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Abstract—The ability to seamlessly bridge clouds across 
organisational and administrative boundaries will play a 
vital role in establishing the utility of cloud computing for 
large-scale collaborative processes. Managing human and 
environmental contexts across geographical, network and 
administrative boundaries is a process that can benefit from 
a federation of cloud platforms. In the absence of a mature 
standard that defines access, control, management and 
coordination mechanisms between clouds in a federation, we 
explore these issues through a use-case of managing the 
dissemination and consumption of contextual information. 
The use-case is driven by the deployment of a broker-based 
context provisioning system, for homogenous cloud 
deployments that reside in different administrative domains. 
The discussion is driven by the aim to highlight key issues 
and challenges for enabling cloud federation for large-scale 
context provisioning, which forms the main contribution of 
this article. 

Keywords-component; cloud federation; context 
management; federated brokers 

I.  INTRODUCTION 
Context provisioning is the communication and 

coordination of contextual information amongst context 
consuming, producing and management components in a 
context-aware system. Context provisioning has usually 
been actioned by context brokers, which enable context-
consuming components in the system to retrieve 
contextual information.  A number of prototype context-
aware systems have been developed that showcase 
context-awareness in several domains, but large-scale 
context provisioning and adoption of context-aware 
applications and services has proved elusive so far, due to 
multi-faceted challenges in this area. Existing context-
aware systems are not ideally placed to meet the domain 
challenges, and facilitate their use in the emerging 
ubiquitous computing scenarios. Prominent shortcomings 
in existing systems include, 1) using a central context 
management component e.g. a context broker, for 
coordinating context-awareness related functions, 2) a 
predominant focus upon designing for static topologies of 
the interacting distributed components, 3) a presumption 
of a single administrative domain or authority and context 
provisioning within a single administrative, geographic or 

network domain, 4) a limited support for accommodating 
mobility of context providing and consuming components, 
and, 5) a lack of standardisation with respect to simple, 
flexible and extensible context models, for the exchange of 
contextual and control information between heterogeneous 
actors.  

In this article, we will mainly focus on the third aspect 
from the aforementioned shortcomings that is to say, in the 
domain of large-scale context provisioning: consideration 
of only a single administrative authority and context 
provisioning within a single administrative, geographic or 
network domain. This limitation exists in part due to the 
design constraints in existing context-aware systems e.g. 
the use of central server/broker for managing context flow 
amongst context consumers and providers. One of the 
most significant impacts of this shortcoming is that the 
collection, aggregation, dissemination and usage of the 
context-aware system is then limited to a) the context 
information within that authoritative entity, b) to users of 
that administrative domain, or c) within the 
geographic/network scope of that administrative boundary. 
This impacts the range of the context-aware systems, as 
mobile users move out from the geographic boundary, but 
also it impacts the richness, usability and the quality of 
context information due to the limited number of context 
related resources available in a certain domain. These 
interrelated issues will continue to limit the adoption of 
context-aware systems and applications in future smart 
environments.  

To overcome these limitations, context-aware systems 
need to implement mechanisms that permit context 
information owned or produced by entities under different 
administrative controls to share such information across 
the administrative boundaries. At a technological level, 
this requirement translates into the coordination 
mechanisms between the context management components 
of the context-aware systems i.e. context brokers or 
servers forming a federation for context coordination.. 
Such a federated broker based coordination mechanism is 
in line with Weiser’s vision of providing contextual 
information about anything, anytime and anywhere [1], or 
an infrastructure that can reliably collect, aggregate and 
disseminate contextual information related to a very large 
user base over a large scale. Cloud computing is ideally 
placed to provide infrastructural support for meeting this 
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challenge through its key characteristics of reliability, 
scalability, performance and cost effectiveness. These 
benefits can be utilized by individual organisations to 
deploy their context management and provisioning 
services in private Cloud instances. However, context-
aware systems have not yet taken advantage of this recent 
progress in the computing arena. Moreover, the federation 
of disparate Cloud instances is still in early stages of 
conceptual and technological maturity. This article 
illustrates a federation of homogenous context-aware 
systems deployed in two separate Cloud instances. The 
use-case of inter-Cloud federation is presented with the 
help of our Context Provisioning Architecture (CPA), 
which is a broker based context-aware system. The focus 
of this discussion is limited to the administrative 
federation aspects; the internal details regarding 
performance and configuration are out of the scope of this 
article. 

The remainder of the article is organized as follows: 
Section II presents the background and work related to our 
discussion. Section III presents an overview of the 
federated broker-based Context Provisioning Architecture. 
Finally, a discussion pertaining to the key issues and 
challenges in a federated Cloud-based deployment of the 
Context Provisioning Architecture is presented in Section 
IV.  

II. BACKGROUND AND RELATED WORK 

A. Federation in Dsitributed Systems 
In software systems that are designed as a monolith, 

the whole set of functionality is embedded in the 
architecture and any extension and scalability is limited to 
pre-specification by the designers. Future evolution of 
such systems, with changing needs or interaction with 
newer systems, is costly in terms of re-design and 
implementation. To overcome extension limitations, large 
systems are usually designed as separate components 
encompassing different functionalities. The unit of 
replacement (or re-design) in component based systems is 
not then the whole system, but rather individual 
components, and the evolution in system behaviour is 
achieved by either adding or further specialising 
components. To provide scalability, multiple instances of 
such systems interoperate to form a larger whole and 
provide the same functionality as the original individual 
system. This approach is termed as federation [2], where 
two or more similar services/systems interoperate in a 
scalable manner. A federation may consist of similar 
subsystems with matching interfaces, or may provide a 
mediation mechanism to accommodate and achieve 
interoperability between subsystems, whose interfaces 
may have evolved to be different than others. 

A number of distributed systems utilise the concept of 
federation to achieve scalability. Motivating factors behind 
the distribution of whole functionality sets (sub-systems), 
and then federating them, includes variation in scope and 
lifetime of different services in different domains. The 
CORBA specification describes General Inter-ORB 

Protocol (GIOP) for communication between ORBs [3], 
which also enables ORBs provided by different vendors to 
communicate in a federation. DNS is also an example of a 
federation of servers. Clients in a geographical or network 
boundary are served by a limited number of DNS servers 
to provide name resolution of systems within the 
boundary. For name resolution of systems that are outside 
the boundary, local DNS servers collaborate with other, 
outside boundary servers. This federation allows 
scalability, fault tolerance and replication in the DNS. 
Various broker-based messaging systems and research 
prototypes also discuss broker federation e.g. ActiveMQ 
[4], Gryphon[5], SIENA [6], JEDI [7] and HERMES [8]. 
The common aim of the federation function in these 
systems is either geographical distribution or achievement 
of inter-operability between different (sub-)systems. 
Apache Qpid [9], an enterprise messaging system, 
supports a mechanism by which large messaging networks 
can be built using multiple brokers for the connection of 
disparate locations across a wide area network, using 
departmental brokers and bridging disjoint networks. 
Marsh et al. [10] have also proposed the federation of 
Advanced Message Queuing Protocol (AMQP) message 
brokers, to decentralise the Message Oriented Middleware 
technologies used in financial markets to help scale 
performance across large clusters. 

Federation of brokers or servers in context-aware 
systems has not been demonstrated as such, though a small 
number of works have mentioned it in their future aims. 
The possibility of federating multiple active spaces 
together using the Gaia middleware has been documented, 
but such an attempt has not been realized [11]. In CoBrA, 
the design philosophy dictates that only one context broker 
is to be employed as the focus is on small indoor 
environments [12]. A theoretical model is presented where 
a team of context brokers can be deployed, but the 
reasoning behind that approach centres on redundancy 
within a single domain rather than scalability and multi-
domain coverage [12].  

 

B. The need for Inter-Cloud Federation 
At present, the Cloud computing focus centres around 

public clouds i.e. exposing platform, infrastructure or 
software as services to public entities such as users and 
enterprises. But there is a parallel momentum developing 
in terms of large enterprises setting up private-cloud 
instances for in-house utilisation. For example, two 
different departments in a company may carry out 
computational fluid dynamics simulations and the 
computer-aided design of a new aircraft. The two 
departments may also share their cloud resources, 
depending on the demand, amongst each other or scaling 
out to public clouds if their internal capacity is exhausted. 
There may also be a business or functional requirement of 
collaboration with third party private or public cloud 
instances e.g. with that of a partner organisation which is 
designing the engine for the new aircraft. Scenarios such 
as these require collaboration and coordination between 
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public and private cloud instances. The challenge lies in 
establishing the semantics of this collaboration and 
coordination, which can involve service level agreements, 
translation between heterogeneous Cloud API, etc.  

Another scenario, related to user-centric services, is 
one in which telecom service providers offer context-
aware services to mobile users through their Cloud 
infrastructures. Saturation of revenue from telephony 
services is well established; telecom operators and third 
party service providers are increasingly dependent on data 
and other value added services for customer attraction, 
satisfaction and brand loyalty. Cloud based services are 
being readily marketed by telecom operators [13, 14], 
OEM manufacturers [15] and third party service/platform 
providers [16]. Context-aware services present an 
opportunity to these enterprises for providing relevant and 
pro-active services for their user-base. We envision a not 
so distant realisation of context-aware Clouds maintained 
by such enterprises that host context provisioning, data 
aggregation/reasoning and personalisation services for 
their mobile customers. Moreover, these public context-
aware services may also be augmented with those hosted 
in private Clouds e.g. one maintained by a customer’s 
employer for providing business context e.g. 
organisational calendars, document storage, job 
submission and monitoring. These use-cases point towards 
a need for inter-Cloud cooperation, in public-public, 
public-private or private-private configurations, if a 
holistic context provisioning is to be achieved. 

While the idea of Cloud federation has been 
conceptualised recently, its standardisation and practical 
demonstration in real world settings is very limited. 
Rochwerger et al. [17], during their work in the EU FP7 
Reservoir project, have elicited the requirements of inter-
Cloud federation in the context of business service 
management. Interoperability between different Cloud 
instances is also specified as a key requirement by the 
Open Cloud Computing Interface working group [18]. 
Goiri et al. [19] have attempted to characterise cloud 
federation in terms of enhancing a Cloud provider’s 
operating profit. Their focus lies in making the decision 
when to outsource resources to other providers (and vice-
versa) rather than how to form a federation. Similarly, 
Buyya et al. [20] and Bessis et al. [21] discuss inter-Cloud 
cooperation in terms of only scalability under a variety of 
load conditions. Celesti et al. [22] discuss federation 
amongst Cloud instances in terms of ‘hot’ or ‘cold’ disk 
image migration and also state that current Cloud 
computing platforms are  monolithic [23] i.e. Cloud 
services are based on independent, proprietary 
architectures. They reason that the next evolutionary stage 
is the vertical supply chain, in which Cloud providers will 
leverage Cloud services from other providers. Their 
proposed eventual stage for Cloud platforms is the 
horizontal federation in which Cloud providers will 
federate amongst each other to achieve economies of scale 
and expansion of their capabilities. Based on this 
categorisation of evolutionary stages, they present a 
federation solution based on a Cross-Cloud Federation 

Manager (CCFM) component for establishing trust 
contexts, asset optimisation, power saving and on-demand 
resource provisioning. Their wholesome approach utilises 
discovery, match-making and authentication agents for 
looking up resources in foreign Clouds, choosing 
convenient foreign Clouds for establishing federation and 
creating a security trust [24] amongst the federated Clouds. 
In contrast of Celesti et al.’s independent CCFM 
component, Ranjan and Buyya [25] have demonstrated a 
peer-to-peer approach to Cloud federation that utilises a 
coordinating component in each Cloud instance. Their 
solution, entitled Aneka-Federation, is a decentralized 
system that integrates numerous small scale Aneka 
Enterprise Cloud services and nodes, which are distributed 
over multiple control and enterprise domains as part of a 
single coordinated resource leasing abstraction.  

The state of the art in Cloud federation reveals efforts 
aimed mostly at resource sharing between Cloud instances 
e.g. virtual machine migration. However, the issue of 
cooperating processes (e.g. context providing services 
working towards a common goal (context awareness for 
users) between different Cloud instances, has not been 
targeted. Given the state of the art in context-aware 
services and Cloud computing, we envision that multi-
domain context-aware systems can benefit from federated 
Cloud platforms in terms of holistic and large-scale 
coverage for a mobile user-base. The Clouds may be 
public or private, and we propose that such Cloud 
instances can be federated together to coordinate cross-
organisational boundary contextual information. With this 
focus, we present our Context Provisioning Architecture in 
the following section, before discussing the key challenges 
in deploying context-provisioning related Cloud 
federation. 

III. FEDERATED BROKER-BASED CONTEXT 
PROVISIONING 

Herein, we describe our broker-based Context 
Provisioning Architecture briefly and discuss its inter-
broker federation (non-Cloud). Next, we present the use-
case of deploying this system in separate cloud instances 
and discuss how inter-Cloud federation is achieved.  

A. Context Provisioning Architecture  
The Context Provisioning Architecture is based on the 

producer-consumer model in which context related 
services take the roles of context providers or context 
consumers.  These basic entities are interconnected by 
means of context brokers that provide routing, event 
management, query resolution and lookup services.  The 
following paragraphs describe these three main 
components of the architecture. 

A Context Consumer (CxC) is a component (e.g. a 
context based application) that uses context data.  A CxC 
can retrieve context information by sending a context 
subscription to a Context Broker (CxB) and context 
information is delivered if and when it is available. The 
Context Provider (CxP) component provides contextual 
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information. A CxP gathers data from a collection of 
sensors, network services or other relevant sources. A CxP 
may use various aggregation and reasoning mechanisms to 
infer context from raw sensor, network or other source 
data. A CxP provides context data only to a specific 
invocation or subscription, and is usually specialised in a 
particular context domain (e.g. location). Complex 
components such as reasoning engines, user-profile 
managers and authentication services are also modelled as 
context providers. A Context Broker (CxB) is the main 
coordinating component of the architecture. It works as a 
facilitator between other architectural components.  
Primarily the CxB has to control context flow among all 
attached components, which it achieves by allowing CxCs 
to subscribe to context information and CxPs to deliver 
notifications. The CxBs and CxPs are typically deployed 
on servers (or mobile devices in special cases, e.g. a 
geographic position provider), whereas CxCs normally 
execute on user devices. 

A depiction of the core system components described 
above is presented in Figure 1. A number of useful 
applications have been developed based on this 
architecture. Further details of this architecture and 
industrial trials are described in [13, 18]. 

Figure 1.  Basic broker-based context  provisioning component 
interaction. 

Context consumers and providers register with a 
broker by specifying their communication end point and 
the type of context they provide or require. This in turn,
enables the brokering function to lookup a particular 
context provider that a context consumer may be interested 
in (e.g. based on the type of context being requested). The 
broker can cache recently produced context, in order to 
exploit the principle of locality of reference, as done 
routinely in Internet communications, to improve overall 
performance.  

Contextual information, subscriptions, notification, 
advertisements, registration tables, etc. are all specified 
using an XML based language entitled ContextML. The 
defining principle in ContextML is that context data 
relates to an entity and is of a certain scope. The entity
may be a user, a username, a SIP or email address etc., and 
scope signifies the type of context data e.g. weather, 

location, activity and user preferences. A specific context 
instance in ContextML is called a context element and 
contains the actual context data and meta-data. Context
data is represented in context parameters, which are name 
value pairs, arrays of context parameters or in structures 
that are collections of context parameters and context 
parameter arrays.   

In addition to the representation of contextual data, 
ContextML also contains a specification for control 
messages between components, subscriptions and 
notifications, component advertisements and routing 
related messages that are utilised in the overall system for 
coordination of context exchange. A parser, titled the 
ContextML Parser, has been implemented as a Java library 
for Java SE, EE and the Android platforms that can be 
used by context producing and consuming applications for 
the processing of contextual information and other 
messages encoded in ContextML. A detailed discussion 
about various dimensions of ContextML is presented in an 
earlier work [12]. 

B. Context Broker Federation 
To reduce management and communication overheads,

and achieve scalability, it is desirable to have multiple 
brokers in the system divided into administrative, network, 
geographic, contextual or load based domains. Context 
providers and consumers may be configured to interact 
only with their nearest, relevant or most convenient 
broker. But if context producing and consuming 
components only interact with a local broker, with no 
coordination between distributed brokers, the utility and 
range of the context provisioning system will be 
significantly impacted. Therefore, a distributed, multi-
broker setup demands inter-broker federation so that 
context providers and consumers attached to different 
brokers can interact seamlessly. The brokers in the Context 
Provisioning Architecture work in a federation to form an 
overlay network of brokers (see Figure 2), which improves 
the scalability of the overall system [26], and provides 
location transparency to the local clients (CxCs and CxPs) 
of each broker. This federation of context brokers is 
achieved with a coordination model that is based on 
routing of context subscriptions and notifications across 
distributed brokers, discovery, and lookup functions, and 
is described in detail in our earlier work [10].  

A federated broker setup is also useful for mobile 
context consuming and provisioning applications that may 
move from administrative, network or geographic domain 
of one broker to another. In absence of a federated broker 
setup, such applications would lose their subscriptions or 
notifications pending with the original broker, but due to 
broker federation, their subscriptions and notifications can 
still be routed to their new local broker. This mobility 
management mechanisms – along with related issues of 
disconnection of brokers – is described in detail in our 
earlier work [26]. 
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Figure 2.  Simplified view of the federated  brokers interaction. 

1) Formation of the Inter-Broker Federation 
Each CxC/CxP registers with one CxB by sending a 

ContextML encoded advertisement message 
CxCAdv/CxPAdv. These client advertisements specify the 
communication endpoints of the components, type (scope) 
of context they provide (in case of CxPs), etc. Once 
registered, these advertisements the CxBs add their own 
information (ID and communication endpoint) in these 
advertisements before storing them in a local client 
registration table. Therefore, each CxB maintains a record 
of its context providing and consuming clients.  

Figure 3.  A new broker joining the broker federation. 

The federation amongst CxBs is established with the 
help of a Broker Discovery and Registration Service
(BDRS). A new CxB wishing to join the federation 
registers with the BDRS by sending a ContextML encoded 
advertisement message CxBAdv. The BDRS acknowledges 
the registration and sends the records of already registered 
CxBs to the joining CxB (see Figure 3. ). After registering 
and receiving the list of available CxBs from the BDRS, 
the newly joined CxB exchanges the clients registeration
tables with the existing (neighbouring) brokers. Thereafter, 
client registration tables are exchanged at regular intervals 

between the neighbouring brokers, unless a new CxP 
registers at one of the broker in which case that CxB will 
send an out of turn clients table update to its neighbouring 
brokers.  

2) Operation of the Inter-Broker Federation 
A consequence of the broker federation is that each 

CxP and CxC need only be aware of their local CxB. Due 
to the fact that federated brokers regularly exchange client 
registration tables, if a CxC’s context related query cannot 
be satisfied by a CxP registered with the local CxB, it is 
forwarded to one of the neighbouring CxB by looking up 
the exchanged client registration tables. This mechanism 
not only provides location transparency to the client 
components, but also affords load scalability to the brokers 
and results in energy conservation in mobile devices, upon 
which context consuming and provisioning components 
may be executing [27].  

The coordination model of the Context Provisioning 
Architecture can handle component mobility by updating 
client registration across the broker federation and 
allowing clients to change the broker with which they wish 
to be registered. However, this requires the components 
(CxPs, CxCs) executing on the mobile devices to 
coordinate directly with remote context brokers executing 
on the infrastructure. This situation is sub-optimal if a 
number of context consuming and providing components 
are executing on a mobile device, especially if the device
has intermittent connectivity. Such a situation not only 
increases the computation and communication burden on 
the device, but may also compromises system security
with respect to component registrations, subscriptions and 
notifications, thus hindering the inclusive role of modern 
mobile devices in context-awareness functions. To 
facilitate modern smart devices for an enhanced role, and 
enabling their active participation in functions of context-
awareness, a Mobile Context Broker component is 
available in the Context Provisioning Architecture, that 
provides various context coordination and dissemination 
facilities, to context related applications and services 
executing on smart mobile devices. The Mobile Context 
Broker is a software component designed to execute on a 
mobile device as a background service that brokers the 
exchange of contextual information between consumers 
and providers, hosted both on the device and the network. 
Device based context providers and consumers register 
their presence and requirements during execution to this 
broker and do not have to lookup each other individually. 
Moreover, during periods of disconnected operation, 
which are still common in mobile devices and networks, 
these consumers and providers do not have to monitor 
device connectivity individually; this task is delegated to 
the Mobile Context Broker. Further details of the Mobile 
CxB component, its operation within the federation and 
associated benefits are presented in [27]. 

IV. CLOUD FEDERATION FOR CONTEXT PROVISIONING  
The federated broker architecture for context 

provisioning, described in the previous section, can be 
deployed in a multi-domain environment using 
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conventional Java EE based servers on an IP network. The 
authentication of users, authorisation (e.g. access to CxPs), 
storage of personalised data (e.g. user profiles), etc. is 
carried out through a broker-based authentication 
mechanism. New clients (CxPs and CxCs) can be added at 
runtime and registered with one of the CxBs. However, the 
assumption in this discussion has been that the context 
brokers are being operated in a single administrative 
domain (that may span multiple network domains or 
geographic boundaries). When considering the deployment 
of the Context Provisioning Architecture in multiple Cloud 
instances, where each broker is hosted in a separate Cloud 
instance along with its associated CxPs, the assumption no 
longer holds and we have to consider a single sign-on
(SSO) mechanism that can provide cross-Cloud 
authentication. Similarly, the non-Cloud broker based 
system can only be scaled manually by installing new 
instances of CxBs on additional servers. A Cloud-based 
deployment can automate this process by instantiation of 
additional virtual machines for hosting additional context 
providers, cache stores, etc. on demand. Other similar 
issues and our approach towards addressing them, in terms 
of transforming the federated broker architecture for a 
suitable and useful Cloud deployment, are discussed in the 
following subsection.   

A. Key Issues and Challenges 
1) Authentication and Authorisation 

Client authentication and authorisation (e.g. a CxC 
component executing on behalf of a user) takes place 
through a credentials database, managed and synchronised 
between the context brokers. In effect, the CxPs, CxCs and 
CxBs execute on behalf of administrative users with 
particular IDs. Utilising this mechanism for a Cloud-based 
deployment is sub-optimal, as brokers deployed under 
separately administered Cloud instances may not share the 
same credentials database or scheme.  

Figure 4.  A example of OpenID based authentication facilitated by a 
Context Provisioning Authentication Provider. 

An SSO scheme, such as OpenID [28], can be 
implemented at the context brokers such that the CxBs act 
as relying parties and verify client identities against an 

identity provider. This authentication scheme can be 
combined with OAuth [29] to provide a federated login 
mechanism, such as one available for Google account 
users [30]. Though this mechanism requires a one-time 
setup effort for configuring the context consumers and 
providers (and brokers for establishing inter-broker trust), 
it is in line with our architecture in which components 
execute on behalf of entities (user IDs) defined in the 
system.

2) Federation Establishment
Cloud instances maintained by different administrative 

entities are inherently individual silos, creating a need for 
establishment of technology and policy level agreement on 
coordination between hosted services and resource 
sharing. This requirement pertains not only to the 
coordination between services (CxBs and CxPs) deployed 
across independent (public or private) Cloud instances but 
also the clients (CxCs) that will use these services from 
different administrative, geographic or network domains. 
In terms of context provisioning from within a Cloud 
instance, an entity (e.g. a CxB) will have to make a 
dynamic decision about serving context in response to a 
CXC query from local CxPs or, in case of non-availability, 
contact other CxBs in cross-boundary Cloud instances to 
satisfy such queries. This scenario requires establishment 
of trust between Cloud-deployed CxBs, cross-domain 
authentication and authorisation for CxCs, CxPs and 
CxBs, and sharing service availability information across 
Cloud instances.  

The existing implementation of the Context 
Provisioning Architecture uses a discovery and registration 
service (BDRS) for finding other brokers available for 
federation establishment and regularly exchanging tables 
of registered CxCs and CxPs. However, for a practical 
Cloud-based deployment, there needs to be a service level 
agreement between the administrative authorities for such 
exchange to be allowed. In addition to the brokerage of 
context information, service availability and that of client 
subscriptions and notifications, the establishment of a 
federation between different Cloud instances implies 
sharing of resources for load, administrative and functional 
scalability. For example, a Cloud instance managed by 
organisation X may contain a number of data aggregation 
and storage services, while one maintained by organisation 
Y may host computational and reasoning services that 
assist in synthesis of complex contextual information 
based on the data in organisations X’s service repositories
(functional scalability). Similarly, a large enterprise’s 
authentication mechanisms may be hosted in one 
department’s Cloud instance, which is in turn utilised by 
services in other, possibly geographically distributed, 
Cloud instances (administrative scalability).  

3) Resource sharing 
As discussed in Section II, recent efforts in terms of 

resource sharing amongst federated Cloud instances 
gravitate towards virtual machine migration for load 
balancing purposes. Within the scope of our Context 
Provisioning Architecture, such a migration can take place 
when an organisation can no longer host context 
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provisioning services in its current Cloud instance due to 
exhausted capacity and may need to instantiate such 
services in virtual machines in other Cloud instances in the 
federation.  Another scenario is that of sharing resources 
such as cache stores. Each CxB in the Context 
Provisioning Architecture maintains an independent cache 
of context information that is provided by one of its local 
CxPs, irrespective of whether such context was supplied to 
a local CxC or one registered with a remote CxC. The 
utility of this caching mechanism can be improved by 
synchronising each broker’s cache across the federation, 
so that any cache hits take place in a CxC’s local broker 
instead of a broker remote to the querying CxC. This 
synchronisation aspect of distributed cache stores across 
federated Cloud instances, a major challenge in our current 
work, is further complicated by the presence of context 
brokering components in mobile devices, which we 
discuss in the following subsection.   

4) Mobility management 
The Context Provisioning Architecture caters for 

context consumers and providers that are mobile, not 
necessarily executing on smart phones but other less 
mobile computing devices such as notebooks. These 
clients register with the broker just as other static clients 
do, but user mobility means that these clients will move 
across geographic spans and network boundaries. Their 
involvement in the system will continue even if they are 
associated with the same broker after relocating 
(geographically or in network terms). However, context 
consuming and producing applications and services will 
mostly be concerned with the context of their geographic 
or network surroundings. Therefore, it is only logical for 
such context consumers and providers to be associated 
with their nearest broker, either in geographic or network 
terms. Moreover, clients (mobile and static) may need to 
disconnect from the network for other reasons such as 
administrative or energy conservation. Hence, remaining 
connected to a broker may not be continually possible. 
These characteristics dictate the need for a mobility 
management feature in the Context Provisioning 
Architecture. Indeed, the Context Provisioning 
Architecture accommodates component and device/user 
mobility through registration/deregistration in the normal 
flow of operations, and by requiring regular keep-alive 
advertisements from registered clients to manage 
situations where a client disappears without deregistering. 
This mobility management mechanism is described in 
detail in [26], including specific cases of context providers 
and consumers relocating from one CxB to another, 
disappearance of a connected component without 
deregistration, disconnection and reconnection of a broker 
in the federation, etc.  

Mobility management of components in a Cloud-based 
deployment of the Context Provisioning Architecture does 
not require additional mechanisms if service level 
agreements and coordination mechanisms already exist to 
accommodate mobile components, that are not deployed in 
the Cloud infrastructure. The reason behind this is that 
non-Cloud components will only interact with the Cloud-

based brokers by verifying their identities and associating, 
through registration, with one of the context brokers. The 
assumption here is that an authentication and authorisation 
mechanism exists (e.g. one discussed in Section IV.A.1) 
that can verify such mobile components to register with 
different brokers during mobility and utilise the context 
provisioning services available in the federated.  

V. CONCLUSION AND FUTURE WORK 
This article has presented a broker-based context-

provisioning system, and discussed the aspect of broker 
federation for administrative, geographic and load 
scalability. This federation of context brokers forms the 
basis of our investigation into federated Cloud-instances 
for the provisioning of contextual information. The 
discussion has highlighted the requirements and possible 
benefits of inter-Cloud federation, for the purposes of 
context provisioning in large, multi-domain environments, 
and presented the key issues being faced in developing a 
Cloud-based federated deployment of the Context 
Provisioning Architecture.  

It is our expectation that the issues highlighted through 
the case study of federated Clouds for context provisioning 
will provide an interesting and tangible platform for 
realising inter-Cloud federation, not only for enterprises 
but for end-users of context-aware services as well. The 
Cloud-based development of the Context Provisioning 
Architecture is an undergoing effort; the issues and 
challenges presented in this paper form the core tasks of 
our on-going and future work.  
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