentralized
system that integrates numerous small scale Aneka
Enterprise Cloud services and nodes, which are distributed
over multiple control and enterprise domains as part of a
single coordinated resource leasing abstraction.

The state of the art in Cloud federation reveals efforts
aimed mostly at resource sharing between Cloud instances
e.g. virtual machine migration. However, the issue of
cooperating processes (e.g. context providing services
working towards a common goal (context awareness for
users) between different Cloud instances, has not been
targeted. Given the state of the art in context-aware
services and Cloud computing, we envision that multi-
domain context-aware systems can benefit from federated
Cloud platforms in terms of holistic and large-scale
coverage for a mobile user-base. The Clouds may be
public or private, and we propose that such Cloud
instances can be federated together to coordinate cross-
organisational boundary contextual information. With this
focus, we present our Context Provisioning Architecture in
the following section, before discussing the key challenges
in deploying context-provisioning related Cloud
federation.

III. FEDERATED BROKER-BASED CONTEXT
PROVISIONING

Herein, we describe our broker-based Context
Provisioning Architecture briefly and discuss its inter-
broker federation (non-Cloud). Next, we present the use-
case of deploying this system in separate cloud instances
and discuss how inter-Cloud federation is achieved.

A. Context Provisioning Architecture
The Context Provisioning Architecture is based on the

producer-consumer model in which context related
services take the roles of context providers or context
consumers. These basic entities are interconnected by
means of context brokers that provide routing, event
management, query resolution and lookup services. The
following paragraphs describe these three main
components of the architecture.

A Context Consumer (CxC) is a component (e.g. a
context based application) that uses context data. A CxC
can retrieve context information by sending a context
subscription to a Context Broker (CxB) and context
information is delivered if and when it is available. The
Context Provider (CxP) component provides contextual

243

Broker CxC

C
xP

Subscription

N
ot

ifi
ca

tio
n

Bro

Lo
ok

up

information. A CxP gathers data from a collection of
sensors, network services or other relevant sources. A CxP
may use various aggregation and reasoning mechanisms to
infer context from raw sensor, network or other source
data. A CxP provides context data only to a specific
invocation or subscription, and is usually specialised in a
particular context domain (e.g. location). Complex
components such as reasoning engines, user-profile
managers and authentication services are also modelled as
context providers. A Context Broker (CxB) is the main
coordinating component of the architecture. It works as a
facilitator between other architectural components.
Primarily the CxB has to control context flow among all
attached components, which it achieves by allowing CxCs
to subscribe to context information and CxPs to deliver
notifications. The CxBs and CxPs are typically deployed
on servers (or mobile devices in special cases, e.g. a
geographic position provider), whereas CxCs normally
execute on user devices.

A depiction of the core system components described
above is presented in Figure 1. A number of useful
applications have been developed based on this
architecture. Further details of this architecture and
industrial trials are described in [13, 18].

Figure 1. Basic broker-based context provisioning component
interaction.

Context consumers and providers register with a
broker by specifying their communication end point and
the type of context they provide or require. This in turn,
enables the brokering function to lookup a particular
context provider that a context consumer may be interested
in (e.g. based on the type of context being requested). The
broker can cache recently produced context, in order to
exploit the principle of locality of reference, as done
routinely in Internet communications, to improve overall
performance.

Contextual information, subscriptions, notification,
advertisements, registration tables, etc. are all specified
using an XML based language entitled ContextML. The
defining principle in ContextML is that context data
relates to an entity and is of a certain scope. The entity
may be a user, a username, a SIP or email address etc., and
scope signifies the type of context data e.g. weather,

location, activity and user preferences. A specific context
instance in ContextML is called a context element and
contains the actual context data and meta-data. Context
data is represented in context parameters, which are name
value pairs, arrays of context parameters or in structures
that are collections of context parameters and context
parameter arrays.

In addition to the representation of contextual data,
ContextML also contains a specification for control
messages between components, subscriptions and
notifications, component advertisements and routing
related messages that are utilised in the overall system for
coordination of context exchange. A parser, titled the
ContextML Parser, has been implemented as a Java library
for Java SE, EE and the Android platforms that can be
used by context producing and consuming applications for
the processing of contextual information and other
messages encoded in ContextML. A detailed discussion
about various dimensions of ContextML is presented in an
earlier work [12].

B. Context Broker Federation
To reduce management and communication overheads,

and achieve scalability, it is desirable to have multiple
brokers in the system divided into administrative, network,
geographic, contextual or load based domains. Context
providers and consumers may be configured to interact
only with their nearest, relevant or most convenient
broker. But if context producing and consuming
components only interact with a local broker, with no
coordination between distributed brokers, the utility and
range of the context provisioning system will be
significantly impacted. Therefore, a distributed, multi-
broker setup demands inter-broker federation so that
context providers and consumers attached to different
brokers can interact seamlessly. The brokers in the Context
Provisioning Architecture work in a federation to form an
overlay network of brokers (see Figure 2), which improves
the scalability of the overall system [26], and provides
location transparency to the local clients (CxCs and CxPs)
of each broker. This federation of context brokers is
achieved with a coordination model that is based on
routing of context subscriptions and notifications across
distributed brokers, discovery, and lookup functions, and
is described in detail in our earlier work [10].

A federated broker setup is also useful for mobile
context consuming and provisioning applications that may
move from administrative, network or geographic domain
of one broker to another. In absence of a federated broker
setup, such applications would lose their subscriptions or
notifications pending with the original broker, but due to
broker federation, their subscriptions and notifications can
still be routed to their new local broker. This mobility
management mechanisms – along with related issues of
disconnection of brokers – is described in detail in our
earlier work [26].

244

Broker B1 Broker B3

Broker B2

Local clients publish
or subscribe for context

Broker

Context that can
be satisfied locally
is arranged by
the broker

that can
ed locally
ed by
er

1

Context unavailable locally
is requested from
neighboring brokers

CxC C
xP

P

CxC C
xP

P

CxC C
xP

P

Broker Discovery
Service

Bn

Joining
broker BK

B1

CxBAdv

CxBAdv Records

CxBAdv

1.
Br

ok
er

B K

ad
ve

rti
sem

en
t

CxBAdv

3. Broker records
update

ker records
e

Existing brokers in the federation

2.
Ex

ist
ing

 br
ok

er
rec

ord
s

3. Choose neighbour
brokers subset

1.
Br

ok
ad

ve
rti

on

4. Exchange available
clients’ records with
neighbouring brokers

Figure 2. Simplified view of the federated brokers interaction.

1) Formation of the Inter-Broker Federation
Each CxC/CxP registers with one CxB by sending a

ContextML encoded advertisement message
CxCAdv/CxPAdv. These client advertisements specify the
communication endpoints of the components, type (scope)
of context they provide (in case of CxPs), etc. Once
registered, these advertisements the CxBs add their own
information (ID and communication endpoint) in these
advertisements before storing them in a local client
registration table. Therefore, each CxB maintains a record
of its context providing and consuming clients.

Figure 3. A new broker joining the broker federation.

The federation amongst CxBs is established with the
help of a Broker Discovery and Registration Service
(BDRS). A new CxB wishing to join the federation
registers with the BDRS by sending a ContextML encoded
advertisement message CxBAdv. The BDRS acknowledges
the registration and sends the records of already registered
CxBs to the joining CxB (see Figure 3.). After registering
and receiving the list of available CxBs from the BDRS,
the newly joined CxB exchanges the clients registeration
tables with the existing (neighbouring) brokers. Thereafter,
client registration tables are exchanged at regular intervals

between the neighbouring brokers, unless a new CxP
registers at one of the broker in which case that CxB will
send an out of turn clients table update to its neighbouring
brokers.

2) Operation of the Inter-Broker Federation
A consequence of the broker federation is that each

CxP and CxC need only be aware of their local CxB. Due
to the fact that federated brokers regularly exchange client
registration tables, if a CxC’s context related query cannot
be satisfied by a CxP registered with the local CxB, it is
forwarded to one of the neighbouring CxB by looking up
the exchanged client registration tables. This mechanism
not only provides location transparency to the client
components, but also affords load scalability to the brokers
and results in energy conservation in mobile devices, upon
which context consuming and provisioning components
may be executing [27].

The coordination model of the Context Provisioning
Architecture can handle component mobility by updating
client registration across the broker federation and
allowing clients to change the broker with which they wish
to be registered. However, this requires the components
(CxPs, CxCs) executing on the mobile devices to
coordinate directly with remote context brokers executing
on the infrastructure. This situation is sub-optimal if a
number of context consuming and providing components
are executing on a mobile device, especially if the device
has intermittent connectivity. Such a situation not only
increases the computation and communication burden on
the device, but may also compromises system security
with respect to component registrations, subscriptions and
notifications, thus hindering the inclusive role of modern
mobile devices in context-awareness functions. To
facilitate modern smart devices for an enhanced role, and
enabling their active participation in functions of context-
awareness, a Mobile Context Broker component is
available in the Context Provisioning Architecture, that
provides various context coordination and dissemination
facilities, to context related applications and services
executing on smart mobile devices. The Mobile Context
Broker is a software component designed to execute on a
mobile device as a background service that brokers the
exchange of contextual information between consumers
and providers, hosted both on the device and the network.
Device based context providers and consumers register
their presence and requirements during execution to this
broker and do not have to lookup each other individually.
Moreover, during periods of disconnected operation,
which are still common in mobile devices and networks,
these consumers and providers do not have to monitor
device connectivity individually; this task is delegated to
the Mobile Context Broker. Further details of the Mobile
CxB component, its operation within the federation and
associated benefits are presented in [27].

IV. CLOUD FEDERATION FOR CONTEXT PROVISIONING
The federated broker architecture for context

provisioning, described in the previous section, can be
deployed in a multi-domain environment using

245

CxC C
xP

CPA Auth
Provider

Login with OpenID identifier

Discovery and association

Request authentication

Component authentication

Authentication response OK

CxC authenticated to use CxP

conventional Java EE based servers on an IP network. The
authentication of users, authorisation (e.g. access to CxPs),
storage of personalised data (e.g. user profiles), etc. is
carried out through a broker-based authentication
mechanism. New clients (CxPs and CxCs) can be added at
runtime and registered with one of the CxBs. However, the
assumption in this discussion has been that the context
brokers are being operated in a single administrative
domain (that may span multiple network domains or
geographic boundaries). When considering the deployment
of the Context Provisioning Architecture in multiple Cloud
instances, where each broker is hosted in a separate Cloud
instance along with its associated CxPs, the assumption no
longer holds and we have to consider a single sign-on
(SSO) mechanism that can provide cross-Cloud
authentication. Similarly, the non-Cloud broker based
system can only be scaled manually by installing new
instances of CxBs on additional servers. A Cloud-based
deployment can automate this process by instantiation of
additional virtual machines for hosting additional context
providers, cache stores, etc. on demand. Other similar
issues and our approach towards addressing them, in terms
of transforming the federated broker architecture for a
suitable and useful Cloud deployment, are discussed in the
following subsection.

A. Key Issues and Challenges
1) Authentication and Authorisation

Client authentication and authorisation (e.g. a CxC
component executing on behalf of a user) takes place
through a credentials database, managed and synchronised
between the context brokers. In effect, the CxPs, CxCs and
CxBs execute on behalf of administrative users with
particular IDs. Utilising this mechanism for a Cloud-based
deployment is sub-optimal, as brokers deployed under
separately administered Cloud instances may not share the
same credentials database or scheme.

Figure 4. A example of OpenID based authentication facilitated by a
Context Provisioning Authentication Provider.

An SSO scheme, such as OpenID [28], can be
implemented at the context brokers such that the CxBs act
as relying parties and verify client identities against an

identity provider. This authentication scheme can be
combined with OAuth [29] to provide a federated login
mechanism, such as one available for Google account
users [30]. Though this mechanism requires a one-time
setup effort for configuring the context consumers and
providers (and brokers for establishing inter-broker trust),
it is in line with our architecture in which components
execute on behalf of entities (user IDs) defined in the
system.

2) Federation Establishment
Cloud instances maintained by different administrative

entities are inherently individual silos, creating a need for
establishment of technology and policy level agreement on
coordination between hosted services and resource
sharing. This requirement pertains not only to the
coordination between services (CxBs and CxPs) deployed
across independent (public or private) Cloud instances but
also the clients (CxCs) that will use these services from
different administrative, geographic or network domains.
In terms of context provisioning from within a Cloud
instance, an entity (e.g. a CxB) will have to make a
dynamic decision about serving context in response to a
CXC query from local CxPs or, in case of non-availability,
contact other CxBs in cross-boundary Cloud instances to
satisfy such queries. This scenario requires establishment
of trust between Cloud-deployed CxBs, cross-domain
authentication and authorisation for CxCs, CxPs and
CxBs, and sharing service availability information across
Cloud instances.

The existing implementation of the Context
Provisioning Architecture uses a discovery and registration
service (BDRS) for finding other brokers available for
federation establishment and regularly exchanging tables
of registered CxCs and CxPs. However, for a practical
Cloud-based deployment, there needs to be a service level
agreement between the administrative authorities for such
exchange to be allowed. In addition to the brokerage of
context information, service availability and that of client
subscriptions and notifications, the establishment of a
federation between different Cloud instances implies
sharing of resources for load, administrative and functional
scalability. For example, a Cloud instance managed by
organisation X may contain a number of data aggregation
and storage services, while one maintained by organisation
Y may host computational and reasoning services that
assist in synthesis of complex contextual information
based on the data in organisations X’s service repositories
(functional scalability). Similarly, a large enterprise’s
authentication mechanisms may be hosted in one
department’s Cloud instance, which is in turn utilised by
services in other, possibly geographically distributed,
Cloud instances (administrative scalability).

3) Resource sharing
As discussed in Section II, recent efforts in terms of

resource sharing amongst federated Cloud instances
gravitate towards virtual machine migration for load
balancing purposes. Within the scope of our Context
Provisioning Architecture, such a migration can take place
when an organisation can no longer host context

246

provisioning services in its current Cloud instance due to
exhausted capacity and may need to instantiate such
services in virtual machines in other Cloud instances in the
federation. Another scenario is that of sharing resources
such as cache stores. Each CxB in the Context
Provisioning Architecture maintains an independent cache
of context information that is provided by one of its local
CxPs, irrespective of whether such context was supplied to
a local CxC or one registered with a remote CxC. The
utility of this caching mechanism can be improved by
synchronising each broker’s cache across the federation,
so that any cache hits take place in a CxC’s local broker
instead of a broker remote to the querying CxC. This
synchronisation aspect of distributed cache stores across
federated Cloud instances, a major challenge in our current
work, is further complicated by the presence of context
brokering components in mobile devices, which we
discuss in the following subsection.

4) Mobility management
The Context Provisioning Architecture caters for

context consumers and providers that are mobile, not
necessarily executing on smart phones but other less
mobile computing devices such as notebooks. These
clients register with the broker just as other static clients
do, but user mobility means that these clients will move
across geographic spans and network boundaries. Their
involvement in the system will continue even if they are
associated with the same broker after relocating
(geographically or in network terms). However, context
consuming and producing applications and services will
mostly be concerned with the context of their geographic
or network surroundings. Therefore, it is only logical for
such context consumers and providers to be associated
with their nearest broker, either in geographic or network
terms. Moreover, clients (mobile and static) may need to
disconnect from the network for other reasons such as
administrative or energy conservation. Hence, remaining
connected to a broker may not be continually possible.
These characteristics dictate the need for a mobility
management feature in the Context Provisioning
Architecture. Indeed, the Context Provisioning
Architecture accommodates component and device/user
mobility through registration/deregistration in the normal
flow of operations, and by requiring regular keep-alive
advertisements from registered clients to manage
situations where a client disappears without deregistering.
This mobility management mechanism is described in
detail in [26], including specific cases of context providers
and consumers relocating from one CxB to another,
disappearance of a connected component without
deregistration, disconnection and reconnection of a broker
in the federation, etc.

Mobility management of components in a Cloud-based
deployment of the Context Provisioning Architecture does
not require additional mechanisms if service level
agreements and coordination mechanisms already exist to
accommodate mobile components, that are not deployed in
the Cloud infrastructure. The reason behind this is that
non-Cloud components will only interact with the Cloud-

based brokers by verifying their identities and associating,
through registration, with one of the context brokers. The
assumption here is that an authentication and authorisation
mechanism exists (e.g. one discussed in Section IV.A.1)
that can verify such mobile components to register with
different brokers during mobility and utilise the context
provisioning services available in the federated.

V. CONCLUSION AND FUTURE WORK
This article has presented a broker-based context-

provisioning system, and discussed the aspect of broker
federation for administrative, geographic and load
scalability. This federation of context brokers forms the
basis of our investigation into federated Cloud-instances
for the provisioning of contextual information. The
discussion has highlighted the requirements and possible
benefits of inter-Cloud federation, for the purposes of
context provisioning in large, multi-domain environments,
and presented the key issues being faced in developing a
Cloud-based federated deployment of the Context
Provisioning Architecture.

It is our expectation that the issues highlighted through
the case study of federated Clouds for context provisioning
will provide an interesting and tangible platform for
realising inter-Cloud federation, not only for enterprises
but for end-users of context-aware services as well. The
Cloud-based development of the Context Provisioning
Architecture is an undergoing effort; the issues and
challenges presented in this paper form the core tasks of
our on-going and future work.

REFERENCES
1. Weiser, M., The Computer for the Twenty-First Century.

Scientific American, 1991. 265(3): p. 94-104.
2. Buschmann, F., K. Henney, and D.C. Schmidt, Pattern-

Oriented Software Architecture: A Pattern Language for
Distributed Computing2007: John Wiley and Sons Inc.

3. OMG, General Inter-ORB Protocol, in Common Object
Request Broker Architecture, Version 3.12008, OMG.

4. Snyder, B., D. Bosanac, and R. Davies, ActiveMQ in
Action2010: Manning Publications.

5. Astley, M., et al. The Gryphon Project.
6. Carzaniga, A., Design and Evaluation of a Wide-Area Event

Notification Services. ACM Transactions on Computer
Systems, 2001. 19(3): p. 332-383.

7. Cugola, G., E. Di Nitto, and A. Fuggetta, The JEDI Event-
Based Infrastructure and Its Application to the Development
of the OPSS WFMS. IEEE Trans. Softw. Eng., 2001. 27: p.
827-850.

8. Pietzuch, P.R., Hermes: A Scalable Event-based Middleware,
in University of Cambridge PhD thesis and TR5902004,
University of Cambridge.

9. Apache Software Foundation, Apache Qpid: Using Broker
Federaton, 2010.

10. Marsh, G., et al., Scaling Advanced Message Queuing
Protocol (AMQP) Architecture with Broker Federation and
InfiniBand, 2009, Department of Computer Science and
Engineering, The Ohio State University.

11. Roman, M., et al., A Middleware Infrastructure for Active
Spaces. IEEE Pervasive Computing, 2002. 1: p. 74-83.

12. Chen, H., An Intelligent Broker Architecture for Pervasive
Context-Aware Systems, 2004, University of Maryland,
Baltimore County.

247

13. Vodafone. Connecting to the Cloud: Business advantage
from Cloud Services. [Whitepaper] 2011 [cited 2012, 15
Mar]; Available from:
http://www.vodafone.com/content/dam/vodafone/about/what/
white_papers/connecting_tothecloud.pdf.

14. Vodafone, Vodafone Cloud, 2012, Google Inc.: Google play.
15. HTC. HTC Expands Cloud Services with Dashwire

Acquisition. HTC news Releases 2011; Available from:
http://www.htc.com/us/press/htc-expands-cloud-services-
with-dashwire-acquisition/57.

16. Google. Android Cloud to Device Messaging Framework.
2010 [cited 2012, 15 Mar]; Available from:
http://code.google.com/android/c2dm/.

17. Rochwerger, B., et al., The reservoir model and architecture
for open federated cloud computing. IBM J. Res. Dev., 2009.
53(4): p. 535-545.

18. OCCI. Use cases and resquirements of a Cloud API.
[Specification] 2010 [cited 2012, 16 Mar]; Available from:
http://www.ogf.org/documents/GFD.162.pdf.

19. Goiri, I., J. Guitart, and J. Torres. Characterizing Cloud
Federation for Enhancing Providers' Profit. in Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on. 2010.

20. Buyya, R., R. Ranjan, and R.N. Calheiros, InterCloud:
utility-oriented federation of cloud computing environments
for scaling of application services, in Proceedings of the 10th
international conference on Algorithms and Architectures for
Parallel Processing - Volume Part I2010, Springer-Verlag:
Busan, Korea. p. 13-31.

21. Bessis, N., et al. Modelling Requirements for Enabling Meta-
scheduling in Inter-Clouds and Inter-Enterprises. 2011.

22. Celesti, A., et al. Improving Virtual Machine Migration in
Federated Cloud Environments. in Evolving Internet
(INTERNET), 2010 Second International Conference on.
2010.

23. Celesti, A., et al. How to Enhance Cloud Architectures to
Enable Cross-Federation. in Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. 2010.

24. Celesti, A., et al. Three-Phase Cross-Cloud Federation
Model: The Cloud SSO Authentication. in Advances in
Future Internet (AFIN), 2010 Second International
Conference on. 2010.

25. Ranjan, R. and R. Buyya, Decentralized overlay for
federation of Enterprise Clouds. Arxiv preprint
arXiv:0811.2563, 2008.

26. Liaquat, S., Federated Broker Model for Context
Provisioning in Large-Scale Distributed Context-Aware
Systems, in Faculty of Engineering and Technology2012,
University of the West of England: Bristol, UK.

27. Kiani, S.L., et al., Context-Aware Service Utilisation in the
Clouds and Energy Conservation. Journal of Ambient
Intelligence and Humanized Computing, 2012. In
press(iUBICOM 2011 Special Issue).

28. Recordon, D. and D. Reed, OpenID 2.0: a platform for user-
centric identity management, in Proceedings of the second
ACM workshop on Digital identity management2006, ACM:
Alexandria, Virginia, USA. p. 11-16.

29. Hammer-Lahav, E., D. Recordon, and D. Hardt, The oauth
2.0 authorization protocol. draft-ietf-oauth-v2-18, 2011. 8.

30. Google. Federated Login for Google Account Users. 2012
[cited 2012, 21 Mar]; Available from:
https://developers.google.com/accounts/docs/OpenID.

248

