
Data Intensive and Network Aware (DIANA)
Grid Scheduling

Richard McClatchey & Ashiq Anjum &

Heinz Stockinger & Arshad Ali & Ian Willers &

Michael Thomas

Received: 9 September 2005 /Accepted: 4 November 2006 /Published online: 27 January 2007
Springer Science + Business Media B.V. 2007

Abstract In Grids scheduling decisions are often
made on the basis of jobs being either data or
computation intensive: in data intensive situations
jobs may be pushed to the data and in computation
intensive situations data may be pulled to the jobs.
This kind of scheduling, in which there is no
consideration of network characteristics, can lead to
performance degradation in a Grid environment and
may result in large processing queues and job
execution delays due to site overloads. In this paper
we describe a Data Intensive and Network Aware
(DIANA) meta-scheduling approach, which takes into
account data, processing power and network charac-

teristics when making scheduling decisions across
multiple sites. Through a practical implementation on
a Grid testbed, we demonstrate that queue and
execution times of data-intensive jobs can be signif-
icantly improved when we introduce our proposed
DIANA scheduler. The basic scheduling decisions are
dictated by a weighting factor for each potential target
location which is a calculated function of network
characteristics, processing cycles and data location
and size. The job scheduler provides a global ranking
of the computing resources and then selects an
optimal one on the basis of this overall access and
execution cost. The DIANA approach considers the
Grid as a combination of active network elements and
takes network characteristics as a first class criterion
in the scheduling decision matrix along with compu-
tations and data. The scheduler can then make
informed decisions by taking into account the
changing state of the network, locality and size of
the data and the pool of available processing cycles.

Key words meta scheduling . network awareness .

peer-to-peer architectures . data intensive .

scheduling algorithm

1 Background

Resource management [1, 2] is a central task in any
Grid system. Resources may include “traditional”
resources such as compute cycles, network band-

J Grid Computing (2007) 5:43–64
DOI 10.1007/s10723-006-9059-z

R. McClatchey (*) :A. Anjum
CCS Research Centre, University of the West of England,
Bristol, UK
e-mail: richard.mcclatchey@uwe.ac.uk

H. Stockinger
Swiss Institute of Bioinformatics,
Lausanne, Switzerland

A. Anjum :A. Ali
National University of Sciences and Technology,
Rawalpindi, Pakistan

I. Willers
CERN, European Organization for Nuclear Research,
Geneva, Switzerland

M. Thomas
California Institute of Technology,
Pasadena, CA, USA

width, and storage systems. Typical resource man-
agement systems that have been proposed are Globus
GRAM [3], WMS [4], [10] from EDG [5], GridWay
[6], SGE [7], Condor [8] and the EuroGrid-Unicore
[9] resource broker projects. Effective resource
management and scheduling is a challenging issue,
and data location and network load in addition to the
computing power are critical factors in making
scheduling decisions. The quality and consistency of
networks are among the most important factors in this
scheduling paradigm since the Grid can be subject to
failure if networks do not perform. Moreover, a site
that has the targeted data may not be the optimal place
for the intended computation even if it has sufficient
available computing power since its processors might
be required to wait to fetch remote data (and therefore
again be dependent on the network load). Similarly, a
site with the required data may not be the optimal
location to perform the computation if it does not
have sufficient available computational resources. All
these parameters must be considered in making
efficient scheduling decisions.

Grid applications are becoming increasingly net-
work dependent with more demanding requirements
in areas such as data access or interactivity. The
specific kind of tasks that request computation are
usually referred to as “jobs” and are dependent on
storage, network capacity and computation. When a
job is submitted to a Grid scheduling system, the
scheduling system has the responsibility to select a
suitable resource and then to manage the job exe-
cution. The decision of which resource should be used
is the outcome of a matchmaking process between
submission requests and available resources. How-
ever, during this matchmaking process, we need some
adaptive scheduling mechanisms, with appropriate
heuristics, which can take into account the character-
istics of the network to enable efficient scheduling of
data intensive jobs to viable computing resources.

A so-called “meta-scheduler” could facilitate the
requesting of resources across multiple machines for
jobs and could perform load balancing of workloads
across multiple sites. Each site also has its own local
scheduler to determine how its job queue is pro-
cessed. A meta-scheduling system works on the basis
that the “new task” which needs to be executed has to
make itself known to a so-called “matchmaker.” This
matchmaker acts as a gateway to the Grid. It selects
resources from a global directory (e.g., an information

service) and allocates the job to one of the available
Grid sites.

In this paper, we introduce a Data Intensive and
Network Aware (DIANA) meta-scheduling approach
which takes into account the network characteristics
along with computation and data when scheduling
single or bulk jobs. It allows for optimized scheduling
decisions as well as reduced execution times of data
intensive jobs as documented in our experimental
results.

2 Problem Description

Data intensive applications analyze large amounts of
data which are replicated to geographically distributed
sites. If data are not replicated to the site where the
job is supposed to be executed, the data need to be
fetched from remote sites. This data transfer from
other sites will degrade the overall performance of the
job execution. In order to support this type of
phenomenon, the Grid has a high number of Com-
puting Elements (CE) with Local Resource Manage-
ment Systems (LRMS) and Storage Services (SE)
each identified by a unique ID as shown in Fig. 1.

Each data intensive application produces different
amounts of data. For performance gains in the overall
job execution time and to maximize the Grid
throughput, we need to align and co-schedule the
computation and the data (the input as well as the
output) in such a way that we can reduce the overall
computation and data transfer cost. We may even
decide to send both the data and executables to a third
location depending on the capabilities and character-
istics of the computing, network and storage resour-
ces. While this might seem to be a simple problem to
solve if taken from a local resource management point
of view, there is one major issue that must be
addressed if we intend to optimize the overall Grid
throughput at a certain point in time and that is the
problem of global distributed scheduling. Our solu-
tion is that of meta-scheduling, a process which
allows a user to schedule a job across multiple sites.
As we add more complexity to the Grid, particularly
with geographically dispersed sites or nodes, it
becomes more common for the global meta-scheduler
and data mover to make decisions which may be in
conflict with decisions that would be arrived at from a
local scheduling point of view. This is not surprising

44 R. McClatchey, et al.

since many of the scheduling technologies have been
developed under the assumption that all of the
collaborating systems are on the same local area
network (LAN). If we extend these scheduling or
local resource management systems over longer
distances, we can begin to see the limitations of the
global decision-making systems.

2.1 CMS Physics Analysis Use Case

Large-scale data-intensive problems, such as those
that arise in the high-energy physics (HEP) experi-

ments currently being developed at CERN, can
generate petabytes (1015 bytes) of scientific data. In
HEP data analysis several hundred end-users can run
analysis jobs at the same time, processing large
amounts of this data (up to several hundred terabytes)
replicated over several tens of Grid sites. Data-
intensive jobs will clearly need to take data location
into account when scheduling these jobs on the HEP
Grid resources.

For example, in the CMS experiment at CERN,
CMS Production [15] that is the creation of data sets
from the experiment itself and CMS Data Analysis

Task
Queue

Match
Maker

Remote Site Local Site Remote Site

Job Submit

User

Information
Service

Notify
Availability

Replicated Data

Data

LRMS/CE LRMS/CE LRMS/CESE SE SE

Data Data Data Data Data

DataDataDataDataData Data

Replicated Data Replicated Data

Submit and
Monitor

Meta Scheduler

Job
Submission
& Monitoring

Monitoring and
Discovery Service

Replica Management

Fig. 1 Multiple sites Grid meta-scheduling

Data Intensive and Network Aware (DIANA) Grid scheduling 45

[16] are two very data – and computation-intensive
processes. CMS Data Analysis deals with the issues
of so-called “event reconstruction,” the selection of
the physics events for further study and the visuali-
zation of the data as shown in the Fig. 2. In both
cases, physicists submit, individually and collectively,
millions of jobs (known as bulk submission).

The resource access patterns used in end-user
physics analysis (see Fig. 3) tend to be less
predictable. This comes from the fact that jobs are
initiated from almost any CMS site in the world, as
well as from the large variation in the “sparseness” of
the data access. As shown in Fig. 3, when a physicist
runs analysis jobs, she may either execute an all-
inclusive analysis, using all the collected data, or sub-
select interesting events using Tags (i.e., indices to
existing data). A typical job will perform some
calculation on a specified input dataset and will
produce some output. It can be interactive or batch
in nature and is part of the dataflow explained above.
There are two main cases of CMS jobs:

& Organized jobs. These jobs are planned in advance
and perform a homogenous set of tasks. The input is
a pre-determined set of data items (physics events)
accessed sequentially, processed and then written
out, in a different format, suitable for calculations to
be performed in a subsequent analysis phase.

& Chaotic jobs. These jobs are submitted by many
users acting more or less independently, and encom-
pass a wide variety of tasks. The input is typically a
selection/analysis algorithm to be applied to a very
large dataset.

This division is in part based on the differences in
data-access patterns of the two types of jobs. CMS jobs
typically access, process, and create large quantities of
data possibly performing nontrivial processing for each
event. Jobs of a similar nature are composed in the form

of a single bundle and are called the assignments.
Currently, a bulk submission of jobs is employed in
production and an assignment of more than one job of a
similar nature is submitted to a particular site. This is
known as Bulk Scheduling. Since an average CMS
simulation job (i.e., a typical physics job which creates
simulated data) can take around 12–24 h of computa-
tion, in total an assignment may take a week or more to
produce the required dataset. A similar scheduling
strategy is being planned for CMS physics analysis (i.e.,
the access to the data generated during the production
step), the basic difference being that production jobs
result in a large amount of data whereas analysis jobs
generally consume data produced by the production jobs.

Presented below are indicative estimates [17] for
the typical numbers of jobs from users, together with
their computation and data related requirements,
which must be supported by the CMS Grid. For each
parameter, the first value given is the expected value
that needs to be supported, as a minimum, by the Grid
system to be useful for the CMS experiment. The
second value, between parentheses, is the expected
value that is needed to support very high levels of
usage by individual physicists:

& Number of simultaneously active users: 100 (1,000)
& Number of jobs submitted per day: 250 (10,000)
& Number of jobs being processed in parallel: 50

(1,000)
& Job turnaround time: 30 s (for tiny jobs) – 1 month

(for huge jobs) (0.2 s – 5 months)
& Number of datasets that serve as input to a sub job:

0–10 (0–50)
& Average number of datasets accessed by a job:

250,000 (107)
& Average size of the dataset accessed by a job: 30 GB

(1–3 TB)

Note that the parameters above have very wide
ranges of values, therefore simple averages are not very

Fig. 2 The CMS online and offline systems and their environment

46 R. McClatchey, et al.

meaningful in the absence of known variances. Given
these statistics regarding workloads, it is clearly
challenging to intelligently schedule tasks and to
optimize resource usage over the Grid. This has led
us to consider a bulk scheduling approach since simple
eager or lazy scheduling models are not sufficient for
tackling such ‘chaotic’ analysis scenarios.

2.2 Wide-Area Scheduling

A Grid has a number of computational sites which are
connected by a number of different WAN links, with
different bandwidths and latencies. Consequently,
some executables and data items will be “large”
compared to the available network bandwidths and
latencies. Given these constraints on the overall
system, we need to find a way to distribute workloads
across all the available systems to maximize the
utilization of the available systems. The costs of
performing computation will vary according to the
types of machines used, the network bandwidth
consumed, the state and reliability of the network
system, the losses and routing issues in the networks,
and will depend on other factors, such as the amount
of the data required. These parameters need to be
considered when Grid work is scheduled to ensure the
effective use of resources in order to minimize cost
but maximize workload throughput.

Hence, scheduling algorithms that focus only on
maximizing processor utilization by mapping jobs to
idle processors, and/or on disregarding network costs
and costs associated with accessing remote data are
unlikely to be efficient. Similarly, the scheduling
decisions which always force the job movement
towards the data without taking network load into
consideration can lead to significant inefficiencies in
performance and can be responsible for large job
queues and processing delays.

We not only need to use the network characteristics
while aligning data and computations, we also need to
optimize the task queues of the meta-scheduler on the
basis of this correlation. As a consequence network
characteristics can play an important role in the
matchmaking process and on Grid scheduling opti-
mization. Therefore a more complex scheduling
algorithm is required that should consider the job
execution, the data transfer and their relation with
various network parameters on multiple sites. Our
major challenge then becomes finding a means to
express these requirements in a format that the meta-
scheduler engine can understand.

The basic job scheduling algorithm needs to be
driven by a weighting factor calculated for each
potential target location which is a function of the
available network characteristics, the processing
cycles and data location with the one having least
cost being given highest priority. The algorithm
should consider the Grid as a combination of the
active network elements and must take the network as
a first class criterion in the scheduling decision
matrix. The scheduling of resources and/or the
moving of data from place to place as needed as well
as overseeing the task execution through to comple-
tion need to be performed on the basis of a “network
and strategic view” of the overall Grid system.

3 Scheduling Optimization Algorithm

There are three main phases of scheduling on a Grid:

& Phase 1 Resource Discovery generating a list of
potential resources.

& Phase 2 Matchmaking. (This is where this paper
makes its main contribution) and

& Phase 3 Job Execution including file staging and
cleanup.

AOD

Analysis Tags

Physics Analysis

Private Data (e.g. Ntuple)

Analysis Workstation

Physics results

Generator Data

For Monte Carlo
events

ESD Sample

RAW Sample

Fig. 3 User analysis. ESD, AOD and RAW are different data
formats

Data Intensive and Network Aware (DIANA) Grid scheduling 47

In the second phase, the choice of the best
combinations of jobs and resources is a challenging
one. We need to embed the network information into
the scheduling algorithm in order to improve the
efficiency and the utilization of a Grid system. The
overall goal is to minimize the execution time of
applications which involve large scale data.

3.1 Input Parameters

The following input parameters are required for our
network-aware scheduling and matchmaking
algorithm:

& Bandwidth, latencies, packet loss, jitter and anoma-
lies of network links.

& Computing cycles available
& Site loads and respective job queues
& Size of the application executables as well as size of

data (input and output)

3.2 Optimization Objectives

The following are the intended objectives within the
scheduling process likely to be optimized by this
work:

& Queue time and waiting time
& Site load and processing time
& Transfer time for data, executables and results

The total time for job completion and getting
results from the job execution in a Grid environment
will be sum of all of these times.

3.3 Cost Estimators

There are three major cost estimates which need to be
calculated for the scheduling algorithm: network,
computation and data transfer cost.

3.3.1 Network Cost

First and foremost is the network cost which depends
on many individual parameters. The load, capacity
and availability of network links used during data
transfers may heavily affect the Grid application
performance [25]. Application usage of the network
often requires near-real-time, or even real-time,
information feedback on the available resources and

intelligent decisions on how best to take advantage of
these resources [24]. In order to provide the right
quality of service (QoS) to Grid applications and hence
scheduling, it is important to first understand how the
network is performing and to determine the level of
quality of service that currently exists in the network.
This is measured using four variables, namely latency,
dropped packets, throughput and jitter.

TCP throughput can be obtained by combining the
losses and the Round Trip Times (RTTs) using
Mathis’s formula [18] for deriving the maximum
TCP throughput. Given the historical measurements
of the packet loss and RTT, we can calculate the
maximum TCP bandwidth for a certain amount of
time for various groups of sites. Paper [18] describes
a short and useful formula for the upper bound on the
transfer rate:

Rate <
MSS

RTT

� �
� 1ffiffiffiffiffiffiffiffi

loss
p

� �

Where:

Rate Is the TCP transfer rate
MSS Is the maximum segment size
RTT Is the round trip time (as measured by TCP)

loss: is the packet loss rate

It is clear from the above equation that RTT, TCP
throughput or bandwidth and packet loss (including
out of order packets and duplicate packets) should be
made part of the scheduling algorithm since it has to
deal with large data transfers when scheduling data
intensive jobs. One way of measuring the quality of
service is to measure the number of packets being
dropped (the so-called “packet loss”).

However, packet loss is not the only cause of poor
performance, so care is needed in diagnosing
whether genuine packet loss is being experienced.
The response time or RTT is the second parameter
that can give an idea of the ping data rate (KB/s).
The RTT says nothing about how much information
a server site can send in a given period. Moreover,
for better quality of service and network predictabil-
ity, we also need to include the jitter in the schedul-
ing algorithm. Overall, as the network utilization
increases, the number of dropped packets and the
amount of jitter also increases. Consequently, the
network cost is the combination of all of the above

48 R. McClatchey, et al.

parameters. We assign weights to each value depend-
ing upon the importance of the parameters in
calculating an aggregate value of the network cost
(NetCost).

NetCost / Losses

Bandwidth
where

Losses ¼ RTT �W1þ Loss�W2þ Jitter �W3

Where Wi is the weight assigned to each parameter
depending on the importance of the particular
parameter. Weights are uniformly assigned subject to
a cost; a higher cost indicates the importance of that
parameter in the scheduling decision and in some
cases we can manipulate these weights to prioritize
particular parameters in the algorithm (see Section
3.3.6 for a discussion of the allocation of weights).
For example, increasing the weight associated with
network cost would bias in favour of data intensive
scheduling. To tend towards compute intensive jobs,
the compute cost weights can be increased. A higher
RTT indicates that a computation site is distant from
the storage site where the data resides and therefore
the cost to fetch the data would increase. We can
increase the significance of this parameter, if required,
by assigning a higher value to its associated weight.
Higher bandwidth reduces the cost of data transfer
and hence the job execution. We can accommodate
this behaviour by assigning a higher value to its
weight Wi. Moreover, jitter is of less importance for
data intensive applications and has no significant cost
involved due to a higher or lower jitter. We can assign
a minimal weight to this parameter but cannot ignore
it completely since if this parameter has a value more
than an acceptable figure, then there is some
bottleneck involved and this element should have a
higher value to reflect this in the overall scheduling
algorithm. The same is the true for the packet loss:
higher packet loss implies a less reliable network, and
we should give less importance to such a site when
making scheduling decisions.

There are a number of issues which can influence
the scheduling decisions from the network point of
view and can lead to skewed results. Selecting the
best source from which to copy the data requires a
prediction of future end-to-end path characteristics
between the destination and each potential source. An

accurate prediction of the performance obtainable
from each source requires the measurement of
available bandwidth (both end-to-end and hop-by-
hop), latency, loss and other characteristics which are
important in file transfer performance. Because
network characteristics are highly dynamic, each
reported observation must be attributed with timing
information, indicating when the observation was
made. Route flaps or other instabilities mean that the
same end-to-end traffic may experience a completely
different environment from moment to moment.

Frequently in high-bandwidth environments the
hosts performing the measurement are the bottleneck,
rather than the network path [46]. In the Internet, the
path from a source to a destination may be different
from the path from the destination back to the source
(i.e., asymmetric paths). Even in the case of symmet-
ric paths for both directions, additional traffic from
other applications may cause different queuing
behaviours in the two directions. Roundtrip measure-
ments therefore mix the characteristics of both path
directions, thereby producing possibly misleading
results. Furthermore host timing issues can be
problematic for the bandwidth measurement. As the
link speeds increase, intra-host latencies cause a
greater difference in measurement accuracy. Similarly
clock resolution can negatively influence the results
since when higher speeds are approached such as
10 Gbits/s, inter-packet delay timing requires clocks
with resolution of 1 μs or better. The “Bulk Transfer
Capacity” (BTC) [47] definition of bandwidth mea-
surement assumes an “ideal TCP implementation,”
which, in practice, does not exist. Since there are
many TCP implementations on the Grid, any meth-
odology that relies on a system’s TCP implementation
is subject to its influence on its results.

3.3.2 Computation Cost

The second important cost which needs to be part of
the scheduling algorithm is the computation cost.
Paper [19] describes a mathematical formula to
compute the processing time of a job. It is based on
Little’s theory.

Computation Cost ¼ Qi

Pi
�W5þ Q

Pi
�W6

þ SiteLoad �W7

Data Intensive and Network Aware (DIANA) Grid scheduling 49

Where Q is the total number of the waiting jobs
on all the sites, Qi is the length of the waiting queue
on the site i, Pi is the computing capability of the
site i and SiteLoad is the current load on that site.
SiteLoad is calculated by dividing the number of
jobs in the queue by the processing power of that
site. The Qi/Pi ratio computes the processing time of
the job. The Qi/Pi ratio of the two sites cannot be
the same since the number of jobs submitted to the
sites will always be different due to differing
SiteLoads and other appropriate parameters such as
the data transfer cost of the sites. Again W5, W6 and
W7 are the weights which can be assigned depending
on the importance of the queue and the processing
capability. For example, a larger queue makes a site
less attractive for job placement so we assign it a
bigger weight to make the cost higher. Similarly, site
load reflects the current load on a site, so again we
assign a higher weight if the load on that site is
higher.

It is a challenging task to calculate and predict the
dynamic nature of the resources and changing loads
on the Grid. The load prediction at a site must be
dynamic in nature and the least loaded site at one
moment can become overloaded the next moment
due to bulk submission. Since we use a non pre-
emptive mode of execution, once a jobs gets a CPU
we cannot abort and move the job to other site.
Moreover, Grid resources differ widely in the
performance they can deliver to any given application
and because performance fluctuates dynamically due
to contention by competing applications, the sched-
uler must be able to predict the deliverable perfor-
mance that an application will be able to obtain when
it eventually runs.

3.3.3 Data Transfer Cost

The third most important cost aspect in data
intensive scheduling is the data transfer cost which
includes input data, output data and executables.
Reference [20] describes a mathematical technique to
calculate the aggregate data transfer time which
includes all three parameters. Here, we do not use
bandwidth only to calculate the data transfer cost,
rather we use the network cost as calculated in
Section 3.3.1. We take the case of remote data and
different remote execution sites so that the meta-

scheduler can consider a worse-case scenario in
scheduling.

Data Transfer Cost DTCð Þ
¼ Input Data Transfer Cost

þ Output Data Transfer Cost

þ Executables Transfer Cost

i.e.,

W8 � ID� NCði�jÞ þW9 � ADþ ODð Þ � NC local�jð Þ

þW10 � NðjÞ � IDþ ADð Þ þ OD
� �� NC jð Þ

Where:

ID = Input Data
AD = Application Data
OD = Output Data
NC = Network Cost and i and j indicate a certain site

Here, we discuss three different costs for data
transfer. Input data transfer cost is the most significant
one due to expected large data transfers. Higher
network cost will increase the data transfer cost and
vice-versa, and we use the associated weight to adjust
the value according to its importance. The same is the
case for the output data since output data needs to be
transferred to the location from where the job was
submitted. Application data are executables and user
code which will be submitted for execution but might
be low compared to the input and output data transfer
costs.

We can reduce the response time by moving input
data from one site to another that has a larger number
of processors, since computational capabilities of a
remote site without replicated data can be superior to
the capabilities of other sites with replicated data. In
this scenario, the input data located in site i is
transferred to site j which has sufficient computational
capabilities. Also application codes should be trans-
ferred from the local site to site j. Then the processing
is performed in site j and the resulting data will be
transferred to the local site.

3.3.4 Total Cost

Once we have calculated the cost of each stake
holder, the total cost is simply a combination of these

50 R. McClatchey, et al.

individual costs as calculated in Sections 3.3.1, 3.3.2
and 3.3.3:

Total Cost C ¼ Network Cost þ Computation Cost

þ Data Transfer Cost

The main optimization problem that we want to
solve is to calculate the cost of data transfers
betweens sites (DTC), to minimize the network traffic
cost between the sites (NTC) and also to minimize the
computation cost of a job within a site. To simplify
the optimisation problem we assume that any given
site can have:

& One or many storage resources (Storage Elements,
SEs)

& One or many computing resources (Computing
Elements, CEs).

Therefore, we are mainly interested in the wide-
area network performance rather than specifying all
network details within a site. We assume that the local
network latency is roughly homogeneous for all nodes
(storage or computing) within a site. We can now
calculate the cost of the job placement on each site
with respect to the submission site. This will be a
relative cost since it will always be measured with
reference to the user’s location on the Grid. Next, we
can populate a cost matrix with cost values against
each site. In detail, we look at the number of possible
sites and calculate the total cost for each pair (site
i–site j) and put that into our cost matrix.

We do not take into consideration all the compu-
tation and storage sites in this cost matrix since that
would require significant effort in calculating the cost
of each site against all others in the Grid and the
matrix optimization itself requires further research.
This approach is not just all-to-all communication.
Had it been so i.e., where a site communicates with
all peers in the Grid (all-to-all communication), that
would have been prohibitively expensive, and the
solution would not have been scalable. If we calculate
the network, data and compute costs of all sites from

each other in a Grid network, then the information
collection and decision making costs will become too
high. Particularly for large Grid networks, this would
no longer be realistic since the information collection
would become a more expensive operation than the
decision making itself and this aspect must be
considered when making scheduling decisions. In-
stead, we rank the sites on the basis of storage and
computations cost and select the best sites (five in this
example), which are then used to populate the matrix.
It is necessary that these “best” sites have the least
cost of all sites in the Grid since this can lead to a
minimum time for the overall job execution and
ultimately will yield an optimized scheduling and an
optimized Grid. Figure 4 shows an example cost
matrix giving the overall cost of job submission from
one site to all others in the Grid. Cij is the total cost of
a particular site i from any other one j in the Grid.

Whether a single job is being submitted to the
scheduler or bulk job submission is being managed by
the meta-scheduler, the cost matrix is equally valid
since the cost mechanism will describe the time
and cost of each job in the global perspective.
Once the cost matrix is populated, we can find the
minimum cost of a particular site from all others sites
by searching the cost matrix. Once the site with the
least cost is selected, the resource broker (i.e., the
submission and execution service) will schedule
the job on this site. This cost matrix is the core of
the DIANA Scheduler (and its related services that are
described in more detail in the next sections) in
selecting the optimal site for job execution. The
network cost calculated in the algorithm is used to
select the best replica of a dataset which will be used
as input to the scheduler.

3.3.5 Potential Limitations of the Algorithm

DIANA mainly relies on performance information
collected in the past in order to schedule jobs, i.e., to
“predict” the future. Therefore, the system relies on

Fig. 4 Example cost matrix
for five sites

Data Intensive and Network Aware (DIANA) Grid scheduling 51

the fact that the future is similar to the past. This is a
potential problem in all forecasting methods (includ-
ing the Network Weather Service etc). In addition,
since the cost model depends on very detailed and up-
to-date monitoring information, DIANA relies very
much on the stability, scalability and accuracy of the
underlying monitoring system.

Like many meta-schedulers DIANA uses the push
approach where jobs are actually pushed (or sent) to
computing elements. This approach has the disadvan-
tage that jobs might fail due to configuration errors at
the destination sites. Schedulers with pull approaches
take care of this problem. Another way to overcome
this is to send jobs that constantly monitor the
environment for potential errors.

3.3.6 Allocation of Weights

Depending on the nature of the scheduling problem, it
may be appropriate to give some of the cases greater
weights than others in computing frequency distribu-
tions and statistics. The way we do this is to specify
that a certain variable contains the relative weights for
each case and should be considered as a weight
variable. The goal of any weight is to prioritize or
characterize different variables according to the
chosen measure of contribution or influence. Since
the objective in weight allocations is to gauge relative
weights rather than actual weight values, arbitrary
weighting schemes can attach potentially incorrect
weights to the component variable.

Let us explain the philosophy of weight allocations
through a worked example. This will also demonstrate
suitable weights for data intensive applications and
how can we set the weight in case of high throughput
applications. Let us suppose we have a 100 GB of
data located at a site in Japan and that we have jobs
that need to access the data for processing and
analysis. We also assume that we have only this
single copy of the data across the Grid and that every
job wherever is submitted will use this data. Via an

information service we have determined that a site in
Switzerland has the greatest number of computing
cycles available for the analysis since it is the least
loaded available site and has fewest jobs in its queue.
Moreover, there are eight CPUs available in Japan
and 50 in Switzerland, and the bandwidth between
these sites is 100 MB/s. The queue size for the site in
Japan is 20 whereas that in Switzerland is two jobs
only. We also assume that the total jobs in the Grid
are 1,000 at this point in time.

We calculate the siteload by dividing the jobs in
the queue by the number of CPUs (assuming CPUs
on all the sites have equal processing power). Now
there are two options for data analysis: either we
should submit the job to the site in Japan where the
required data is available or we should transfer the
data to the site in Switzerland where the computing
capacity is available. The scheduler must decide
where this job should be placed so that it has the
least overall execution time. We check the compute
cost and data transfer cost to enable the decision. The
job is data intensive therefore data transfer should get
a higher weight relative to others. The scheduler
assigns an equal weight to the compute cost on each
site. The network cost should be ignored for the time
being since we assume that it will remain constant
between the two sites. Since we are making a pre-
processing decision, we will take input transfer only.
We can ignore the executable transfer cost since this
data is minimal as compared to input data. RTT and
Loss can be ignored since the network seems to be
pretty stable. Normally a weight assigned to one
variable will be the same for all sites otherwise we
cannot compare the strengths or weakness of a site.
Weights are assigned in the range 1–20 where 20
represents a very significant factor and 1 a very
insignificant factor. In this example, the site load is a
very important factor since it decides how long a job
will wait until a job gets a CPU so we have allocated
it a maximum value of 20. Further work is required to
simulate the exact behaviour when we vary the
weights for different variables and check the outcome

Fig. 5 Weight allocation
and cost

52 R. McClatchey, et al.

on the scheduling optimization. Since in this worked
example the data transfer cost for Japan is zero, we
have assigned a minimal weight of 10 to the same
variable for Switzerland site as otherwise it can bias
the whole comparison.

From the calculation in Fig. 5, it is clear that
the cost for job placement in Switzerland is much
higher than the one in Japan and we should send
the job towards the data even if better computing
cycles are available at the site in the Switzerland.
We see that it is the data placement cost which
has reduced the chances of selection for the site in
Switzerland. Before actually placing the job on a site
in Japan, we have to check if there is any other site
where the cost combination is smaller. We have
realized that although there is no better site than the
one in Switzerland in terms of computation power,
the Scheduler has found a site in UK where the
bandwidth is much higher (10 Gbps) than the Japan–
Switzerland link, and we should calculate the cost of
job placement for this site. The site in the UK has
modest computing cycles (only 30) and there are 10
jobs in the queue. Consequently we need to calculate
the cost of job placement in the site in the UK.

We can see in this example that the better network
link has enabled the scheduler to select a site other
than those in Switzerland and Japan (cf. Fig. 6) and
the favoured solution is to move the data and the job
towards this site in the UK. Although this site does
not have the data and is not as powerful in compute
resources as was the case in Switzerland, its job
placement cost is still much lower than the other sites
and clearly job placement on this site will reduce the
overall execution time significantly.

4 Architecture

In the following section we describe the job schedul-
ing architecture where our previously introduced
optimization algorithm can be applied. We demon-
strate how the DIANA Scheduler is used and describe

related services that can be used by a Grid job
submission service for selecting a suitable execution
site for a job.

4.1 General Architecture

The overall architecture of the DIANA Scheduler is
shown in Fig. 7. It includes a DIANA meta-scheduler
with its interal matchmaker. The meta-scheduler uses
network information, an optimized replica provided
by a Data Location Service (see Section 5) and other
information services to make optimal scheduling
decisions. The Data Location Service makes use of
the Data Location Interface [21] to find the list of the
dataset replicas and then uses network statistics to
find the “best” replica which is then used by the
scheduler. The DIANA scheduling system is imple-
mented as a peer to peer system as discussed in [48].
It should also be noted that an external job submis-
sion/execution system needs to be used since the
DIANA meta-scheduler only provides scheduling
information but does not take care of the actual
dispatching/submission of the job to a local resource
management system. The DIANA mediates between
data providers and data requesters. The first is to
discover the available. A resource request consists of
a function to be evaluated in the context of a resource.
For example, the request “processing power>2 GHz”
will be evaluated by determining if a resource has an
attribute called processing power and if so, if the
value of this attribute satisfies the condition “Value
(processing power)>2 GHz”. If the request can be
successfully satisfied, the matchmaking service
responds with a list of ranked resources. After this,
we use the scheduling optimization algorithm to
select the best resource and a job is subsequently
scheduled to be executed on this resource.

The DIANA meta-scheduler, keeps track of the
load on the sites and selects a site which has a
minimum load and queue and has the desired data,
processing capability and network stability. Network
monitoring information is the central component of

Fig. 6 Cost calculation
for best sites

Data Intensive and Network Aware (DIANA) Grid scheduling 53

the system and all the information collected is stored
in a database and is used to make scheduling
decisions. The database collects the historical as
well as real time information to obtain a current and
previous view of the system state.

4.2 The DIANA Scheduler Interface

The DIANA scheduler provides a simple interface for
a job submission service (using JDL – Job Descrip-
tion Language [22]) for selecting a suitable Comput-
ing Element (CE) for a given data intensive job. The
JDL also helps to define the specification of where the
data will be read and where the output data needs to
be stored. These requirements are passed to appropri-
ate services such as the Data Location Service for
decision making. In order to select a certain CE for a
specific job with its data requirements, the DIANA
Scheduler has two internal methods that work in the
following manner:

1) A suitable CE is selected on the basis of computa-
tion, network and data transfer cost. The ultimate

destination of the output data is also taken into
account for selecting the best CE.

2) For the given input data to a job and computing
element DIANA finds the “best” replica (repre-
sented by a Storage Element, SE), where best
refers to the minimal data transfer and network
costs. The actual implementation of this function-
ality is done by the Data Location Service (cf.
Section 5).

In more detail, the two methods look like:

& String GetBestComputingElement ()
This method returns the best CE with respect to job

requirements. This method takes into consideration
the number of processors at a site, the load and queue
size and the distance from the submission site or from
the location where the output data is required. After
ranking them, it selects the CE that has lowest cost
which is then passed to the GetBestStorageElement
method below to find an optimal physical replica with
respect to that computing element.

& String GetBestStorageElement (String inputDataType,
String inputData , String BestComputingElement)

Best Execution site

Local Resource
Management System

(LRM)

Job Execution Engine

Job Submission Engine

U.I

Data
 Location

Service

Data
 Location

Interface

Catalogs

Network
Monitoring
Information

DIANA meta-scheduler

Job Submission

Information
Service

Matchmaker

Fig. 7 A generic job sub-
mission architecture with
the DIANA Scheduler and
the Data Location Service
that are used for scheduling
data intensive jobs

54 R. McClatchey, et al.

This is used to locate the best replica of a dataset.
These replicas are ranked with respect to a CE which
is selected in the GetBestComputingElement method.
This CE is passed as a third parameter (BestCompu-
tingElement) to this method.

5 Data Location Service

Figure 8 shows the architecture of the Data Location
Service (DLS) implementing the Data Location
Interface as described in [21]. In this figure, three
instances of the service are shown to illustrate that
there can be more than one instance of the DLS
running at different locations in the Grid. We can
obtain the list of these instances through the Discov-
ery Service which is the point of contact to access and
query the DLS. If a client (in our case the DIANA
Scheduler) needs to get information about the datasets
stored in SEs and registered in replica catalogues
recognised by the DLS, the client first contacts the
Discovery Service which gives a list of all the
locations where a DLS is running. Then the client
queries the DLS by passing a logical name of the
dataset whose physical location is desired. The DLS
is a light-weight Web service that gathers information
from the Grid’s network monitoring service and
performs access optimization calculations based on
this information.

The DLS provides optimal replica information on
the basis of both faster access and better network
performance characteristics. The DLS is fault tolerant,
so that when one instance goes offline, a client
(service) is still able to work by using another
instance of the service. Each of the Grid catalogues
is queried by the DLS to find all locations where the
requested dataset is available. The service returns a
paginated list of dataset locations to the caller. The
result of a call to this service is sorted either by the
reliability of the datasets which is provided by the
network cost and network features such as bandwidth,
packet loss etc, or by the “closeness” determined by
some network ping time or other network measure-
ments. The DLS also evaluates the network costs for
accessing a replica. For this it uses information such
as estimates of dataset transfer times based on
network monitoring statistics and the replica having
the least access and transfer cost is selected.

The Data Location Service uses the DLI [21] to
access a replica’s information from the various
catalogs. A unique feature of the DLI is that it can
locate datasets as well as individual files (depending
on the underlying replica catalog). A dataset is
considered to be an atomic unit of data hat is defined
within a Virtual Organisation (VO). Furthermore, a
dataset itself can consist of several physical files but
the end-user (for example a physicist) normally only
knows the dataset concept. Due to the distributed

DIANA
Scheduler

Data Location
Service

Data Location
Service

Data Location
Service

Discovery
Service

Replica
Catalogue

Data Location Interface

Job Description

Replica
Catalogue

Data Location Interface

Replica
Catalogue

Data Location Interface

Fig. 8 Interaction of the
DIANA Scheduler with the
Data Location Service

Data Intensive and Network Aware (DIANA) Grid scheduling 55

nature of the Grid, the files may be replicated at many
Grid sites, and the Grid catalogs ensure that the user
application does not need to know which locations
these are. The Grid catalogs make sure that the file
names and associated metadata are properly accessi-
ble and secured for the end-user application.

In order to fully include the Data Location
Interface into the scheduler, changes were required
on the client as well as on the server side. The main
change is the integration of the DLI client into the
matchmaker. DLI calls follow generally accepted Web
service standards.

6 Implementation Details

The whole system (that is the DIANA Scheduler with
the DLS) is implemented in Java although compo-
nents and tools employed use C, Python and Perl in
addition. We use SOAP as well as XML-RPC for the
communication. MonALISA [11] is the core provider
of the peer-to-peer (P2P) behaviour in the Discovery
Service and it inherits parts of the functionality from
JINI. We selected MonaLISA since it is the only
monitoring tool which can provide the desired P2P
behaviour for DIANA. It also provides a suitable Web
service interface through which we can integrate
DIANA with other Grid services in a loosely coupled
way. We have employed PingER [12] to obtain the
required network performance information since it
provides detailed historical information about the
status of the networks. It is a very mature tool that
integrates a number of other network performance
measurement utilities to provide ‘one stop’ informa-

tion for most of the parameters. It does not provide a
P2P architecture but information can be published to a
MonaLISA repository to propagate and access it in a
decentralized manner.

DIANA makes use of a peer-to-peer network to
track the available resources on the Grid. The
current implementation makes use of three software
components for resource discovery: Clarens Web
services [13, 23] as a resource provider/consumer,
MonALISA as a decentralized resource registry, and
a peer-to-peer JINI network provided by MonA-
LISA as the information propagation system. The
peer to peer behaviour of the MonALISA is
illustrated in Fig. 9 in which it is shown how
peers communicate and their fault tolerance capa-
bility is demonstrated. The DIANA instances can
register with any of the MonaLISA peers through
the discovery service and different instances can
directly interact with each other.

7 Experimental Results

We used the GILDA test bed [26] (a test environment
for HEP Grid applications) to validate the results
taken by the deployment of the DIANA implementa-
tion as discussed in Section 6. The test bed has a
series of sites and services (such as a Resource
Broker, Information Service, data managers, Moni-
toring tool, CEs and SEs) and is located in several
sites in Europe and South America. Figure 10
describes the testbed, its constituent sites, their load
and their waiting and running jobs and storage
resources on the testbed. The resources are geograph-

C S

S S

D S

C L

M o n A L I S A J I N I
N e t w o r k

S t a t i o n
S e r v e r s

C l a r e n s D i s c o v e r y
S e r v e r s / J I N I C l i e n t s

C l a r e n s
S e r v e r s

C l i e n t s

S S S S

D S

C L C L

C S

C S

C S

Fig. 9 Clarens Servers (CS,
DS), MonALIsa Station
Servers (SS), andclients (CL)
as part of a P2P discovery
system

56 R. McClatchey, et al.

ically distributed and connected through a high
speed WAN. All of the machines run Scientific
Linux CERN. The GILDA testbed has some of the
emerging Grid-standard EGEE applications already
installed, and we made use of those components and
applications. We use the GILDA testbed to run
physics analysis applications as a proof-of-concept
demonstrator. In addition, we use the EGGE Work-
load Management System (WMS) to submit and
execute jobs that are scheduled by the DIANA
Scheduler. Note that we do not use EGEE’s match-
maker but replace it by DIANA’s services.

The main objective of our tests is to reduce
(minimize) the overall job completion time, i.e., the
elapsed wall clock time from submitting the job to the
scheduler to actually retrieving and finalising the
job on the actual computing resource (including
writing of the output data). We first submitted jobs
on the GILDA testbed without the DIANA
algorithm of Section 3 and measured the parameters
and execution times. After this, jobs are submitted
following the algorithm employed in the DIANA
Scheduler which includes the measurement of deci-
sion parameters as described in Section 3. The total
time of job execution is discussed below. Tests are
performed by submitting jobs through GILDA’s user
interface. The client machine was a Pentium based
machine with a 2.4 GHz processor and 1 GB RAM
The network card was of 100 Mbps capacity.

We take a particular CMS computation intensive
job which produces a very large amount of data. We
selected this CMS job because its execution time is of
the order of minutes otherwise as a result of varying

network characteristics, there can be a variation in
the results in the longer running jobs which can take
days.

It can be difficult to estimate the true effect of the
DIANA scheduling approach if jobs are run at
different times, and the results of various approaches
are taken at different times. In order to compare the
two approaches, we executed short duration jobs in an
almost identical environment. DIANA scheduling is
equally applicable to short and long duration jobs.
For longer jobs it is the execution time which will
vary and accordingly queue times will also increase.
The execution cost will remain the same with time
since once the job is submitted, either it is a long or
short job, it will not pre-empt until it completes its
execution. Therefore, it is not time dependant. The
same is the case for the data transfer cost: it should
remain the same either a longer job is being executed
or a shorter job is being scheduled. The only variable
which can change with time is the network cost which
can influence the data transfer cost but not the
execution times since jobs do not intercommunicate
with each other during execution. The data transfer
cost is the replication cost and has no link with the job
execution time, therefore network cost in DIANA is
equally important for longer and shorter jobs. From
here we conclude that these results, although being
presented for the short duration job, are equally
applicable to long duration jobs and therefore can be
generalized.

We submitted a varying number of jobs. First, we
submitted 25 jobs and observed their queue time and
execution time. The execution time is the wall clock

Fig. 10 A description of the GILDA Testbed (source https://gilda.ct.infn.it/)

Data Intensive and Network Aware (DIANA) Grid scheduling 57

time taken for a job that is placed on the execution
node. It does not include queue time or waiting time.
The queue time here is the sum of the time in the
meta-scheduler queue and the time spent in the queue
of the local resource manager. Then, we submitted the
same job three times and measured the queue and
execution times again. After this, we increased the
number of jobs to 50 and then gradually increased to
1,000, so that we can check the capability of the
existing matchmaking and scheduling system. We
increased the number of the jobs for two reasons.
Firstly, to check how the queue size increases and in
which proportion the meta-scheduler submits the jobs
i.e., whether jobs are submitted to some specific site
or on a number of CPUs at different locations
depending on the queue size and the computing
capability. We calculated and plotted the queue time

and investigated how it increased and decreased with
the number of jobs.

We observe that both queue and execution time
have almost similar trends. This is primarily due to
the fact that DIANA selected those sites which can
quickly execute jobs (i.e., short local queues with low
latency). The queue time is almost proportional to
execution time since if the job is running and taking
more time on the processor, the waiting time of the
new job will also increase accordingly since it will
pass more time in the queue. Although the execution
time does not include queue times but a higher
number of jobs running at a site can influence the
queue time. Furthermore, more jobs in the queue can
influence the overall job completion times (scheduling
time, queuing time and execution time) of the new
jobs since they will be competing for the resources to

Fig. 12 Execution time versus number of jobs

Fig. 11 Queue time versus number of jobs

58 R. McClatchey, et al.

get an execution slot, especially if the jobs are
composed of sub-jobs. Large jobs are divided into
small sub-jobs after a job partitioning process, and
most of the time work on the same set of the data.
They have similar characteristics and are treated as
independent jobs during scheduling, queuing and
execution stages. However, their output is returned
to the user as a single aggregated unit. These sub-jobs
are always scheduled on a single site, and the overall
time of the job depends on the execution of these sub-
jobs. Some of these jobs will be in the queue and
others will be running but the overall time of
execution will be the aggregate time when all these
sub-jobs complete their execution.

The queue time of local resource management
systems is very significant in the Grid environment
and takes a certain proportion of the job’s overall time
(cf. Fig. 11). Sometimes this is even bigger than the
execution time if the resources are scarce compared to
the job frequency. We took only a single job queue in
the meta-scheduler and we assumed that all jobs have
the same priority. In fact, the job allocation algorithm
being employed is based on a First Come First Served
(FCFS) principle. The FCFS queue is the simplest
and incurs almost no system overhead. The graph of
the queue times when the number of the jobs
changes is shown in Fig. 11. It shows that the queue
grows with an increasing number of jobs and that the

0

500

1000

1500

2000

2500

0 20 40 60 80 10
0

Time (Hours)

N
u

m
b

e
r
 o

f
J
o

b
s

Submitted Jobs

Finished Jobs

Imported Jobs

Exported Jobs

Fig. 13 Job frequency
higher than the execute
capacity of the site

Fig. 14 Replica transfer vs. network cost

Data Intensive and Network Aware (DIANA) Grid scheduling 59

number of jobs waiting for the allocation of the
processors for execution also increases. The graph
shown in Fig. 11 is based on average values of time
for varying number of jobs as mentioned before.
Improvements in the queue times of the jobs due to
DIANA scheduling are also depicted in the same
figure.

Similarly, we monitored the execution times of the
jobs. By increasing the number of the jobs, it is
evident from Fig. 12 that the overall time to execute a
job is increased. As stated earlier this optimization is
due to the better selection of the resources, especially
in the case of the sub-jobs. This time is calculated by
dividing the available computing power by the
number of jobs and is indicative of the aggregated
execution times. Only one job is executed on a CPU
at a time, and jobs can not run in parallel on that CPU
since we are following non pre-emptive scheduling
model. More CPUs on a site can execute a higher
number of (sub-)jobs and more competing jobs
clearly mean more time for a specific job to complete.
DIANA has improved the execution times of the jobs
since it selected only those sites for the job execution
which had the required data, less load, fewer jobs in
the queue and all this contributed to the execution
optimization. Otherwise the sites having a higher
number of jobs already running or heavily loaded
sites can make the execution times worse.

Figure 13 (simulation results through MONARC
simulations) shows that if the job submission fre-
quency is much higher than the site consumption rate,
the site keeps on processing jobs at a constant rate,
and the rest of the jobs are exported to other optimally
selected completion time of the jobs. The word
“overall” is used since jobs cannot execute until their
required data does not become available at the
execution site, and jobs keep on waiting in the queue
until the data is replicated to the target site. If the data
is not replicated and the job is reading data from a
remote location, then this will increase the execution
time since the job is fetching the data during its
execution. Consequently, both queue times and
execution times are affected by the replica transfer
decisions, and therefore the replica selection contrib-
utes to the overall completion time. Obviously, this is
valid only for a single user and details can be found in
[49] for a multi-user priority enabled scheduling
functionality. It is even possible for a site to export
jobs which do not have the required data locally.

It can be seen that a site can continue processing
jobs and at the same time its scheduler can migrate
other jobs to more optimal sites according to data
availability and job priority. Moreover, a site can
simultaneously allow the importation of jobs from
other sites which require data that is available on this
site or allow the exportation of jobs which can get
better execution priority or shorter queues on remote
sites. As stated earlier, we employ a non-pre-emptive
approach in our scheduling algorithm, and once a job
starts execution we do not move it.

Figure 14 shows the replica selection by the Data
Location Service which is based on the data transfer
cost. We measured the parameters required for
calculating the data transfer and network costs. Packet
loss and jitter of the sites was almost zero since the
network links between the testbed sites are rather
stable. Since most of the testbed sites are in Europe,
the RTT remains almost the same except the sites in
Brazil and China. Only bandwidth is the parameter
which varies across sites and obviously can influence
the data transfer and network costs and can dictate the
scheduler to select a dataset replica for the job. We
took three set of files of varying size to demonstrate
that against each required dataset, scheduler can select
a site having least transfer time. From Figure 14 it is
clear that for all the three cases the least transfer time
is for the site which has a highest bandwidth i.e.,
1,000 Mbps and most of the jobs use this dataset
since it reduces the overall completion time of the
jobs. The word “overall” is used since jobs cannot
execute until their required data does not become
available at the execution site, and jobs keep on
waiting in the queue until the data is replicated to the
target site. If the data is not replicated and the job is
reading data from a remote location, then this will
increase the execution time since the job is fetching
the data during its execution. Consequently, both
queue times and execution times are affected by the
replica transfer decisions, and therefore the replica
selection contributes to the overall completion time.
Obviously, this is valid only for a single user and
details can be found in [49] for a multi-user priority
enabled scheduling functionality.

In actual operating conditions for the LHC experi-
ments, there will be hundreds of jobs in the queue as
well as in the execution mode, and this means that our
scheduling system will make more evident perfor-
mance improvements than shown in the graphs above.

60 R. McClatchey, et al.

We can ascertain from the graphs that as the number
of jobs increases, DIANA has a more profound
impact on the scheduling optimization and execution
of the jobs. Since most of these jobs take the data
from the few selected locations where the replica of
that dataset exists, it is assumed that overall comple-
tion times will decrease further when thousands of
jobs take the actual input data from optimal locations
as demonstrated above. In this case, the efficiency of
the DIANA scheduling approach will increase further
since it is more suited for the environments where
huge numbers of jobs are involved and lot of data is
taken into account. Consequently, DIANA scheduling
helps to decrease the overall completion times of jobs
at a given time and therefore provides an efficient
way to optimize data intensive Grid jobs.

8 Related Work

A number of research projects are under way which
are tackling the Grid scheduling issues in general and
optimization issues in particular [28]. The most
related work that already provides a fully functional
Replica Optimization Service (ROS) is described in
[29] and [30] and is part of our previous work. The
ROS selects the best location for replicas (similar to
the DLS described in this article) based on network
and storage costs. The system was fully integrated
with EDG’s workload management system [27] and
provided much of the functionality described here.
However, the system used a “complicated” network
monitoring infrastructure that was not further main-
tained within the EGEE project and therefore the
ROS was no longer deployed. Paper [31] states that
hierarchical storage systems are the main source of
bottlenecks rather than network parameters but does
not consider the meta-scheduling in their findings.
The community scheduling framework (CSF) [33]
from Platform Computing is a meta-scheduler frame-
work which provides a consistent interface for users
into the scheduling system for a Grid. CSF is a
centralized engine and it is not intended for bulk data
transfer, rather it primarily tackles scheduling hetero-
geneities. Another similar meta-scheduler is the
STAR scheduler [34].

The PhedEX project [35] at CMS is a large-scale
data staging, transfer and data scheduling environ-
ment. However, there is no concept of job scheduling

in PhedEX, and it only does data scheduling for bulk
transfers. The Stork project [36] suggests data
placement activities are equally important to that of
computational jobs in the Grid so that data intensive
jobs are automatically queued, scheduled, monitored,
managed, and even check-pointed as is done in the
Condor project for computation jobs. When combined
Condor and Stork do both compute and data
scheduling and cover a number of scheduling scenar-
ios and policies, however the functionality of the bulk
scheduling has not been considered. Basney et al. [32]
define an execution framework which provides an
affinity between CPU and data resources in the Grid
to run applications on the CPUs which have needed
access to datasets but inherent issues and problems in
their approach remain the same as those discussed for
Condor and Stork. Nathan et al. [14] through their
simulation studies suggest a data scheduler for data
intensive scheduling but do not give any real imple-
mentation of their concept.

The GRESS [38] and Giggle [41] projects are more
like frameworks in which various algorithms can be
plugged in to test their effectiveness. They are only
replication frameworks and do not provide scheduling
frameworks. Moreover, Tenet et al. 2005 [39] state
performance results of various algorithms and give
possible scenarios in which they can increase the
scheduling efficiency. They have only evaluated the
algorithms but did not present a data intensive
scheduling solution. Nabrzyski et al. [40] outline an
AI knowledge based meta-scheduler which performs
a multi-criteria search technique while making sched-
uling decisions. Thain et al. [37] describe a system
that binds jobs and data together by binding execution
and storage sites into I/O communities. The commu-
nities then participate in the wide-area system and the
Class Ad framework is used to express relationships
between stake holders in communities, however the
policy issues are not discussed. Their approach does
cover co-allocation and co-scheduling problems but
does not deal with bulk scheduling and how this can
be managed through reservation, priority or policy.
The Nimrod-G scheduler [42] works on the principle
of deadlines that determine whether jobs are able to
complete (in a specified deadline) given the availabil-
ity of certain resources. It does not include the impact
of Grid applications on the system performance.
Chameleon [20] implements a data Grid scheduler
that takes into account both data location and

Data Intensive and Network Aware (DIANA) Grid scheduling 61

processor cycles in its decision matrix but their
algorithm is based on a ‘shortest response time first,’
and instead we aim at a network aware adaptive
algorithm which takes dynamic decisions while
scheduling data intensive jobs. The greedy scheduling
algorithms used by Chamelon have high resource cost
and other shortcomings and this is one reason why we
have used network aware adaptive algorithms for our
scheduling matrix. SPHINX [43] is a framework for
workflow management and execution on heteroge-
neous platforms and is a data intensive scheduling
engine. The AppLes project [44] uses the perfor-
mance model provided by users to schedule applica-
tions. The GrADS [45] project adopts the AppLes
scheduling methodology while taking Grid schedul-
ing decisions. Both Apples and GrADS are intended
for compute intensive applications and offer very little
to accommodate the data intensive or network aware
services.

9 Conclusions

We presented a Data Intensive and Network Aware
(DIANA) scheduling technique in this paper. DIANA
takes into consideration data, network and computa-
tion power when making scheduling decisions. We
proposed a scheduling approach to optimize the
execution time of such jobs. We created a scheduling
optimization algorithm which takes all three costs and
creates a global cost matrix which produces an overall
cost for connected Grid sites (and therefore their
nodes). The site having the least cost is selected for job
execution. We also created a Data Location Service
which selects the best physical replica of a dataset.

We implemented the system as a peer-to-peer
platform, and our results suggest that there is
considerable improvement in the queue as well as
execution time of the jobs. We tested the system with
a number of jobs, and concluded that system
efficiency increases with the number of submitted
jobs. This system is efficient in situations where a
huge number of jobs are in queues, are data intensive
and where the system is complex. The same is the
case for the execution time since this scheduling
approach makes intelligent decisions about the selec-
tion of the execution site, and the final decision is
made on the basis of an overall cost. The system is
scalable and fault tolerant. Overall results suggest that

the scheduling process is optimized as a result of this
research and queue and overall execution times are
significantly reduced. Some known problems and
potential drawbacks with the system remain the
unreliable network conditions which change dynam-
ically and can influence the scheduling decisions.
Similarly, the load prediction at a site is also dynamic
and the least loaded site at a moment can become
overloaded the next moment due to bulk submission.
Since we use non pre-emptive mode of execution,
once a jobs gets a CPU, we cannot abort and move the
job to other site.

Our future direction is to test the system under
various complex scenarios and we particularly want
to test the system on a larger test bed, since GILDA is
just an experimental environment. On the other hand,
the LHC Computing Grid (LCG) testbed has a huge
number of resources, data and many real applications
are deployed. These applications will take input data
as well as will produce huge amounts of output data
and will help us tune the system further. In addition,
we also want to conduct some simulation studies of
this type of scheduling scenarios so that we can
compare the DIANA scheduling approach with the
simulated behaviour which should help us further
optimize the system. We also plan to explore with
simulation/emulation the effect of changing the
weights on application performance and want to make
weight selection as easy as possible for the user, if not
automatic.

References

1. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C.,
Martin, S., Smith, W., Tuecke, S.: A resource management
architecture for metacomputing systems. In: 4th Workshop
on Job Scheduling Strategies for Parallel Processing.
Orlando, FL, 1998 (March 30)

2. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid. In: International
Conference on High Performance Computing in Asia–
Pacific Region (HPC Asia 2000). Beijing, China, 2000
(IEEE Computer Society)

3. Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds): Grid
Resource Management. Kluwer, Boston, MA (2003)(Fall)

4. Andretto, P., Borgia, S., Dorigo, A., Gianelle, A.,
Mordacchini, M., et al.: Practical approaches to Grid
workload & resource management in the EGEE Project.
In: CHEP 2004, Interlaken, Switzerland, 2005

62 R. McClatchey, et al.

5. European Data Grid Project http://eu-datagrid.web.cern.ch/
eu-datagrid/

6. Huedo, E., Montero, R.S., Llorente, I.M.: A framework for
adaptive execution on Grids. Softw. Prac. Exp. 34, 631–
651 (2004)

7. Sun Grid Engine, http://www.sun.com/software/Gridware/
8. Basney, J., Livny, M., Mazzanti, P.: Utilizing widely

distributed computational resources efficiently with execu-
tion domains. Comput. Phys. Commun. 140, 246–252
(2001)

9. Brooke, J., Fellows, D., MacLaren, J.: Resource brokering:
the EUROGRID/GRIP Approach. In: UK e-Science All
Hands Meeting, Nottingham, UK, 2004 (31 Aug.–3 Sep)

10. http://www.glite.org/, May 2006.
11. Legrand, I.: MonaLIsa – Monitoring agents using a large

integrated service architecture. In: International Workshop
on Advanced Computing and Analysis Techniques in
Physics Research, Tsukuba, Japan, 2003 (December)

12. Cottrell, L., Matthews, W.: Measuring the digital divide
with PingER, In: Second round Table on Developing
Countries Access to Scientific Knowledge, Trieste, Italy,
2003 (Oct.)

13. Thomas, M., et al.: JClarens: A Java framework for
developing and deploying web services for Grid comput-
ing. In: ICWS 2005, FL USA, 2005

14. Rang Nathan, K., Foster, I.: Decoupling computation and
data scheduling in distributed data-intensive applications.
In: International Symposium on High Performance Distrib-
uted Computing (HPDC-11), Edinburgh, Scotland, 2002
(July)

15. CMS Production, http://cmsdoc.cern.ch/cms/production/
www/html/general/

16. Fruhwirth, R., Regler, M., Bock, R. K., Grote, H., Notz, D.:
Data analysis techniques for high-energy physics. Cam-
bridge University Press, Cambridge, MA (ISBN:
0521635489, p121)

17. Holtman, K.: HEPGRID2001: A model of a virtual data Grid
application. In: Proc. of HPCN Europe 2001, Amsterdam,
LNCS 2110, p. 711–720. Springer, Berlin Heidelberg New
York (2001)

18. Mathis, Semke, Mahdavi, Ott: The macroscopic behaviour
of the TCP congestion avoidance algorithm. Comput.
Commun. Rev. 27(3), 62–82 (1997) (July)

19. Jin, H., Shi, X., et al.: An adaptive Meta-Scheduler for
data-intensive applications. International Journal of Grid
and Utility Computing 1(1), 32–37 (2005)

20. Park, S., Kim, J.: Chameleon: a resource scheduler in a data
Grid environment. In:Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, Tokyo, 2003

21. Stockinger, H., Donno, F., Eulisse, G., Mazzucato, M.,
Steenberg, C.: Matchmaking, Datasets and Physics Analy-
sis, Workshop on Web and Grid Services for Scientific Data
Analysis (WAGSSDA). IEEE Computer Society, Olso,
Norway (2005) (June 14)

22. Pacini, F.: Job Description Language HowTo. http://
server11.infn.it/workload-grid/docs/DataGrid-01- TEN-
0142-0 2.pdf, Oct. (2003)

23. Steenberg, C., et al.: The Clarens Grid-enabled Web
Services Framework: services and implementation, CHEP
2004 Interlaken Switzerland.

24. Les Cottrell, R., Ansari, S., Khandpur, P., Gupta, R., Hughes-
Jones, R., Chen,M.,McIntosh, L., & Leers, F.: Characterization
and evaluation of TCP and UDP-based transport on real
networks. In: Protocols for Fast Long-Distance networks, Lyon,
France, 2005 (Feb.).(SLAC-PUB-10996)

25. Matthews, W., & Cottrell, L.: Achieving high data through-
put in research networks. In: CHEP 2001, China, 2001

26. Andronico, G., Ardizzone, V., Barbera, R., Catania, R.,
Carrieri, A., Falzone, A., Giorgio, E., La Rocca, G.,
Monforte, S., Pappalardo, M., Passaro, G., Platania, G.:
GILDA: The Grid INFN Virtual Laboratory for Dissemina-
tion Activities. In: International Conference on Testbeds and
Research Infrastructures for the Development of networks
and Communities (Tridentcom 2005), Trento, Italy, 2005
(pp. 304–305)

27. Andreetto, P., et.al.: Practical approaches to Grid workload
& resource management in the EGEE Project. In:CHEP
2004, Interlaken, Switzerland, 2004

28. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and
survey of Grid resource management systems for distribut-
ed computing. Softw. Pract. Exp. 32(2), 135–164 (2002)
(February)

29. Bell, W., Cameron, D., Capozza, L., Millar, A.P.,
Stockinger, K., Zini, F.: Design of a replica optimisation
framework. Technical report, DataGrid-02-TED-021215,
Geneva, Switzerland, 2002 (December)

30. Cameron, D., Casey, J., Guy, L., Kunszt, P., Lemaitre, S.,
McCance, G., Stockinger, H., Stockinger, K., et al.: Replica
management in the EU DataGrid Project. International
Journal of Grid Computing, 2(4), 341–351 (2004)

31. Stockinger, K., Stockinger, H. et al.: Access cost estimation
forunifiedGridstoragesystems. In:4thInternationalWorkshop
onGridComputing (Grid2003), Phoenix,Arizona, 2003. IEEE
Computer Society, Los Alamitos, CA (2003)(November 17)

32. Basney, J., Livny, M., Mazzanti, P.: Utilizing widely
distributed computational resources efficiently with execu-
tion domains. Comput. Phys. Commun. (2000)

33. http://sourceforge.net/projects/gcsf/
34. Lauret, et al.: The STAR Unified Meta-Scheduler project, a

front end around evolving technologies for user analysis
and data production. In: CHEP2004, Interlaken Switzer-
land, 2004

35. Barras, T., et al.: The CMS PhEDEx system: a novel
approach to robust Grid data management, UK All Hands
Meeting, Nottingham, UK, 2005

36. Kosar, T., Livny, M.: A framework for reliable and efficient
data placement in distributed computing systems, To appear
in J. Parallel Distrib. Comput. 65(10), 1146–1157 (2005)

37. Thain, D., et al.: Gathering at the well: creating commu-
nities for Grid I/O. In: Supercomputing 2001, Denver, CO,
2001 (November)

38. Zhao, Y., Hu, Y.: GRESS – a Grid Replica Selection
Service. In: ISCA 16th International Conference on Parallel
and Distributed Computing Systems (PDCS-2003), Reno,
Nevada, 2003

39. Tan, C., Mills, K.: Performance characterization of decen-
tralized algorithms for replica selection in distributed object
systems. In: International Workshop on Software and
Performance, Palma de Mallorca, Spain, 2005 (July 12–14)

40. Nabrzyski, J.: Knowledge-based scheduling method for
Globus. In: Globus Retreat, Redondo Beach, CA, 1999

Data Intensive and Network Aware (DIANA) Grid scheduling 63

http://eu-datagrid.web.cern.ch/eu-datagrid/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.sun.com/software/Gridware/
http://www.glite.org/
http://cmsdoc.cern.ch/cms/production/www/html/general/
http://cmsdoc.cern.ch/cms/production/www/html/general/
http://server11.infn.it/workload-grid/docs/DataGrid-01- TEN-0142-0 2.pdf, Oct.
http://server11.infn.it/workload-grid/docs/DataGrid-01- TEN-0142-0 2.pdf, Oct.
http://server11.infn.it/workload-grid/docs/DataGrid-01- TEN-0142-0 2.pdf, Oct.
http://sourceforge.net/projects/gcsf/

41. Chervenak, A., et al.: Giggle: a framework for constructing
scalable replica location services. In: Supercomputing
2002, Baltimore, MD, 2002 (Nov.16–22)

42. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An
architecture of a resource management and scheduling
system in a global computational Grid. In:HPC Asia 2000,
Beijing, China, 2000 (May 14–17)

43. Uk, J., et al.: SPHINX: A scheduling middleware for aata
intensive applications on a Grid. In: CHEP 2004, Inter-
laken, Switzerland, 2004

44. Application Level Scheduling (AppLeS) http://apples.ucsd.
edu/.

45. Daily, H., et al.: A decoupled scheduling approach for the
GrADS Program Development Environment. In: Super-
computing 2002, Baltimore, MD, 2002 (November 16–22)

46. Cottrell, R.L., Logg, C.: A new high performance network
and application monitoring infrastructure. Technical report
SLAC-PUB-9202, SLAC (2002)

47. Mathis, M., Allman, M.: A framework for defining empiri-
cal bulk transfer capacity. RFC 3148, USA (2001) (July)

48. Anjum, A., McClatchey, R., Stockinger, H., Ali, A.,
Willers, I., Thomas, M., Sagheer, M., Hasham, K., Alvi, O.:
DIANA Scheduling Hierarchies for Optimizing Grid Bulk
Job Scheduling. Accepted by 2nd IEEE Int. Conference
on e-Science and Grid Computing (e-Science 2006), IEEE
Computer Society Press, Amsterdam, The Netherlands,
Dec. 2006.

49. Anjum, A., McClatchey, R., Ali, A., Willers, I.: Bulk
Scheduling with the DIANA Scheduler. IEEE Transactions
on Nuclear Science, 53(6), December 2006

64 R. McClatchey, et al.

http://apples.ucsd.edu/
http://apples.ucsd.edu/

	Data Intensive and Network Aware (DIANA) Grid Scheduling
	Abstract
	Background
	Problem Description
	CMS Physics Analysis Use Case
	Wide-Area Scheduling

	Scheduling Optimization Algorithm
	Input Parameters
	Optimization Objectives
	Cost Estimators
	Network Cost
	Computation Cost
	Data Transfer Cost
	Total Cost
	Potential Limitations of the Algorithm
	Allocation of Weights

	Architecture
	General Architecture
	The DIANA Scheduler Interface

	Data Location Service
	Implementation Details
	Experimental Results
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

