
F

S
a

b

c

a

A
R
R
2
A
A

K
C
F
D

1

c
p
i
i
s
t
d
w
t
o
u
n
m
p

D

(
n

0
h

The Journal of Systems and Software 86 (2013) 1107– 1123

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

ederated broker system for pervasive context provisioning

aad Liaquat Kiania, Ashiq Anjumb, Michael Knappmeyerc, Nik Bessisb,∗, Nikolaos Antonopoulosb

Faculty of Environment and Technology, University of the West of England, Bristol, UK
School of Computing and Mathematics, University of Derby, Derby, UK
Ratiodata IT-Lösungen & Services GmbH, Münster, Germany

 r t i c l e i n f o

rticle history:
eceived 21 September 2012
eceived in revised form
4 November 2012
ccepted 27 November 2012
vailable online 6 December 2012

eywords:
ontext provisioning
ederated broker model

a b s t r a c t

Software systems that provide context-awareness related functions in pervasive computing environ-
ments are gaining momentum due to emerging applications, architectures and business models. In
most context-aware systems, a central broker performs the functions of context acquisition, processing,
reasoning and provisioning to facilitate context-consuming applications, but demonstrations of such
prototypical systems are limited to small, focussed domains. In order to develop modern context-aware
systems that are capable of accommodating emerging pervasive/ubiquitous computing scenarios, are
easily manageable, administratively and geographically scalable, it is desirable to have multiple brokers
in the system divided into administrative, network, geographic, contextual or load based domains. Con-
text providers and consumers may be configured to interact only with their nearest, relevant or most
istributed systems design convenient broker. This setup demands inter-broker federation so that providers and consumers attached
to different brokers can interact seamlessly, but such a federation has not been proposed for context-
aware systems. This article analyses the limiting factors in existing context-aware systems, postulates
the design and functional requirements that modern context-aware systems need to accommodate, and
presents a federated broker based architecture for provisioning of contextual information over large
geographical and network spans.

© 2012 Elsevier Inc. All rights reserved.
. Introduction

Ubiquitous computing is one of the latest steps in evolution of
omputing paradigms, which models integration of information
rocessing into everyday effects and activities without explicit

nvolvement of users. Weiser’s vision (Weiser, 1991) of the prox-
mate future depicts a ubiquitous world where interconnected
mart entities are able to provide information on ‘anything, any
ime, anywhere’. Since the inception of this concept nearly two
ecades ago, ubiquitous computing research has been dealing
ith the possibilities of future; its progress has faced not only

echnological challenges but is also concerned with anticipation
f future trends of human behaviour. Central to the vision of the
biquitous computing environment is the processing and commu-

ication of information between smart entities. The information
ay relate to inhabitants of the environment, smart appliances or

hysical characteristics of the environment itself and is labelled as

∗ Corresponding author at: Room E509, Kedleston Road, University of Derby,
erby, UK. Tel.: +44 01332592108; fax: +44 01332597741.

E-mail addresses: saad2.liaquat@uwe.ac.uk (S.L. Kiani), a.anjum@derby.ac.uk
A. Anjum), michael.knappmeyer@ratiodata.de (M. Knappmeyer),
.bessis@derby.ac.uk (N. Bessis), n.antonopoulos@derby.ac.uk (N. Antonopoulos).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.11.050
context. Context-aware systems aim to use the knowledge of user
and environment context to proactively provide services relevant
to the user’s situation.

Context management toolkits and middleware frameworks
have been developed to assist in developing context-aware appli-
cations and extending their functional range, e.g. Hallsteinsen et al.
(2012). A context-aware system usually comprises several context
management functionalities. Most important are acquisition, rea-
soning and distribution of contextual information related to entities
(user, device, environment, network, etc.). Within this simple def-
inition, we can divide the system components involved in context
provisioning into context managers, context consumers, context
providers or a combination thereof. Furthermore, we define the
term context provisioning to encompass the set of functions that
facilitate the communication and coordination of contextual infor-
mation amongst the context consumers, providers and managers.
The provisioning of contextual information in context-aware sys-
tems has usually been carried out through context brokers, which
facilitate context-consuming components in the system to retrieve
context from context-provisioning components. The mechanism of

context provisioning through context brokers, shortcomings in
existing realisations of this mechanism and possible improvements
to accommodate emerging ubiquitous computing scenarios form
the core focus of this article.

dx.doi.org/10.1016/j.jss.2012.11.050
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:saad2.liaquat@uwe.ac.uk
mailto:a.anjum@derby.ac.uk
mailto:michael.knappmeyer@ratiodata.de
mailto:n.bessis@derby.ac.uk
mailto:n.antonopoulos@derby.ac.uk
dx.doi.org/10.1016/j.jss.2012.11.050

1 ems a

d
t
c
d
l
r
d
t
d
c
e
c
a
w
d
t
r
o
p
s

m
t
c
u
b
d
d
i
s
s
s
t
m
a

i
b
t
c
i
i
N
o
a
a
t
s
b
s
o
d
a
c
c
d
d
s
i
t
u
o
f
f
d

108 S.L. Kiani et al. / The Journal of Syst

A number of prototypical context-aware systems have been
eveloped that showcase context-awareness in one domain or
he other, but large-scale context provisioning and adoption of
ontext-aware applications and services has proved elusive so far
ue to multi-faceted challenges in this area. One of the main chal-

enges is the diversity of settings in which the context-awareness
elated research takes place, highlighted by the heterogeneity of
evices and fluid pattern of human behaviour that evolves with
he changing technological landscape. Although laboratory settings
o provide a controlled environment, the reality remains that the
ommunication and processing infrastructure is inherently het-
rogeneous across the complete range of devices. Moreover, the
onsumers and producers of contextual information (applications
nd services) will be spread across large geographical and net-
ork spans as smart ubiquitous environments take hold in the
igital ecosystem. This facet of smart environments, coupled with
he increasing pervasiveness of mobile devices, their increasing
ole in human-computer interaction and the inherent mobility
f device-based context consuming and producing components,
oints towards an increasingly distributed and large-scale provi-
ioning function of context-aware systems.

Existing context-aware systems are not ideally placed to
eet the discussed domain challenges and facilitate their use in

he emerging ubiquitous computing scenarios. Prominent short-
omings in existing systems include (1) the predominant trend of
tilising a central context management component, e.g. a context
roker, for coordinating context-awareness related functions, (2) a
ominant focus on designing for a static topology of the interacting
istributed components, (3) the presumption of a single admin-

strative domain or authority and context provisioning within a
ingle administrative, geographic or network domain, (4) a limited
upport for accommodating mobility of context providing and con-
uming components, and (5) a lack of standardisation with respect
o a simple, flexible and extensible context model that can accom-

odate contextual information exchange between heterogeneous
ctors.

The common design approach of utilising a centralised manag-
ng component for coordinating the flow of contextual information
etween context providers and consumers results in an architec-
ure that places a functionally critical burden on the management
omponent. A consequence of this design approach is the manag-
ng component becomes the hub of all functional activities, which
ncreases the coupling between context related clients and services.
ot considering the possibility of dynamic changes in the topology
f interconnected components, designing a system which assumes
ll operating procedures will fall under the control of a single
dministrator, and a data model that does not facilitate the contex-
ual information exchange between heterogeneous actors (devices,
ensors, other digital artefacts, etc.) of varying computational capa-
ilities are the major shortcomings of existing context provisioning
ystems. Furthermore, existing systems target context provisioning
f contextual information within a limited geographic or network
omain, which disregards the practical constraints (availability,
uthorisation, quality of service, etc.) that come into play when a
ontext-aware system has to operate in a real-world setting where
onsumers and providers of contextual information are likely to be
istributed across large geographical spans and multiple network
omains. The limitations of existing systems with respect to the
cale of their coverage are compounded by the increasing mobil-
ty of modern users of such systems, which results in mobility of
he context providing and consuming components that execute on
ser devices. The increasing participation of devices and sensors

f varying computational capabilities in context-awareness related
unctions requires a context model that is not only simple enough
or the lowest common denominator amongst the heterogeneous
evices, but flexible and extensible enough to accommodate newer
nd Software 86 (2013) 1107– 1123

domain concepts as and when they become part of the contextual
knowledge base. Due to the narrow domain focus of most of the
existing context-aware systems, there is also room for improve-
ment in terms of standardising such a context model.

This article describes a federated broker based context provision-
ing system that aims to address the listed challenges and overcome
the shortcomings in existing context-aware systems. The principle
theme of our system is based on the distribution of the con-
text management responsibility amongst an arbitrary number of
inter-connected and cooperative context brokers. Such a federated
broker model has not been demonstrated in the domain of context-
aware systems. Each context broker in our system, prototyped as
the Context Provisioning Architecture, manages a subset of clients
(context consumers and providers), thus reducing the functional
burden on individual context brokers. The distributed brokers form
an overlay network of brokers (federation) by exchanging infor-
mation about their individual clients and facilitating their clients
in exchanging contextual information with clients of remote con-
text brokers. The segregation of brokers in the federation improves
not only the load scalability in the overall system, but is also well
suited for providing administrative scalability whereby different
brokers, and hence their local clients, can be associated with dif-
ferent administrative authorities. The federated context brokers
provide asynchronous communication interfaces to their clients
and neighbouring brokers for exchanging contextual information
and administrative information related to their registered clients
and their capabilities. In addition to decoupling the interacting
components, this communication model also accommodates the
topology changes due to mobile or disappearing/re-appearing com-
ponents (brokers or their clients) by propagating such changes
across the federated brokers. Furthermore, an XML based context
model is utilised to specifically address the simplicity, flexibility,
extensibility and heterogeneity constraints of this domain dis-
cussed earlier in the section.

We present the work related to the core problem areas in Section
2. Based on the related work, we also categorise the key issues in
state of the art, which serve as our motivation for the develop-
ment of new concepts and the creation of an innovative federated
broker model for a distributed context provisioning system. The
functional description of our proposed architecture, the context
model, methods for facilitating the inclusive role of mobile devices
and the inter-broker federation model are presented in Sections
3–6. We provide an analysis and evaluation of our model, in light of
key issues and challenges, in Section 7 and conclude the discussion
in Section 8.

2. Related work

Context-aware systems can be characterised by the set of
functions they perform, which include data acquisition, context
synthesis, context storage, context coordination and communica-
tion (provisioning) and serving as an application/service platform.
The execution of these functions, under a shared model of con-
text and its representation, has mostly been realised using context
broker based architectures. In the context broker approach, the
broker performs the functions of collecting and synthesising con-
text from sensor data and other information sources. Clients of
the broker access it remotely to access context or raw data to
process locally. This approach is useful for accommodating low-
capability clients by sharing the processing burden and sensing
resources. The context broker architecture allows remote com-

ponents to access context but the data acquisition function is
restricted by the limitation in communication range of sensors and
other information sources. To overcome this shortcoming, the con-
text broker architecture has evolved further in terms of distribution

ems a

o
s
a
s
c
f
b
t
t
d
c
i

t
e
c
l
c
t
t
f
m
a
s
p
w
b
c
C
(
u
t
b
t
t
c
m
s
r
t
r
f
m
r
i
i
d

o
m
w
a
n
c
p
m
t
n
n
a
a
t
c
t
w
a

S.L. Kiani et al. / The Journal of Syst

f its constituent components, e.g. distribution of the data acqui-
ition function into multiple remote data acquisition modules that
cquire data from their assigned sources and push it to the central
erver. This further distribution of functionality has transformed
ontext-aware systems into truly distributed systems where each
unction may execute on different hosts in a network and a central
roker coordinates the flow of information and control between
hese components. Other factors that have influenced the adop-
ion of this architecture include availability of a large number of
istributed information sources and sensors, dedicated reasoning
omponents, mobility of modern day users and abundance and
ncreased usage of mobile devices.

Distributing functionality into separate components in such sys-
ems results in greater flexibility and changeability. However, if
ach distributed component handles communication with other
omponents itself, the system faces several dependencies and
imitations. For example, the system becomes dependent on the
ommunication mechanism used, clients need to know the loca-
ion of servers before they can function fully, services are needed
o provide discovery and lookup of other components and usually
orce distributed components to be restricted to a common imple-

entation technology. To overcome such limitations and provide
 design time solution for the potential issues raised by the con-
traints, Buschmann et al. (1995) proposed the Broker architectural
attern. Broker architecture in its various forms exists as a middle-
are technology that manages communication and coordination

etween distributed objects or software components. Brokering
omponents have also been employed in context-aware systems,
oBrA (Chen, 2004), MobiLife (Kernchen et al., 2006) and C-CAST
Moltchanov et al., 2010) being prominent demonstrations of the
se of context brokers. However, the use of brokers in these sys-
ems is different from the concept of brokers advocated by the
roker pattern. The main difference lies in the amount of func-
ional responsibility assigned to these brokers, e.g. in case of CoBrA,
he broker is an agent that contains a context acquisition module,
ontext knowledge base, context reasoning engine and a privacy
anagement module. Similarly, the context broker in the C-CAST

ystem is responsible for storing context, providing querying, entity
esolution, context caching and user management services in addi-
ion to context query resolution. With this collection of functional
esponsibilities the context brokers in these systems resemble
ull-fledged context servers containing most of the context-aware

iddleware rather than representing the lightweight brokering
ole envisaged by the broker architectural pattern. The possibil-
ty of federating multiple active spaces together has been proposed
n the Gaia middleware but realisation of the concept has not been
emonstrated (Román et al., 2002, p. 9).

The federation of context brokers effectively distributes the set
f context providing and consuming clients in the system between
ultiple context brokers. Because the clients normally interact only
ith their local broker, their contextual queries (subscriptions)

nd responses (notifications) have to be routed across the overlay
etwork of brokers. The routing of these subscriptions and notifi-
ations is based on their content and hence content-based routing
rotocols can be effectively utilised for this purpose. Flooding is the
ost basic form of routing in which a broker forwards a notifica-

ion received from a local client or a neighbouring broker to all other
eighbours. Flooding based routing is simpler to implement but is
ot optimal. The main advantage of flooding is the increased reli-
bility provided by this routing method. The notification messages
re sent at least once to every broker, guaranteeing that the notifica-
ions will reach at least the local broker of the intended destination

lient. In addition, a notification message will reach the destina-
ion through the shortest possible path. However, flooding is very
asteful in terms of the total bandwidth utilised in the network, e.g.

 notification message may only have one destination but it is sent
nd Software 86 (2013) 1107– 1123 1109

to every broker, increasing the maximum load placed upon the net-
work. Simple filter-based routing (Mühl, 2002, p. 47) improves upon
the trivial flooding technique by updating the broker routing con-
figurations in response to subscribing and unsubscribing clients.
When a client sends a subscription message to its local broker, the
broker floods the information to its neighbouring brokers. Subse-
quently any notification that matches a subscription is only sent
to the relevant broker(s) based on the information in the flooded
subscription. Therefore, in contrast to flooding based routing, only
subscriptions are flooded into the overlay network of brokers while
notifications are forwarded only to matching brokers. Using adver-
tisements, which can limit the propagation of subscriptions to those
brokers where matching notifications are potentially produced,
the efficiency of the simple filter-based routing approach can be
enhanced. This extension is employed in the Context Provisioning
Architecture. Other inter-broker routing mechanisms that may be
used include identity-based routing, covering-based routing and
merging-based routing (Carzaniga, 1998).

Another issue that arises in federated broker based systems is
that of mobility of components (clients, brokers), which affects the
topology of the overall network. Research in subscription and noti-
fication routing systems has mostly focussed on static topologies
(Podnar and Lovrek, 2004) where mobility concerns are delegated
to the applications (consumers, producers of events), e.g. in JEDI,
which uses explicit moveIn and moveOut operations to relocate
clients. Hence, mobility management is delegated to the applica-
tions/clients and not controlled by the brokers. Podnar and Lovrek
(2004) propose an approach for managing mobility in which the
brokers store persistent notifications until their validity period
expires. Huang and Garcia-Molina (2004) have also suggested algo-
rithms for managing mobility in single and multiple broker based
systems but such algorithms have not been incorporated and ana-
lysed in context-aware systems.

The context model used in a federated broker based system, in
which individual brokers may be under different administrative
domains involving heterogeneous clients, is critical to the interop-
erability of the overall system. Korpipää et al. (2003) have specified
some basic requirements for designing a context model in terms of
simplicity (for easy manipulation and reasoning), flexibility (modi-
fication of existing concepts), generality (range of concepts that can
be modelled) and expressiveness (encompassing the properties of
the modelled concepts). ContextML, the XML based model used in
the Context Provisioning Architecture, meets these requirements
to an acceptable degree. ContextML schema has its roots in the
earlier efforts of the Context Representation Framework (MobiLife
Project, 2006) of the MobiLife project. Further extension to the
original ContextML model has been carried out in the Context Cast-
ing (C-CAST) project; our earlier work (Knappmeyer et al., 2010b)
describes the basic ContextML model used in C-CAST. Additions
to ContextML carried out in the C-CAST project primarily focus on
extending the model’s capability in representing real world con-
textual concepts. We have further extended the basic ContextML
model developed in earlier works to be used in a publish/subscribe
system such that domain concepts can be subscribed to, published
and notified.

The examination of state of the art shows that existing
context-aware systems do not holistically address the issues of het-
erogeneity of involved actors, scalability, limited domain focus,
simple and flexible context model, and federation between cross-
domain brokers. This observation serves as the motivation for the
development of new concepts and the creation of an innovative
model for a federated broker based context-provisioning system.

The following sections elaborate a functional description of our
design for such a system, the context model, methods for facilitat-
ing the mobility of components, and discuss how these individual
challenges are overcome.

1 ems a

3

a
s
s
a
s
c
a
e
c
o
e
t
c

p
t
b
p
s
p

C

C

C

i
o
f
c
i
f
q

110 S.L. Kiani et al. / The Journal of Syst

. Federated broker model for context provisioning

Based on identification of the key issues in designing context-
ware systems capable of large-scale context provisioning, this
ection presents the design and architecture of the Context Provi-
ioning Architecture. We present our case for using a broker based
rchitecture and relate to the utilisation of brokers in distributed
ystems in general and context-aware systems in particular. Main
omponents of the Context Provisioning Architecture are discussed
nd the context-modelling scheme used in the system is also
xplained. Specialised functions, such as caching and broker dis-
overy are also described. We present a case for the federation
f context brokers that specifies a coordination model for context
xchange between components distributed across the brokers in
he federation. Special cases of disappearing brokers and mobile
lients are also highlighted.

The Context Provisioning Architecture is based on the
roducer–consumer model in which context related components
ake the roles of context providers or context consumers. These
asic entities are interconnected by means of context brokers that
rovide routing, event management, query resolution and lookup
ervices. The following paragraphs describe these three main com-
onents of the architecture.

ontext consumer A context consumer (CxC) is a component (e.g.
a context based application) that uses context data. A CxC
can retrieve context information by sending a subscrip-
tion to the context broker (CxB) or a direct on-demand
query and context information is delivered when and if it
is available.

ontext provider The context provider (CxP) component provides
context information. A CxP gathers data from a collec-
tion of sensors, network/cloud services or other relevant
sources. A CxP provides context data only further to a spe-
cific invocation or subscription and is usually specialised
in a particular context domain (e.g. location).

ontext broker A context broker (CxB) is the main coordinating
component of the architecture. It works as a facilitator
between other architectural components. Primarily the
CxB has to control context flow amongst all attached com-
ponents, which it achieves by allowing CxCs to subscribe
to context information and CxPs to deliver notifications.

A depiction of the core system components described above
s presented in Fig. 1, emphasising the complementary provision
f synchronous and asynchronous context related communication
acilities. Our discussion in this article will focus only on the asyn-

hronous context communication (subscriptions and notifications)
n the Context Provisioning Architecture, which is better suited
or utilisation in the federated broker based setup. Synchronous
ueries and responses involve blocking mode of communication

Fig. 1. Functional components of the Context Provisioning Architecture.
nd Software 86 (2013) 1107– 1123

and are likely to induce delays when context has to be looked up
across broker boundaries. In practical implementation of the Con-
text Provisioning Architecture, we only utilise synchronous queries
and responses when the information about communication end-
points is already known, e.g. hardcoded CxP address in a CxC. A
number of useful applications have been developed based on this
architecture. Further details of this architecture and industrial trials
are described in Knappmeyer et al. (2010a) and Zafar et al. (2009).

The design of the CxB is based on the set of functions it provides
to the context consumers and providers. These functions are listed
below:

Client registration and lookup CxCs/CxPs register with a broker by
specifying communication end points and the type of con-
text they require/provide. This function in turn enables
the brokering function in which the broker can direct a
CxC requesting a particular type of context to the correct
provider(s).

Subscription and notification A CxC subscribes with the broker
specifying the type and instance of context it requires
and the duration for which the subscription remains valid.
The broker can forward the subscription to the appropri-
ate provider or filter context produced by a provider in
order to satisfy the subscription. The broker notifies the
consumer on availability of the subscription-satisfying
context, or the context is directly communicated to the
consumer by the provider.

Caching The broker can cache recently produced context in order
to exploit the locality of reference, as done routinely in
internet communications, to improve the overall perfor-
mance.

Federation The distributed brokers collectively form an overlay
network of brokers that manage local clients (consumers
and providers). This federation of context brokers is
achieved through a coordination model that is based
on routing of subscriptions and notifications across dis-
tributed brokers, discovery and lookup functions and is
described in detail in Section 3.2.

The context broker offers these functions to CxPs and CxCs
by exposing well-defined interfaces. Clients of a broker only
communicate with the local broker. Queries, subscriptions and
notifications are routed between brokers using a publish/subscribe
communication paradigm. This model is described later in Section
3.2, a detailed theoretical model is also provided in our earlier
work (Kiani et al., 2010b). The Context Provisioning Architec-
ture provides two context communication mechanisms; one
based on asynchronous semantics and the other on synchronous
communication semantics. The availability of two complemen-
tary mechanisms is aimed at accommodating the varying access
patterns of heterogeneous context consuming and producing
applications and services. Asynchronous event-based queries (sub-
scriptions/notifications) allow a context consumer to utilise an
event-based publish/subscribe function in the broker for context
queries and responses. Complementarily, context consumers can
synchronously query for a particular context scope by invoking the
context provider over HTTP and encoding the request parameters in
the HTTP URL directly. Such complementary pull (synchronous) and
push (asynchronous) mechanisms are common in distributed sys-
tems, e.g. Bessis (2009). The lookup function in the broker is used by
the consumers to find the communication endpoint of the relevant
context provider, after which the query and response takes place

between consumers and providers directly without any participa-
tion of the broker. The broker also provides a proxy query function to
resolve scope dependencies in consumer queries that include mul-
tiple scopes. Instead of requiring the context consumers to query

ems a

e
fi
w
o
l

3

a
p
a
s
b
m
w
t
c
m
a
i
t
o
a
o
t
t
u
(
u
t
p
c
f
d
c

s
e
t
w
t
t
c
p
a

3

t
g
n
s
t
b
c
s
c
o
a

i
(
w
fi

S.L. Kiani et al. / The Journal of Syst

ach dependent scope from different providers, the broker satis-
es the scope dependencies by querying for the dependent scopes
hen it receives a query about a context scope that is dependent

n other scopes, e.g. weather context of a user is dependent on the
ocation scope.

.1. ContextML based data model

The data model specifies the format of the communication
nd coordination that takes place between context consumers,
roviders and the brokers. Clients of a broker are described using
ttributes, which are used for registration with the broker. Sub-
cription and notification further require that the acquired context
e annotated with meta-information that allows categorisation and
atching of context into specific instances that can be compared
ith subscriptions and queries. The Context Provisioning Architec-

ure utilises an XML based ContextML schema for coordination and
ommunication of context information. ContextML specifies the
odel for context information, context subscription/notification

nd control messages as well (a detailed description is provided
n our earlier work Knappmeyer et al., 2010a). Entity and scope are
he two main concepts that drive the data model. Each exchange
f context data is associated with a specific entity, which can be

 complex group of more than one entity. An entity is the subject
f interest (e.g. user or group of users) which context data refers
o and it is composed of two parts: a type and an identifier. The
ype refers to the category of entities, e.g. username (for human
sers), IMEI (for mobile devices), SIP URI (for SIP accounts), room
for a sensed room) and group (for groups of other entities, e.g.
sernames or IMEI numbers). Specific context information in Con-
extML is defined as scope and is a set of closely related context
arameters. Every context parameter has a name and belongs to a
ertain scope. Scopes can be atomic or aggregated in a union of dif-
erent atomic context scopes. Examples of context scopes of varying
egree of complexity include location, weather, activity, situation,
ellular, and Wi-Fi network identification.

Whenever a CxC requests or subscribes to a specific context
cope, it receives a response encoded in the ContextML schema
lement ctxEl when context is available. ctxEl contains informa-
ion about where the context has been detected and encoded (CxP),
hich entity it is related to (entity), what scope it belongs to, and

he actual context data in the dataPart element. A graphical descrip-
ion of this element, along with ContextML schema elements of
ontext subscriptions (cxtSubscr) is given in Fig. 2. The elements
ar, parS and parA are simple constructs to store name-value pairs
nd attributed collections (arrays and structures) respectively.

.2. The federation model

A real world deployment of a broker-based context-aware sys-
em may incorporate context providers and consumers that are
eographically distributed. To reduce management and commu-
ication overheads, it is desirable to have multiple brokers in the
ystem divided into administrative, network, geographic, contex-
ual or load based domains. Context providers and consumers may
e configured to interact only with their nearest, relevant or most
onvenient broker. But this setup demands inter-broker federation
o that the providers and consumers attached to different brokers
an interact seamlessly. A simple event system implemented by an
verlay network of distributed brokers for relaying subscriptions
nd notifications can satisfy this requirement.

Our system model for an overlay network of brokers working

n a federation is based on the model presented by Mühl et al.
2006) and has been extended for context subscription/notification
ith the use of client advertisements. Mühl et al. have speci-
ed a theoretical framework for routing subscriptions/notifications
nd Software 86 (2013) 1107– 1123 1111

using different routing algorithms and have also presented the
validity proofs of these algorithms. The federation model of the
Context Provisioning Architecture is modelled on this theoreti-
cal framework, which we have realised using ContextML based
subscriptions, notifications and other control messages (e.g. adver-
tisements, discussed later in this section). We have augmented
the theoretical framework with caching and broker discovery
functions. Specifically, the broker discovery and registration service
(BDRS) enables the management of situations in which components
disappear/reappear (whether planned or unplanned due to net-
work issues) at the same or different communication endpoints.
Furthermore, the theoretical framework specified by Mühl et al.
only considers the case of mobile clients but not of mobile broker
components, whereas the coordination model of the Context Pro-
visioning Architecture enables the integration of mobile brokers
in the framework as well. These additional features are discussed
in detail after we describe the basic model in the following para-
graphs. Each broker in the federation maintains registration tables
for context consumers and providers and uses these tables to route
context subscriptions and notification between the clients. Clients
are required to send a keep-alive advertisement message period-
ically once they have registered with a context broker. Failure to
receive keep-alive messages from clients results in automatic un-
registration from the broker, i.e. they are considered to be offline.
The conceptual development of the overall model is presented in
the following sections.

System model The system model consists of a set of cooperating
brokers that are arranged in a topology that is restricted
to be acyclic. Each broker Bi manages a mutually exclusive
set of local clients LBi

= {�1, �2, . . . , �n} and LBi
⊂ K where

K is the set of all clients in the system. The clients here
refer to CxCs and CxPs. Each broker Bi is connected to
a set of neighbouring brokers NBi

= {�i1, �i2, . . . , �in} and
NBi
⊆ B where B is the set of all brokers in the system.

Subscriptions Subscription � contains a stateless logical expres-
sion that is applied to a notification �, i.e. �(�) → (true,
false). A subscription can be given as a logical expression
that consists of predicates that are combined by boolean
or logical operators (and, or, not, >, =, etc.). Such oper-
ators can be used to impose constraints while defining
subscriptions (e.g. attribute name = “weatherCondition”).
Consider an attributed subscription that imposes a con-
straint on the value of a single attribute, e.g. age > 25. The
subscription constraint can be defined as:

�i = (ni, opi, Ci) (1)

where ni is the attribute name, opi is a test operator and Ci is a set
of constants that may be empty. The name ni determines
which attribute the constraint applies to. If a notification
does not contain attribute named ni then � i evaluates
to false. A notification matches � if �(�) evaluates to
true. The set of matching notifications N(�) is defined as
{�|�(�) = true}.

Notifications The broker exposes two interfaces namely
pub(Notification �) and sub(Subscription �) that allow
the clients to publish or subscribe to events. The broker
uses a notify(Notification �) message itself to deliver
notifications to local clients. Moreover, it uses a mes-
sage forward(Notification�) to forward notifications
to neighbouring brokers (brokers who have clients
subscribed for the current notification).
Client registration tables Each broker Bi maintains a client reg-
istration table RBi

, which contains entries about its
registered clients. A client �i registers with a broker
by providing an advertisement that contains a unique

1112 S.L. Kiani et al. / The Journal of Systems and Software 86 (2013) 1107– 1123

F es are
C

S

ig. 2. A subset of ContextML schema elements. For brevity, only essential attribut
ontextML subscription schema element (ctxSubscr).

identifier I� and information about its communication
endpoint URL� . In case the client is a CxP, the advertise-
ment also contains the context scope served by the client.
Neighbouring brokers exchange client registration tables
amongst each other at regular intervals �XR. Out-of-turn
triggering of the client registration table update at a bro-
ker can occur when a new client registers with the broker
so that the availability of a new client is immediately dis-
seminated in the system.

ubscription tables Each broker Bi maintains a subscriptions table
TBi

, which contains entries about subscriptions related
to its clients. Each entry in TBi

is a pair (�, D) consist-
ing of a subscription � and a destination client D ∈ � ∪ NB.
Hence each broker maintains subscription entries only for
its local clients and neighbouring brokers and not of the
whole system entities. When a client �j issues a subscrip-
tion �k to the broker Bi that it is registered with, Bi adds
an entry (�k, �j) to its subscriptions table TBi

. Using the

client registration table RBi

, it determines which broker
Bs can satisfy the subscription and updates Bs with the
new subscription entry. Bs adds the entry (�k, �j) to its
subscription table TBs .
 shown. (a) Representation of context information in ContextML format (ctxEl). (b)

4. Inter-broker coordination and federation

In the following sections, we describe how this model operates
for one broker, two brokers and the general case of n number of bro-
kers. It is assumed in the following discussions that the clients have
already registered with their respective brokers and, in the case of
two brokers, the brokers have already exchanged client registra-
tion tables, i.e. the brokers know which client/broker can satisfy a
subscription pertaining to a particular scope.

For the trivial case of a single broker, consider that the local
client �1 of broker B1 subscribes with the broker with subscrip-
tion �1 using the sub(Subscription �1) broker interface (Fig. 3). The
broker saves this subscription in its subscription table and then
determines that the local client �2 is capable of producing infor-
mation that can satisfy the subscription. Broker B1 forwards the
subscription �1 to the local client �2. �2 monitors its produced data
in case it matches any of the subscriptions it has received via the
broker. If and when the subscription �1 is satisfied, �2 produces a

notification �1 and sends it to the broker via the pub(Notification�1)
broker interface. The broker consults its subscription table TB1 and
notifies the client that has the relevant subscription entry, in this
case �1.

S.L. Kiani et al. / The Journal of Systems a

4

�
(
s
b

s

w
�
o
c
c
u
r
m
a
W
fi
s
s
t

f

�
t

Fig. 3. Single broker coordination scenario.

.1. A case of two brokers

Consider this case with the help of Fig. 4 where the local client
1 of broker B1 subscribes with subscription �1. B1 saves the entry
�1, �1) in its routing table TB1 which was initially empty. It then
ends the following message (table exchange) to its neighbouring
roker B2:

ubTableUpdate(B1, �1) (2)

This message causes the broker B2 to update its routing table
ith the entry (�1, B1). Broker B2 has two registered clients

2 and �3. B2 forwards �1 to �2 considering it to be a source
f matching notifications for this subscription by consulting its
lient registration table RB2 and evaluating the scope entries in
lient advertisements; e.g. if the subscription is regarding weather
pdates of a certain area, then only a CxP that produces weather
elated context may be forwarded the subscription information; it
ay not be relevant to forward a weather related subscription to

 client that produces context about proximity of a group of users.
hen �2 produces information that satisfies �1, it sends a noti-

cation �1 to B2 along with the information that this notification
atisfies the subscription �1, i.e. �1(�1) → true. B2 analyses its sub-
cription table TB2 and finds entry (�1, B1) and therefore forwards
he notification �1 to B1:
orward(B1, �1) (3)

1 is a local client of B1. Therefore B1 uses the notify(�1) procedure
o notify the client with the notification �1.

Fig. 4. Two broker coordination scenario.
nd Software 86 (2013) 1107– 1123 1113

Consider an additional subscription �2 received from the local
client �3 of B2, which is also satisfiable by �2. In this case, the sub-
scription routing table TB2 will contain an additional entry (�2, �3).
Assuming that the notification �1 produced by �2 evaluates to true
for both �1 and �2, B2 will calculate the set of matching destinations
as:

�B2 (�1) = {B1, �3} (4)

for the notification �1. For the local client �3, B2 will invoke
notify(�3, �1) locally. The other match B1 is a remote broker and B2
will invoke Eq. (3). For the local client �1 of B1, B1 will then invoke
notify(�1, �1) locally.

4.2. The case of arbitrary number of brokers

Before considering the case of a broker federation consisting
of an arbitrary number of brokers in the federation, the subscrip-
tion model can be extended by allowing the clients to set up
multiple subscriptions in one request, i.e. by declaring a set of sub-
scriptions ς instead of a single subscription (and vice versa for
un-subscription set
). The case for n brokers builds on the pre-
vious case incrementally such that the subscriptions table updates
are propagated throughout the broker federation. Using a simple
routing mechanism, the subscription table updates are initiated in
response to clients subscribing or un-subscribing. The subscription
updates reach all brokers in the federation allowing them to update
their subscription tables accordingly. If a client �i sends a subscribe
(
 = �) or un-subscribe (ς = �) request to the parent broker Bi, fol-
lowing steps take place:

TBi
← TBi

∪ {(�j, �i) | �j ∈ ς} (5)

TBi
←− TBi

\ {(�j, �i) | �j ∈
} (6)

∀(� ∈ NBi
), M� ←− {(�j, �) | � ∈ NBi

\ �i ∧ �j ∈ ς} (7)

Eqs. (5) and (6) show the addition and removal of subscriptions in
the broker table, respectively. If a broker cannot satisfy a subscrip-
tion � or subscription set ς locally, then it attempts to satisfy it by
forwarding it to its neighbouring brokers, as shown in Eq. (7). For
each neighbouring broker � in NBi

, Eq. (7) returns a set M� of tuples
{�j, �} for each subscription �j in the subscription set ς. Each of the
subscriptions is therefore forwarded to all neighbouring brokers
(known to Bi) except the source client �i.

For notifications, the brokers use the notify(Client �, Notifica-
tion �) procedure, as in simpler cases discussed earlier, to notify
their local clients registered in LB of any notifications they have
received that match a particular client’s subscription(s). In con-
trast to the case described in Section 4.1, if a broker receives a
forward(Notification �) message from a neighbour, it must evaluate
if it needs to further forward the message to its other neighbours (in
addition to notifying its local clients whose subscriptions match the
notification). The list of neighbours a broker Bi forwards the noti-
fication to is determined by entries in the subscriptions table of
that broker. Matching notification against a subscription (T|D) for a
single destination D can be defined as:

T|D ≡ {� | ∃(�, D) ∈ TB} (8)

i.e. a notification is forwarded from a broker to a destination D if a
subscription entry exists in the subscriptions table of that broker.
Following up on Eq. (8), all destinations DB(�) to which a broker
forwards a given notification � is given by:

DB(�) ≡ {D | D ∈ NB ∪ LB ∧ � ∈ N(T|D)} (9)
where N(T|D), is the set of matching notifications, i.e. a notification
� is forwarded to a destination D by a broker B if D is either a local
client or a neighbouring broker with a valid subscription in the
subscriptions table that is satisfiable by the notification �.

1114 S.L. Kiani et al. / The Journal of Systems a

c
B
a
(
w

T

T

T

C
�
t
f
A
b
B
f
e
t
d
n
r
b
n
T
b

fl
t
t
k
b
b
t
b
i
m
t
e
r
s
t
d

Fig. 5. Subscription and notification in n number of federated brokers.

Consider Fig. 5 where a network of three brokers exists with
lients �1 and �2 of B1, client �3 of B2 and client �4 of B3. Broker
1 only has B2 in its set of neighbouring brokers while B2 has B1
nd B3, and B3 has B2 in their neighbouring broker sets respectively
illustrated with dotted lines in Fig. 5). Consider a point in time
here the subscription tables contain the following entries:

B1 = {(�1, �2), (�2, �2), (�3, B2)} (10)

B2 = {(�3, B3), (�3, �3)} (11)

B3 = {(�3, �4)} (12)

onsider �1 publishes a notification �1 that matches subscriptions
1 and �3. Here, B1 (of which �1 is a local client) delivers a notifica-

ion received from �1 to its local client �2 due to entry (�1, �2) and
orwards �1 to its neighbour B2 due to entry (�3, B2) (see Eq. (10)).
t B2, the client �3 is notified due to Eq. (11) and in addition the
roker B2 forwards the notification �1 to its neighbouring broker
3 due to the entry (�3, B3) in TB2 . This step is the main difference
rom the case of two brokers; in the case of more than two brokers,
ach broker on receiving a notification consults its subscriptions
able and the notification matching set M� in the notification to
etermine if the broker needs to forward the notification further or
ot. In case of two brokers, there was no such need when a broker
eceived a notification from another broker as there were no more
rokers involved. When the broker B3 in this scenario receives the
otification �1, it notifies its local client due to the entry (�3, �4) in
B3 (see Eq. (12)). There are no more entries in TB3 and therefore the
roker B3 is not required to forward the notification any further.

The coordination model described in the preceding sections uses
ooding of subscriptions within the overlay network of brokers. In
his coordination model, it was assumed that a broker will have
he knowledge to determine which client or neighbouring bro-
er can satisfy a subscription. In absence of this knowledge, the
rokers have to flood the subscriptions to all their neighbouring
rokers. Flooding is enforced due to lack of global knowledge about
he characteristics of remote clients, i.e. which, if any, clients will
e able to satisfy a subscription. The drawback of this approach

s that subscriptions are forwarded regardless of whether or not
atching notifications are potentially produced by clients of a par-

icular broker. This drawback can be overcome if global knowledge
xists in the broker network about the characteristics of local and

emote clients that can assist in identifying potential candidates for
ubscription matching. This global knowledge can be induced in
he system through a client advertisement procedure, which we
escribe in the following section.
nd Software 86 (2013) 1107– 1123

5. Advertisements in the federation model

We extend our coordination model from Mühl et al.’s base
model by using client advertisements via which all clients (con-
text providers and consumers) register their characteristics with
their local broker. Each client �i registers with its local broker using
advertisement Ai. In case of a context provider type client adver-
tisements contain, apart from other entries, the scope served by the
client. The scope and other information in the client advertisements
are used to calculate if a subscription and advertisement overlap.
Formally a subscription and an advertisement overlap if the inter-
section of the set of scopes S� in a subscription and the set of scopes
SA is non-empty, i.e. iff S�∩ SA /= ∅.

A broker maintains a list of its registered clients (and those
of neighbouring brokers) in a client registration table RB. These
tables are normally exchanged between neighbouring brokers at
regular intervals (�XR), building up the global knowledge about
the type of clients registered with each broker in the broker fed-
eration. Out of turn update triggering of the registration tables is
discussed later in this section. The global knowledge about associ-
ation of clients with brokers and their characteristics is then used
for forwarding subscriptions only to the relevant brokers, i.e. whose
clients can potentially produce a matching notification, and flood-
ing is avoided. Similarly, notifications can be directly routed to
the context consuming clients as their registration entries contain
information about their communication end point.

To safeguard against rogue clients, network disconnections and
clients that disappear without unregistering properly, our coor-
dination model requires that registered clients continue sending
keep-alive advertisement messages to their local broker. Once a
client registers with the broker at time xr, keep-alive messages are
expected within regular intervals �xk. If a client fails to send a keep-
alive message after xr + �xk, its registration is invalidated (but not
removed). If a keep-alive or a new registration message from the
same client is received at the broker within 2 . �xk, its registration is
considered valid again otherwise the registration is removed along
with related subscriptions (see Fig. 6(a) for details). Conversely,
there is possibility of a scenario where a client may consider itself
properly registered while a broker may have discarded its registra-
tion, e.g. due to broker crash. In such a case, any active subscriptions
of that client would also have been discarded. In such scenarios, if a
broker receives a keep-alive message from a client it does not con-
sider as registered, it replies with a negative acknowledgement. The
correct client behaviour in this scenario is to re-register with the
broker and re-issue any subscriptions that were previously active.
Another case is that of transient failures of clients, e.g. a client enter-
ing the system and exiting. In such a scenario, the client may crash
before completing its registration process, may register but issue
no subscriptions and exit, may issue subscriptions but exit without
unregistering, etc. In all such scenarios, the registration manage-
ment protocol in our system will bring the overall system in to a
correct state (with respect to client registrations and subscriptions)
within 2 �xk + 2 �XR time period, i.e. the maximum time it takes
for a client to be considered unregistered at a broker and the max-
imum of two client registration table exchange durations amongst
brokers. Fig. 6 illustrates some additional client–broker registration
scenarios.

5.1. Broker discovery and registration

In the Context Provisioning Architecture, CxCs and CxPs need to
discover their local broker in order to participate in context con-

sumption and production. Our system provides multiple broker
discovery mechanisms to accommodate clients of varying capabil-
ities. These broker discovery mechanisms for clients, illustrated in
Fig. 7, include manual discovery through an administrator provided

S.L. Kiani et al. / The Journal of Systems and Software 86 (2013) 1107– 1123 1115

Fig. 6. Illustration of various client-broker scenarios with respect to the maintenance of the correct state of the broker federation. (a) Illustration of the client registration/keep-
alive advertisements with respect to the exchange of client registration tables between the brokers. (b) Illustration of the scenario that depicts the effect of a CxP registration
on the client registration exchange intervals of a broker in the federation. (c) Illustration

original table exchange interval is only affected if the CxC issues a subscription. (d) Illus
broker in the federation.

Fig. 7. Various broker discovery mechanisms available to the clients in the Context
Provisioning Architecture. (a) Manual discovery of the broker by the client. The user
or administrator provides the URL to the context broker. (b) Multicast based dis-
covery of the broker by the clients. (c) Client discovers the broker by querying the
broker discovery and registration service with which the brokers have registered
their presence.
of the scenario that depicts the effect of a CxC registration. Notice that the broker’s
tration of the scenario that depicts the effect of a CxP/CxC un-registration from a

URL, via multicast group communication and by utilising the bro-
ker discovery and registration service (BDRS). The context brokers
are required to register with the BDRS upon startup. This service
serves a dual purpose of allowing the clients to discover their near-
est broker and allowing the brokers to discover their neighbouring
brokers. In effect, the BDRS caters for the resource discovery prob-
lem in a large-scale system, in which categorisation of resources
is a critical factor when distributed components manage subsets
of client components in the system (Karaoglanoglou and Karatza,
2011). The BDRS facilitates the distributed brokers to form a fed-
eration and this mechanism is discussed in detail in the following
section.

When a broker wishes to join the federation of context brokers,
it registers with the BDRS by sending a broker advertisement
message. Upon successful registration, the BDRS replies with
the advertisements of existing registered brokers, which allows

the broker to initialise its neighbouring broker set. The broker
advertisements received from the BDRS also contain the commu-
nication endpoints of the brokers, which allows the brokers to
establish communication connections. In order to leave the broker

1 ems a

f
m
t
b
w
b
t
r
B
i
z
k
r
v
t
i
t

u
h
n
f
B
t
m
I
i
a
r
i
t
m
o
n
e

6

b
n
O
c
o
t
d
v
t
b
i
o
t
t
t

i
o
c
a
t
e
u
s
d
s

116 S.L. Kiani et al. / The Journal of Syst

ederation, a broker sends an un-registration request (advertise-
ent message with unregister flag) to the BDRS, which removes

he broker’s registration entry and updates all the registered
rokers about the unregistering broker. To safeguard against cases
here a broker is unable to unregister and goes offline, registered

rokers are required to send keep-alive advertisement messages
o BDRS. This process is analogous to the one used in client–broker
egistration maintenance describe later. After registering with
DRS at time zr, keep-alive messages are expected within regular

ntervals �zk. If a broker fails to send a keep-alive message after
r + �zk, its registration is invalidated (but not removed). If a
eep-alive or a new registration message from the same broker is
eceived at the BDRS within 2 �zk, its registration is considered
alid again otherwise the registration is removed. After removing
he registration, the BDRS sends the latest broker registration
nformation to the registered brokers. The duration 2 �zk is called
he registration grace period in our federation model.

A situation may occur such that a broker disconnects without
nregistering or it unregisters with BDRS but the update from BDRS
as not yet propagated in the broker federation. In such cases, if a
etwork level broker Bj is unreachable for Bi, Bi removes all entries

rom the subscription and client registration tables that pertain to
j. Mobile brokers are considered special cases, which are allowed
o disappear with greater tolerance in the sense that knowledge of

obile clients and their subscriptions is not immediately discarded.
nformation related to mobile brokers (subscription and client reg-
stration tables) is maintained for the grace period within which

 mobile broker may re-register (2 �zk). When a mobile broker
e-appears, it may have a different communication end point and
s required to re-join the broker federation by re-registering with
he BDRS. BDRS disseminates the updated advertisement of the

obile broker to all the brokers in the system. This update in case
f re-registration within the grace period is not required in case of
etwork brokers, which are assumed to have static communication
ndpoints.

. Mobile Context Brokers in the federation

The federation model discussed so far describes the mechanism
y which an overlay network of brokers facilitates the coordi-
ation and communication between a set of distributed clients.
ne of the key requirements of designing a dynamic, large-scale
ontext-aware system is to incorporate and facilitate the mobility
f components that take part in context production and consump-
ion. A client may need to disconnect from its local broker for
ifferent reasons such as administrative issues or energy conser-
ation factors in mobile devices. A disconnected client may re-join
he same broker or a different one within the overlay network of
rokers and new clients may join the system as well. This mobil-

ty of components and fluidity of the component set is managed in
ur coordination model by updating and propagating client regis-
ration tables amongst the brokers and updating the subscription
ables according to the latest information in the client registration
ables.

We further improve upon this coordination model for manag-
ng mobile clients by using a Mobile Context Broker, which executes
n user mobile devices and provides brokering functions to context
onsumers and providers executing on the device. Mobile devices
re likely to suffer from network connectivity disruptions due to
heir mobility and power constraints. In such scenarios all clients
xecuting on such a device will disconnect, most likely without

nregistering properly. Instead of a broker in the network infra-
tructure managing registrations of clients executing on mobile
evices, the task is delegated to the Mobile Context Broker in our
ystem. If and when a mobile device goes offline, whether properly
nd Software 86 (2013) 1107– 1123

by letting the clients unregister or without warning, it is only the
disappearance of one broker (mobile) that has to be detected and
propagated rather than a possibly large number of clients. Because
the registration entries of individual clients contain their local bro-
ker’s information, unavailability of that broker can easily be used
to infer the same for its clients.

The Mobile Context Broker (MCxB) is a software component
designed to execute on a mobile device as a background service
that brokers context exchange between consumers and providers,
hosted both on the device and the network. Device based context
providers and consumers register their presence and require-
ments during execution to this broker and do not have to lookup
each other individually. Moreover, during periods of dis-connected
operation, which are still common in mobile devices and networks,
these consumers and providers do not have to monitor device con-
nectivity individually; this task is delegated to the Mobile Context
Broker. Polling and waiting for events or context information to
become available by consumer components is improved by apply-
ing the publish–subscribe communication paradigm and using the
broker as an event service that manages notifications and sub-
scriptions. These functions provided by the broker save valuable
computation cycles and consequently reduce energy consumption.
Moreover, the MCxB masks the effects of device mobility by coor-
dinating with the network based context brokers while the device
is on the move. By managing the mobility aspects of the device, the
MCxB saves the context consumers and providers on the device
from having to coordinate context acquisition and delivery as the
communication end points of the device change during mobility.
Further aspects of the MCxB result in reduction of the overall net-
work bound traffic and execution cost of the CxCs and CxPs on the
device. The MCxB participates in the federation of context brokers
using the same federation model described earlier.

The mobility of the devices may induce changes in the commu-
nication endpoint used by the device for data communication, e.g.
switching from one wireless Local Area Network (LAN) network to
another, switching from GPRS to WLAN radio and moving across
different mobile network carriers. The MCxB makes this mobility-
induced change in communication endpoints transparent to the
CxCs and CxPs executing on the mobile device. This transparency is
achieved because the CxCs and CxPs are only concerned with com-
municating with the MCxB, which carries out any communication
external to the device. The MCxB overcomes this mobility-induced
issue by monitoring the changes in communication endpoints and
subsequently informing its neighbouring brokers (via the BDRS)
about its latest accessibility information. In absence of a broker
on the device, each CxP and CxC would have to update a bro-
ker on the network individually, resulting in much more resource
utilisation (processing and communication) than the case where
a MCxB undertakes this task. Fig. 8 illustrates this connectivity
transparency provided by the MCxB to its local clients.

The mobility of devices may also bring about scenarios where
data connectivity is unavailable and the context related clients face
a disconnected operation scenario. The MCxB provides facilities to
the CxCs and CxPs during disconnected operation in the form of
storing their subscriptions and notifications for later forwarding,
attempting to satisfy the context queries from a locally maintained
cache and registering call-backs to inform interested clients when
data connectivity is available again.

6.1. Bulk mode operation

The MCxB can operate in bulk query mode for low priority

queries in which it forwards queries and responses to the network
in bulk. This store and forward bulk mode is useful not only in sav-
ing network communication but is also utilised to manage queries
and responses during periods of disconnected operation.

S.L. Kiani et al. / The Journal of Systems a

Fig. 8. Connectivity transparency provided by the Mobile Context Broker to its
clients. (a) Communication operations of the device based consumers and providers
during periods of data connectivity/disconnection in absence of a mobile broker.
Disconnected periods of operation are shown with dotted lines at the top. (b) Com-
m
d
t

p
b
l
d
o

T

T
t
o
s

T

�

A
t
b

i

w
b
t

R
p
n
m

unication operations of the device consumers and providers during periods of
ata connectivity/disconnection in presence of a mobile broker. Disconnection is
ransparent to the clients of the broker.

While operating in this mode, the MCxB examines the optional
riority field in each subscription and if the priority is set to low, the
roker adds the query to the bulk queue, which has a (configurable)

imited capacity ω. A bulk queue is maintained for a maximum
uration � where � is one half of the time Tx remaining in expiration
f the subscription with the earliest expiry time.

x = min
x∈[1,m]

(T�1 , T�2 , . . . , T�m) (13)

he half limit is chosen so as to leave adequate time for a response
o reach the subscribing consumer. The duration � is re-evaluated
n addition of each low priority subscription to the bulk queue as
hown in Eq. (14).

x = min
x∈[1,m+1]

(T�1 , T�2 , . . . , T�m , T�m+1) (14)

 = 1
2
Tx (15)

 bulk queue is immediately processed either when � is reached or
he number of subscriptions in the queue reaches the pre-defined
ulk limit ω, i.e.

f ((tc ≥ �) ∨ (m == ω)) (16)

here tc is the current time. Fig. 9 illustrates the operation of the
ulk queue with a limited queue capacity ω and incoming subscrip-
ions with varying expiration times Tm.

Another salient feature of the MCxB is that, in addition to the

ESTful HTTP based interfaces, it also provides local clients inter-
rocess communication (IPC) interfaces for context subscription,
otification, registration and other functional tasks. IPC based com-
unication between local processes on an Android based mobile
nd Software 86 (2013) 1107– 1123 1117

device (implementation platform for the prototype MCxB) is an
order of magnitude faster and less resource intensive than HTTP
based communication between the processes (Kiani et al., 2011).

The features of MCxB described in the preceding paragraphs
result in reduction in the functional burden of the context con-
sumers and providers executing on the mobile devices. The
reduction in functional burden has a direct correlation to the execu-
tion cost of these components, specifically the energy consumption
in the mobile device while these components participate in context
consumption, provision and brokering. The effects of the Mobile
Context Broker, and its involvement in the federation of the bro-
kers, on energy consumption in a mobile device are evaluated in
the following section.

7. Evaluation and analysis

This section presents an analysis and an empirical evaluation of
various facets of the federated broker based Context Provisioning
Architecture. Both real-world deployments and simulation studies
have been performed for empirically gauging the improvements
offered by these features of the Context Provisioning Architecture.

There are various performance indicators that can be evaluated
to compare the features of different context provisioning system
architectures (Knappmeyer et al., 2011), e.g. load scalability, quality
of service over time and quality of context. Within the focus of this
article, we present an empirical evaluation of our federated broker
architecture in comparison to single broker architecture. Our eval-
uation is focussed on the comparison of the mean query satisfaction
times achieved with these different architectures under similar
experimental conditions. Furthermore, we evaluate the effects of
utilising the federated broker model on energy consumption in
mobile devices in comparison to the scenario where broker federa-
tion is not utilised. The mean query satisfaction time TSm is defined
as, for a finite number of context queries n, the mean time between
the sending of the subscriptions by a consumer to a broker and the
receipt of corresponding notification, i.e.

TSm =
(TS1 + TSn + . . . + TSn)

n
=

∑n
i=1TSi

n
(17)

where TSm is the satisfaction time of an individual subscription.
One of the factors that effect the query satisfaction times in a bro-
ker based context provisioning system is the computational and
I/O load on the broker component(s). Other factors include the
availability of context, availability of and load on context providers,
network conditions, etc. In our evaluation we vary the load on the
broker(s) while attempting to keep the other factors constant as
much as possible. Moreover, the experiment is set up in a manner
such that the load on a broker is a function of incoming context
queries, i.e. a higher the rate of arrival of context queries incurs a
greater demand on the context coordinating functions of a context
broker. With the help of this experimental framework, we intend
to empirically evaluate the impact of a federated broker architec-
ture, in comparison to a centralised broker architecture, on mean
query satisfaction times under different broker load conditions.
Furthermore, we will also analyse the mean time taken to dissemi-
nate a component’s disappearance (e.g. CxPs or CxBs disconnecting
with/without proper un-registration mechanisms) in the broker
federation. The aim of this final analysis is to demonstrate the safety
and stability features of the federation model.

7.1. Experiment setup
The experiment is set up with a fixed number of context
providers (12) and consumers (6) while the number of brokers is
one (non-federated) or three (federated) depending on the con-
figuration being evaluated. All software components are initially

1118 S.L. Kiani et al. / The Journal of Systems and Software 86 (2013) 1107– 1123

Fig. 9. Bulk queue operation in the Mobile Context Broker. (a) Bulk queue with capacity ω = 12 containing m = 3 subscriptions, with the earliest � = (1/2)
x of 2 time units
(where
x = 4 time units). If no new subscription is added, the bulk queue is processed after 2 time units. (b) A fourth subscription (m = 4) is added to the existing queue with
e n is ad
(e un
t

d
m
n
c
a
i
a
u

xpiry in 2 time units. � = (1/2)
x is re-evaluated to 1 time unit. If no new subscriptio
m = ω = 12) and is immediately processed even though � = (1/2)
x evaluates to 1 tim
o capacity.

eployed on hosts located within a single LAN. Later, the experi-
ents are repeated with components deployed across distributed

etworks. All context consumers are deployed on one host and
ontext providers on a second host. Each broker is deployed on

 separate host, i.e. three hosts in total are involved in experiment

terations relating to the centralised broker setup, while five hosts
re involved when the setup is configured for federated broker eval-
ation. One of the main differences between the brokers used in the

Cont
Brok

N
o

n
-F

e
d

e
ra

te
d

B

ro
k
e

r

Mob
Con

Bro

CxC_1 (M)

CxC_1 (M)

CxC_2 (M)

CxP_1 (M)

CxP_2 (M)

CxP_3 (M)

CxC_2 (M)

CxC_3

CxC_4

CxC_5

CxC_6

F
e

d
e

ra
te

d
 B

ro
k
e

rs

Con
Bro

Con
Bro

H
o

s
t
A

H

o
s
t
B

Device Host

Host C

CxP_4 (M)

Fig. 10. Deployment setup of the federated and non-federated brokers experiments. T
ded, the bulk queue is processed after 2 time units. (c) Bulk queue reaches capacity
it. This safeguards against dropping incoming subscription due to queue being full

centralised and the federated broker setup is the caching facility,
which is only employed in the brokers representing our Context
Provisioning Architecture and not in the single, non-federated bro-
ker setup. This setup reflects that caching mechanisms have not
been implemented in existing context-provisioning systems, either

in a single or federated broker setup. Furthermore, in the single
broker setup the context consumers and providers on the mobile
device interact via the broker installed on the remote desktop host,

ext
er

CxC_4

CxC_5

CxC_6

CxP_5

CxP_6

CxP_7

CxP_8

CxP_9

CxP_10

CxP_11

CxP_12

ile
text

ker

CxP_1 (M)

CxP_2 (M)

CxP_3 (M)

CxP_5

CxP_6

CxP_7

CxP_8

CxP_9

CxP_10

CxP_11

CxP_12

CxC_3

text
ker

text
ker

Host B A

Host D

CxP_4 (M)

he colours represent association of clients with a particular broker in the setup.

S.L. Kiani et al. / The Journal of Systems a

Table 1
Configuration of the hardware used in the experiment.

Host Configuration

Desktop host A,B (Brokers) Mac Pro, 2.66 GHz Quad-Core Intel Xeon CPU,
8 GB 1066 MHz DDR3 RAM, 802.11n WiFi, Mac
OS X Server 10.7

Desktop host C,D
(Consumers/Providers)

Mac Pro, 2.66 GHz Quad-Core Intel Xeon CPU,
8 GB 1066 MHz DDR3 RAM, 802.11n WiFi, Mac
OS X Server 10.7

Mobile device Google Nexus One, 1GHz Qualcomm QSD 8250

w
a
i
t
t
s

f
e
a
i
d
b
m
o
y
w
q
b
e
e
a
s
l
l

p
o
e
w
i
o
q
�
s
r
T
o
b

A
c
a
n
w

e
r

7

i
t

CPU, 802.11g WiFi, Android version 2.3.4
WLAN Access Point Netgear WNR 2000 802.11n router

hereas in the federated broker setup, the device based consumers
nd providers interact with the local Mobile Context Broker. BDRS
s available in the network and is deployed on one of the desk-
op hosts. The experiment deployment is illustrated in Fig. 10 and
he hardware and software configuration of the computing hosts is
hown in Table 1.

Each context provider in the experiment setup is responsible
or provisioning of a single context scope. For purposes of our
xperiment it is assumed that the requested context is always avail-
ble, i.e. the results will not be affected by availability of context
nformation. The selection of a scope in subscriptions is uniformly
istributed, i.e. there is an equal probability of a particular scope
eing queried across all context subscriptions during an experi-
ent. Moreover, scopes are assumed to be atomic, i.e. satisfaction

f a subscription about scope x does not depend on any other scope
. The variable parameter in the experiment iterations is the rate at
hich context consumers send subscriptions to the brokers, i.e. the

uery rate. The results reported later in this section are obtained
y executing 2000 queries in each repetition. We have repeated the
xperiments for 100, 500, 1000, 1500, 2500 and 3000 queries and
stablished that this selection provides an acceptable sample space
s the results for 1000, 1500, 2500 and 3000 subscriptions have
imilar statistical tendencies. In the case where our sample space is
ess than 500 queries, the results show a significant variation that
imits confident statistical inference from the results.

Arrival times of queries at a broker can be modelled as a Poisson
rocess, which is defined by an exponential distribution. Modelling
f such events as a Poisson process, a stochastic process in which
vents occur continuously and independently of one another, is
ell established (van Gelder et al., 2002). For calculation of the time

nstance at which to generate queries from context consumers in
ur experiment, we use a rate from the set 10, 20, 30, 40, 50, 60
ueries per second. These query rates are used as the rate parameter

 to generate the time instance values when a context consumer
hould send the next query. An experiment iteration uses a constant
ate, i.e. the rate of query does not change during an experiment run.
hese event generation times in the constant rate Poisson process of
ur experiment, for a given time interval 0 ≤ t ≤
, can be generated
y using Algorithm 1.

lgorithm 1. Generation of event times in a Poisson process with
onstant rate �
0⇐ 0.0

 ⇐ 0
hile an <
 do
an+1← Exponential(1/�)
n++

nd while
eturn a1, a2, . . ., an−1

.2. Load scalability analysis
The experiments are carried out using the described setup by
ssuing context queries from the context consumers and recording
he notification arrival times corresponding to each query. One set
nd Software 86 (2013) 1107– 1123 1119

of experiments is carried out using the non-federated broker setup
and the second set using the federated broker setup. Between suc-
cessive iterations only the query rate � is varied. On completion of
2000 queries, the mean satisfaction time for an iteration is calcu-
lated and individual query satisfaction times are also recorded for
later analysis. The brokers’ and clients’ topology is assumed to be
static and known before the start of the experiments, i.e. all clients
of the brokers have registered with their local broker and the bro-
kers have exchanged client advertisement related routing tables.
Furthermore, the caching facility in the federated brokers is config-
ured in a manner that it provides a maximum cache hit ratio of 15%,
i.e. the broker monitors the number of subscriptions it has received
and cache hits up to the current point in time and only returns a
notification from the cache if the hit ratio is less than 15%. Our
caching mechanism operates not only in desktop-based brokers but
also in the Mobile Context Brokers. Caching related issues, specifi-
cally the effect of variable query rate, non-uniform scope selection,
etc. on the cache hit ratio, are evaluated in detail in our earlier
work (Kiani et al., 2010a). There remains further scope for research
in this particular avenue, e.g. considering the patterns and contents
of user queries (Drakatos et al., 2007), storage capabilities of mobile
devices while utilising caches for performance optimisation and
energy conservation (Mavromoustakis and Karatza, 2007).

The mean query satisfaction times for individual subscriptions
with varying query rates � are plotted in Fig. 11(a). Comparing the
mean values of two setups, it is evident that an increase in the
query rate results in delayed query satisfaction on average but more
importantly it clearly illustrates that the adverse effect is much
less pronounced in case of federated brokers setup. There are two
predominant reasons for the better performance of the federated
brokers setup. Firstly, the context providers are spread across three
brokers, so context subscriptions are spread across three brokers,
which reduces the overall load on all the brokers. Secondly, the
federated brokers have a caching component which further effects
the overall query satisfaction time by satisfying a subscription from
the cache instead of forwarding it to another broker or provider.

In addition to the variation in mean query satisfaction time
across all experiments, another notable observation is the standard
deviation in the result sets. As Fig. 11(b) reveals, results of higher
query rates show a marked increase in the standard deviation
amongst the query satisfaction times. The spread in satisfaction
times is more pronounced in case of non-federated broker exper-
iments than federated broker experiments. Our earlier argument
in the case of increased mean satisfaction time with increasing
query rate also holds valid for this observation of standard deviation
trend. Furthermore, the increasing trend in standard deviation of
mean satisfaction times with increasing query rates also points out
that the system is less likely to guarantee an optimal response time
under increasing load. The high variance occurs due to the server
not being able to process each query under similar load conditions.
However, this deterioration of optimal response time guarantee is
less in case of federated brokers than centralised broker setup.

The results and statistical inferences have demonstrated that a
federated setup consisting of three brokers performs better than
a centralised, single broker setup in terms of query satisfaction
times under increasing load conditions. The distribution of sub-
scription and notifications across three brokers naturally aids in
distributing the load across the brokers. In our experimental setup
the load is equally distributed across three brokers as the scope
selection in subscriptions is uniformly distributed and each broker
has the same number of providers/consumers as its clients. This
uniform distribution may not be ideal in a real world scenario but

in our experimental setup it helps us reduce the number of variable
parameters and better study the parameters under observation.

Furthermore, these experiments have been carried out in a con-
trolled environment of an isolated local area network and are not

1120 S.L. Kiani et al. / The Journal of Systems and Software 86 (2013) 1107– 1123

10 20 30 40 50 60

10
0

20
0

30
0

40
0

50
0

Mean satisfaction timeTSm
 with varying rate λ

Rate λ

M
ea

n
sa

tis
fa

ct
io

n
tim

e
T

S
m
 [m

s] Non−federated brokers
Federated brokers

(a) Mea n query satisfaction time fo r rates λ = {10,20,30,40,50,60}

10 20 30 40 50 60

Standard deviation in TSm
 with varying rate λ

Rate λ

S
ta

nd
ar

d
de

vi
at

io
n

in
 T

S
 [m

s]
0

20
40

60
80

10
0

14
0

Non−fede rated bro kers
Fede rated bro kers

(b) Standar d deviatio n in TSm for rates λ = {10,20,30,40,50,60 }

F ll exp
S

a
a
t
r
a
s
s
t
f
o
t
i
i
b
a
t

7

a
f
b

F
c
a

ig. 11. Variation in mean query satisfaction time and standard deviation across a
tandard deviation in TSm for rates � = {10, 20, 30, 40, 50, 60}.

ffected by varying network conditions that are inherent in wide
rea networks. In order to ascertain the applicability of our deduc-
ions from these experiments in a real-world system, we have
epeated the experiments by deploying the brokers and clients
cross a distributed network in university campus and residential
ettings across a city and recorded the same set of observations as
pecified earlier. We have observed from the results of repeating
he experiments in a wider area network that both systems per-
orm similarly to their local area network performances. Instead
f including detailed results of wider area network experiments in
his section, the Q–Q plots of a subset of these results, in compar-
son to their relevant local area network result subsets, are shown
n Fig. 12. The Q–Q plots clearly demonstrate that the two distri-
utions being compared are similar as the points in the Q–Q plot
pproximately overlap throughout the intervals, diverging only at
he extremes.

.3. Energy conservation through the Mobile Context Broker
In addition to the load distribution across federated brokers,
nother factor that reduces the degradation in mean query satis-
action times and variance is the caching facility of the federated
rokers. Each broker maintains an individual cache and any cache

−3 −2 −1 0 1 2 3

60
80

10
0

12
0

14
0

16
0

18
0 Rate λ = 40

Distribution of local area network results

D
is

tr
ib

ut
io

n
of

 w
id

e
ar

e
ne

tw
or

k
rs

ul
ts

−3 −2 −1 0 1 2 3

10
0

15
0

20
0

25
0

30
0

35
0

Rate λ = 60

Distribution of local area network results

D
is

tr
ib

ut
io

n
of

 w
id

e
ar

e
ne

tw
or

k
rs

ul
ts

(a) Q- Q plot comparing th e distributions of non-federated broker ex-
periment results carried ou t within a local area networ k an d wide area
network

(b)

im

ne

ig. 12. Q–Q plots between the result distributions in local and wide area networks. (a)

arried out within a local area network and wide area network. (b) Q–Q plot comparing t
rea network and wide area network.
eriments. (a) Mean query satisfaction time for rates � = {10, 20, 30, 40, 50, 60}. (b)

hit results in an optimal satisfaction time for a query, i.e. a response
to a subscription from the local broker’s cache takes less over-
all time than response from a remote broker/provider or even a
provider registered with the local broker. The cache-hit rate in our
experiments is limited to a maximum of 15% in order to limit its
impact on the variability of results. Further analysis of caching ben-
efits in our architecture and the effect of scope distribution and
query rates on cache-hit ratios is investigated in our earlier work
(Kiani et al., 2010a).

In order to ascertain the effect of broker federation and the
Mobile Context Broker on energy consumption in mobile devices,
we have recorded the energy consumed by the context consumers,
providers and the broker (if present) on the mobile device involved
in the experiment. The total energy consumed by these compo-
nents during each experiment iteration is divided by the number
of context queries in that iteration to calculate the mean energy
consumption per context query. PowerTutor (Zhang et al., 2010)
is utilised for recording the energy consumption of executing pro-
cesses on an Android based mobile device, which is an application

for Android based devices that displays the power consumed by
major system components such as CPU, network interface, display,
etc. and different applications. PowerTutor calculates the phone’s
breakdown of power usage with an average of 1% error over 10-s

−3 −2 −1 0 1 2 3

80
10

0
12

0
14

0

Rate λ = 40

Distribution of local area net work results

D
is

tr
ib

ut
io

n
of

 w
id

e
ar

e
ne

tw
or

k
rs

ul
ts

−3 −2 −1 0 1 2 3

60
80

10
0

12
0

14
0

16
0

18
0

20
0 Rate λ = 60

Distribution of local area net work results

D
is

tr
ib

ut
io

n
of

 w
id

e
ar

e
ne

tw
or

k
rs

ul
ts

Q- Q plo t comparin g th e distri bution s of federate d bro ker s expe r-

ent result s carrie d ou t withi n a loca l are a net wor k an d wid e area

twork

Q–Q plot comparing the distributions of non-federated broker experiment results
he distributions of federated brokers experiment results carried out within a local

S.L. Kiani et al. / The Journal of Systems a

Number of cont ext que ries

M
ea

n
en

er
gy

 c
on

su
m

pt
io

n
pe

r
co

nt
ex

t q
ue

ry
 (

J) Mean Energy Consumption − MCxB various modes

500 1000 1500 2000 2500 3000

0.1

0.15

0.2

0.25

0.3

0.35
MCxP+MCxC
MCxP+MCxC+MBroker
MCxP+MCxC+MBroker (Bulk)
MCxP+MCxC+MBroker(Bulk+IPC)

Fig. 13. Mean energy consumption per context query with MCxB in various modes:
w
w
a

i
2
c
i
t
i
v

d
t
i
b
f
c
t
F
w
W
i
i
d
f
i
I
r

ithout MCxB, with MCxB and all communication over RESTful HTTP interfaces,
ith MCxB operating in bulk mode and all components using RESTful interfaces,

nd finally with MCxB in bulk mode and components using IPC communication.

ntervals while the worst case error over 10 s is 2.5% (cf. Zhang et al.,
010, p. 8). In these experiments only the energy used by an appli-
ation in utilising the CPU and WiFi is considered when calculating
ts energy consumption signature. All results in the following sec-
ion are mean values of five repetitions of individual experiment
terations (comparison of results from individual iterations show
ariations within ±3%).

The measurements of the mean energy consumption per query
epicted in Fig. 13 demonstrate that reduction in energy consump-
ion when MCxB is used in comparison to the case where MCxB
s not used. This reduction in mean energy consumption occurs
ecause the main functional burden of subscription and notification
orwarding is delegated to the MCxB and the device based context
onsumers (MCxC) and providers (MCxP) are only issuing subscrip-
ions and receiving notifications over the RESTful HTTP interfaces.
urthermore, MCxB maintains a context cache, which reduces net-
ork bound communication and thus conserves the device energy.
hen the MCxB is operated in the bulk mode, there is a minor

ncrease in the mean energy consumption per context query. This
s explained by the increased processing at the MCxB and the longer
uration of execution of the experiment due to the slower query

orwarding by the MCxB. However, when the broker is operated
n the bulk mode and all device components communicate using
PC rather than RESTfull HTTP calls, the mean energy consumption
educes significantly, i.e. there is an approximately 30% reduction

2 4 6 8 10 12 14

0
10

00
30

00
50

00

Dissemination of a CxP's disappearance in the Federation

Events

M
ea

n
ev

en
t d

is
se

m
in

at
in

 ti
m

e
[m

s]

CxP's disappearance (no UNREG)
CxP's disappearance (with UNREG)

(a) Cx P disconnection scenarios

Fig. 14. Mean time taken to disseminate a component’s disappearance in the broker
nd Software 86 (2013) 1107– 1123 1121

in the case of the experiment iterations with no MCxB and with
MCxB operating in bulk mode and using IPC communication. This
conservation of energy is an important factor for the efficiency of
system operation and its real world usability, keeping in consider-
ation the ever increasing demand for high resource availability and
demand for progressively decreasing energy consumption in wire-
less devices/infrastructures (Mavromoustakis and Karatza, 2010).

7.4. Component disconnection management

The time taken by the disappearance of a component (broker
or client) is of particular interest from a performance point of
view. To establish the time taken by such an event to be dissem-
inated within the federation, we have used the experiment setup
described earlier and the context brokers and providers are scripted
to disconnect periodically (i.e. operate in offline mode). They either
go offline by unregistering correctly from their respective registra-
tion component (BDRS in case of the brokers and the local broker in
case of the CxPs) or incorrectly (according to our federation model)
without sending the un-registration message. All the hosts in the
experiment are synchronised from a NTP server in order to estab-
lish a common time reference for measured values. The interval for
both brokers’ keep-alive message to the BDRS and that of the CxPs’
to their local brokers is set to 2 s (for experimental purposes; 20 s
interval is used in original experiment). The disappearance time
is recorded by the components itself, while all other components,
which receive the update containing a removed registration (from
BDRS or a neighbouring broker), record the update’s arrival time
along with the ID of the component whose registration has been
removed. These times are consolidated at the end of the exper-
iment to establish the time taken for an event’s information to
disseminate within the federated broker (mean values are calcu-
lated across all times recorded by components). To simplify the
setup, only one component goes offline at a time (re-joining the
federation after 10 s) and subscriptions/notifications are not issued
in this setup.

The calculated values are shown in Fig. 14. If a component dis-
connects correctly by sending an un-registration message to its
registration component, the disconnection event is quickly propa-
gated to the broker federation. This is evident both in the case of
CxPs and the brokers in Fig. 14(a) and (b), respectively. However, if
the disconnecting component goes offline without un-registering
from its registration component, the registration component can-

not detect the disconnection event immediately, and has to wait for
the registration grace period (2 × 2 =4 s) to expire before removing
the disconnected component’s registration entry and informing the
neighbouring brokers. These results demonstrate the importance

2 4 6 8 10 12 14

0
10

00
30

00
50

00

Dissemination of a CxB's disappearance in the Federation

Events

M
ea

n
ev

en
t d

is
se

m
in

at
in

 ti
m

e
[m

s]

Broker disappea rance (no UNREG)
Broker disappea rance (with UNREG)

(b) Cx B disconnectio n scenarios

 federation. (a) CxP disconnection scenarios. (b) CxB disconnection scenarios.

1 ems a

o
k
a
m
r
m
m

8

s
o
o
F
i
e
i
b
d
t
c
e
i
T
p
c
a
a
b

b
o
s
h
b
i
i
e
t
f
b
r
a
a
c

t
c
t
a
p
b
m
a
e
s
T
a
m
f
c
w
s
C
e

122 S.L. Kiani et al. / The Journal of Syst

f the correct un-registration behaviour to be employed by bro-
ers and clients in the federation. More importantly, these results
lso demonstrate the safety and stability features of our federation
odel, i.e. even if a component does not disconnect by first un-

egistering, the system recognises the incorrect behaviour, which
ay or may not have been forced upon a component, and takes
easures in order to keep the overall state of the system valid.

. Conclusions and future work

This work investigates the issues involved in designing a large-
cale context provisioning system and proposes a solution based
n a federation of context brokers that use a publish/subscribe
riented context coordination and communication mechanism.
ederation pattern, where two or more of a kind of service/system
nteroperate in a scalable manner, is well established in commercial
vent-based messaging systems where it is used to achieve scalabil-
ty in general and redundancy in particular. However, federation of
rokers or servers in context provisioning systems has not been
emonstrated or analysed. Our federated broker based architec-
ure is the first theoretical and practical demonstration of federated
ontext brokers for large-scale context provisioning. This article
stablishes the theoretical foundation of an inter-broker rout-
ng framework for federating multiple context brokers together.
he decoupling between context-providing and consuming com-
onents of the system is achieved through publish/subscribe
ommunication semantics, which provides decoupling in all
spects of time, space and synchronisation and aid in better
ddressing the scalability demands in comparison to a centralised
roker approach.

This work also presents the novel concept of a context-
rokering component to manage and facilitate the modern role
f mobile devices, i.e. consuming and providing context. We envi-
ion a continued evolution of the role of smart mobile devices in
uman–computer and human–smart space interactions that will
e supported by technological advancements in the surround-

ng smart space ecosystem (sensors, services and communication
nfrastructure). The Mobile Context Broker is well suited to the
volving role of modern mobile devices in terms of participa-
ion in large-scale context provisioning. Its integration with the
ederation model also accommodates mobile clients that move
etween brokers in the federation. Moreover, it facilitates the
eduction in functional burden on device based context consumers
nd providers, especially during periods of network disconnection
nd also facilitates energy conservation on devices that host context
onsumers and providers.

The federated broker model of the Context Provisioning Archi-
ecture has useful implications not only in coordination and
ommunication of contextual information but also in the adminis-
ration of the context provisioning process across organisation and
dministrative boundaries. In future ubiquitous environments with
ervasive interconnected artefacts, the contextual landscape will
e divided into multiple administrative domains due to ownership,
anagement, access and privacy reasons. Existing broker based

rchitectures that are unable to coordinate inter-domain context
xchange with other instances of broker-managed context provi-
ioning systems are ill-suited to be utilised in such environments.
he Context Provisioning Architecture is well placed to serve as

 building block for future context provisioning systems. Further-
ore, the Mobile Context Broker can serve as a nomadic gateway

or artefacts in smart environments that have limited communi-
ation range. Such artefacts can wait for a smart mobile device

ith a mobile broker to roam within its communication range and

ubmit stored contextual data for dissemination via the Mobile
ontext Broker. Thus this novel component can be utilised in
merging modes of data dissemination, e.g. social dissemination in
nd Software 86 (2013) 1107– 1123

opportunistic networks (Ciobanu et al., 2011), specifically when
context is defined from the viewpoint of users’ mobile devices
(Dobre, 2011).

An investigation into a possible extension of the inter-broker
routing is planned, which takes the similarities between context
subscriptions into account and adopts covering or merging-
based routing. Covering and merging based routing have been
proposed for general event based systems, but these do not con-
sider the temporal bounds associated with the validity of events
under consideration. Moreover, we are investigating a Cloud-based
deployment of the federated broker architecture. We envision
a not-so-distant application of this architecture over a Cloud
infrastructure by organisations, such as telecom providers, for
large-scale provisioning of contextual information. These Clouds
may be public or private, and we propose that such Cloud instances
can be federated together to coordinate cross-organisational
boundary contextual information. Development of such techniques
for integrating distributed and heterogeneous resources is useful
in a number of social scenarios, e.g. disaster management, vehicu-
lar networks and smart cities (Bessis et al., 2011), where user and
environment context is central to the focus of system. The Cloud
platform can provide the requisite scalability, management, cost
and performance benefits, and at the same time leverage the ben-
efits of context federation promoted by the work presented article.
The federation of public/private clouds is as yet a developing con-
cept, but one that has a promising potential for application and
success in the domain of context provisioning.

References

Bessis, N., Asimakopoulou, E., Xhafa, F., 2011. A next generation emerging tech-
nologies roadmap for enabling collective computational intelligence in disaster
management. International Journal of Space-Based and Situated Computing 1
(1), 76–85.

Bessis, N., 2009. Model architecture for a user tailored data push service in data grids.
In: IGI Global, http://dx.doi.org/10.4018/978-1-60566-364-7.ch012.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1995. Pattern-
Oriented Software Architecture: A System of Patterns, Vol. 1. John Wiley & Sons,
Ltd., West Sussex, England.

Carzaniga, A., 1998. Architectures for an event notification service scalable to wide-
area networks. Ph.D. Thesis, Politecnico di Milano, Milano, Italy.

Chen, H., December 2004. An intelligent broker architecture for pervasive context-
aware systems. Ph.D. Thesis, University of Maryland, Baltimore County.

Ciobanu, R.-I., Dobre, C., Cristea, V., 2011. A data dissemination algo-
rithm for opportunistic networks. In: in: Proceedings of the 13th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), September 26–29, 2011, pp. 299–305,
http://dx.doi.org/10.1109/SYNASC.2011.56.

Dobre, C., 2011. CAPIM: a platform for context-aware computing. In: in: Proceedings
of the 2011 International Conference on P2P, Parallel, Grid, Cloud and Inter-
net Computing (3PGCIC), Barcelona, Spain, October 26–28, 2011, pp. 266–272,
http://dx.doi.org/10.1109/3PGCIC.2011.48.

Drakatos, S., Pissinou, N., Makki, K., Douligeris, C., 2007. A context-aware cache struc-
ture for mobile computing environments. Journal of Systems and Software 80
(7), 1102–1119, http://dx.doi.org/10.1016/j.jss.2006.10.027, Dynamic Resource
Management in Distributed Real-Time Systems.

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J.,
Mamelli, A., Papadopoulos, G., 2012. A development framework and
methodology for self-adapting applications in ubiquitous computing
environments. Journal of Systems and Software 85 (12), 2840–2859,
http://dx.doi.org/10.1016/j.jss.2012.07.052, Self-Adaptive Systems.

Huang, Y., Garcia-Molina, H., 2004. Publish/subscribe in
mobile environments. Wireless Networks 10, 643–652
http://dx.doi.org/10.1023/B:WINE.0000044025.64654.65

Karaoglanoglou, K., Karatza, H., 2011. Directing requests in a large-scale grid sys-
tem based on resource categorization. In: in: 2011 International Symposium on
Performance Evaluation of Computer & Telecommunication Systems (SPECTS),
IEEE, pp. 9–15.

Kernchen, R., Bonnefoy, D., Battestini, A., Mrohs, B., Wagner, M., Klemettinen, M.,
2006. Context-awareness in MobiLife. In: Proceeings of the 15th IST Mobile
Summit, IST Mobile Summit, Mykonos, Greece.

Kiani, S.L., Knappmeyer, M., Reetz, E., Baker, N., 2010a. Effect of caching in a bro-

ker based context provisioning system. In: Proceedings of the 5th European
Conference on Smart Sensing and Context, Vol. 6446, LNCS, pp. 108–121.

Kiani, S.L., Knappmeyer, M., Baker, N., Moltchanov, B., 2010b. A federated broker
architecture for large scale context dissemination. In: in: Proceedings of the
2nd Int’l Symp. on Advanced Topics on Scalable Computing, Bradford, UK.

dx.doi.org/10.4018/978-1-60566-364-7.ch012
dx.doi.org/10.1109/SYNASC.2011.56
dx.doi.org/10.1109/3PGCIC.2011.48
dx.doi.org/10.1016/j.jss.2006.10.027
dx.doi.org/10.1016/j.jss.2012.07.052
doi:10.1023/B:WINE.0000044025.64654.65

ems a

K

K

K

K

K

M

M

M

M

M

M

P

R

v

W

Z

Z service discovery. He has been using the software agent abstraction in order to
S.L. Kiani et al. / The Journal of Syst

iani, S.L., Moltchanov, B., Knappmeyer, M., Baker, N., 2011. Analysis of the
energy conservation aspects of a Mobile Context Broker. In: Proceedings
of the 11th International Conference and 4th International Conference
on Smart Spaces and Next Generation Wired/Wireless Networking,
NEW2AN’11/ruSMART’11, Springer-Verlag, Berlin, Heidelberg, pp. 26–37
http://www.dl.acm.org/citation.cfm?id=2033707.2

nappmeyer, M., Kiani, S.L., Tönjes, R., Baker, N., 2010a. Modular context
processing and provisioning: prototype experiences. In: Proceedings
of the 4th ACM International Workshop on Context-Awareness for
Self-Managing Systems, CASEMANS’10, ACM, New York, NY, USA,
http://dx.doi.org/10.1145/1858367.1858375, 8:53–8:58.

nappmeyer, M., Kiani, S.L., Frá, C., Moltchanov, B., Baker, N., 2010b. A light-weight
context representation and context management schema. In: Proceedings of
IEEE International Symposium on Wireless Pervasive Computing.

nappmeyer, M., Kiani, S.L., Baker, N., Ikram, A., Tönjes, R., 2011. Survey on eval-
uation of context provisioning middleware. In: Proceedings of the Second
Workshop on Context-Systems Design, Evaluation and Optimisation in con-
junction with the 24th International Conference on Architecture of Computing
Systems (ARCS), IEEE.

orpipää, P., Kela, J., Malm, E.J., 2003. Managing context information in mobile
devices. IEEE Pervasive Computing 2 (3), 42–51.

ühl, G., 2002. Large-scale content-based publish/subscribe systems. Ph.D. Thesis,
Darmstadt University of Technology, Germany.

ühl, G., Fiege, L., Pietzuch, P., 2006. Distributed Event-Based Systems. Springer-
Verlag, Berlin.

avromoustakis, C., Karatza, H., 2007. An optimal adaptive approach using behav-
ioral promiscuous caching and storage-capacity characteristics for energy
conservation in asymmetrical wireless devices. In: in: IEEE 18th International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
2007, IEEE, pp. 1–8.

avromoustakis, C.X., Karatza, H.D., 2010. Real-time performance evaluation of
asynchronous time division traffic-aware and delay-tolerant scheme in ad
hoc sensor networks. International Journal of Communication Systems 23 (2),
167–186, http://dx.doi.org/10.1002/dac.1054.

obiLife Project, 2006. MobiLife CRF: Context representation framework. Tech.
rep., http://www.lab.telin.nl/koolwaaij/showcase/crf/crf.html (last checked
01.05.12).

oltchanov, B., Zafar, M., Baker, N., 2010. Distributed context management: Archi-
tecture and commercial trials. In: in: Proceedings of ICT Mobile Summit 2010,
Florence, Italy.

odnar, I., Lovrek, I., 2004. Supporting mobility with persistent notifications in pub-
lish/subscribe systems. In: in: Proceedings of the 3rd International Workshop
on Distributed Event-Based Systems, Citeseer, p. 80.

omán, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.,
2002. A middleware infrastructure for active spaces. IEEE Pervasive Computing
1, 74–83, http://dx.doi.org/10.1109/MPRV.2002.1158281.

an Gelder, P., Beijer, G., Berger, M., 2002. Data Mining III, Vol. 6 of Management
Information Systems. WIT Press Publishing, Statistical Analysis of Pageviews on
Web Sites, p. 1032.

eiser, M., 1991. The computer for the twenty-first century. Scientific American
265 (3), 94–104.

afar, M., Baker, N., Moltchanov, B., Jo ao Miguel Goncalves, S.L., Knappmeyer, M.,
2009. Context management architecture for future internet services. In: in: ICT
Mobile Summit 2009, Santander, Spain.

hang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L., 2010.

Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In: in: Proceedings of the 8th
IEEE/ACM/IFIP International Conference on Hardware/software Codesign and
System Synthesis, CODES/ISSS ’10, ACM, New York, NY, USA, pp. 105–114
http://doi.acm.org/10.1145/1878961.1878982
nd Software 86 (2013) 1107– 1123 1123

Dr. Saad Liaquat Kiani is a senior lecturer in Networks and Mobile Computing at
the University of the West of England (UWE), Bristol, UK. He is also a researcher at
the Centre for Complex Cooperative Systems at UWE and has been involved in sev-
eral EU projects, knowledge transfer partnerships and multi-disciplinary research
and development projects. He received his BE degree from National University
of Sciences and Technology, Pakistan, in 2003 and a masters degree in computer
engineering from Kyung Hee University, South Korea, in 2005. His research inter-
ests focus around the technological issues and social impact of mobile computing,
context-aware computing and distributed systems in general.

Dr. Ashiq Anjum is a senior lecturer in the School of Computing and Mathematics
at the University of Derby, UK. Prior to this he was working at the department of
computing, Imperial College London as a research associate. He has been working
on various collaborative projects with CERN, Geneva, Switzerland for the last 10
years. His areas of research include concurrent, distributed and parallel systems. He
is the principal investigator of the Stream Cloud project and in past has worked on a
number of research projects that have been funded by various European, American
and Asian funding agencies. He has more than 50 peer reviewed publications to
his credit. Before starting an academic career, he worked for various multinational
software companies for around 7 years.

Dr. Michael Knappmeyer is currently with Ratiodata IT-Lösungen & Services GmbH,
an IT service provider, where he holds a position as mobile solution architect. He
received his PhD (computer science) from the University of the West of England,
Bristol, UK, in 2012. His thesis presented a Context Provisioning Middleware with
Support for Evolving Awareness. In 2006 he received the Diplom-Informatiker
(FH) degree from the University of Applied Sciences Osnabrück, Germany. As a
research associate at Osnabrück, he participated in the European research projects
“C-MOBILE” and “Context Casting (C-CAST)”. In the latter he led the context reason-
ing related activities. His research interests include smart spaces, context modelling,
reasoning and mobile device management.

Prof. Nik Bessis is currently the head of Distributed and Intelligent Systems (DISYS)
research group, a professor and a chair of computer science in the School of Com-
puting and Mathematics at University of Derby, UK. He is also an academic member
in the Department of Computer Science and Technology at University of Bedford-
shire (UK). His research interest is the analysis, research, and delivery of user-led
developments with regard to resource discovery and scheduling, trust, data inte-
gration, annotation, and data push methods and services in dynamic distributed
environments. These have a particular focus on the study and use of next gener-
ation technologies including grid and cloud computing for the benefit of various
virtual organisational settings. He is involved in and leading a number of funded
research and commercial projects in these areas. He has published over 170 papers,
won 3 best paper awards and is the editor of several books and the Editor-in-Chief of
the International Journal of Distributed Systems and Technologies (IJDST). In addition,
he is a regular reviewer and has served several times as a keynote speaker, confer-
ences/workshops/track chair, associate editor, session chair and scientific program
committee member.

Prof. Nikolaos Antonopoulos is currently the head of School of Computing and
assistant dean (research) of the Faculty of Business, Computing & Law at the Uni-
versity of Derby. He has been carrying out research in computer science for over
15 years. The main focus of his research has been software mobile agents and
Peer-to-Peer (P2P) networks. His work involves the design and optimisation of P2P
architectures in terms of data traffic and latency in the context of resource and
provide the architectures above with autonomy, adaptivity and efficiency through
code mobility. His research interests include emerging technologies such as large
scale distributed systems and peer-to-peer networks, software agent architectures
and security.

http://www.dl.acm.org/citation.cfm?id=2033707.2
dx.doi.org/10.1145/1858367.1858375
dx.doi.org/10.1002/dac.1054
http://www.lab.telin.nl/koolwaaij/showcase/crf/crf.html
dx.doi.org/10.1109/MPRV.2002.1158281
http://doi.acm.org/10.1145/1878961.1878982

	Federated broker system for pervasive context provisioning
	1 Introduction
	2 Related work
	3 Federated broker model for context provisioning
	3.1 ContextML based data model
	3.2 The federation model

	4 Inter-broker coordination and federation
	4.1 A case of two brokers
	4.2 The case of arbitrary number of brokers

	5 Advertisements in the federation model
	5.1 Broker discovery and registration

	6 Mobile Context Brokers in the federation
	6.1 Bulk mode operation

	7 Evaluation and analysis
	7.1 Experiment setup
	7.2 Load scalability analysis
	7.3 Energy conservation through the Mobile Context Broker
	7.4 Component disconnection management

	8 Conclusions and future work
	References

