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Abstract—Due to the popularity of on-board geographic de-
vices, a large number of spatial-textual objects are generated
in Internet of Vehicles (IoV). This development calls for Ap-
proximate Spatial Keyword Queries with numeric Attributes in
IoV (A2SKIV), which takes into account the locations, textual
descriptions, and numeric attributes of spatial-textual objects.
Considering huge amounts of objects involved in the query
processing, this paper comes up with the ideal of utilizing
vehicles as fog-computing resource, and proposes the network
structure called FCV, and based on which the fog-based Top-k
A2SKIV query is explored and formulated. In order to effectively
support network distance pruning, textual semantic pruning, and
numerical attribute pruning simultaneously, a two-level spatial-
textual hybrid index STAG-tree is designed. Based on STAG-
tree, an efficient Top-k A2SKIV query processing algorithm
is presented. Simulation results show that, our STAG-based
approach is about 1.87x (17.1x, resp.) faster in search time than
the compared ILM (DBM, resp.) method, and our approach is
scalable.

Keywords—Approximate spatial keyword query, Fog comput-
ing, IoV, Numeric attribute, Traffic network

I. INTRODUCTION

As an important paradigm to realize intelligent transporta-
tion system, Internet of Vehicles (IoV) enables vehicles to
communicate with road side units (RSUs), and remote cloud
servers [1]. For real-time perception and geographic distri-
bution, cloud computing is clearly not the best choice to
provide communication and computing resources, since it
is completely centralized [2]. Fog computing, by contrast,
complements cloud computing by extending computing and
caching capabilities to the edges of the network, and it
facilitates localization decisions and rapid response.

As a kind of fog computing, vehicle fog computing (VFC) is
considered as a promising method for supporting applications
in IoV, which uses vehicles as infrastructure to make full
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use of vehicle communication and computing resources. In
particular, VFC utilizes a large number of cooperative end-
user clients or near-user edge devices to perform huge amounts
of communication and computation [3], which differs from
other existing technologies in its proximity to end users, dense
geographic distribution, and support for mobility [4], [5]. In
order to enhance the computing and storage capabilities of
the network edge, recently, a new network structure, named
fog computing-based IoV (FC-IoV) [6], is proposed, which
deploys fog servers at downtown intersections and accident-
prone roads to enhance the computing and storage capabilities
of the network edge.

Recently, lots of efforts are made to explore different kinds
of issues on fog-based IoV, such as the optimal deployment
and dimensionality for autonomous driving [7], reasonable and
feasible resource allocation in real time [8]. However, there is
few work on processing spatial-textual information generated
in IoV to obtain user interested information. In real life, due to
the popularity of on-board geographic devices, huge numbers
of spatial-textual objects are generated in IoV. To effectively
process the massive data collected and obtain the information
that users are interested in, spatial keyword query (SKQ) has
been proposed and discussed [9]–[13], which uses a set of
keywords and a spatial constraint to express user’s interest in
exploring useful information.

The existing work on SKQ query processing can be divided
into two categories: SKQ in Euclidean space [11] and SKQ in
traffic networks [14]. For SKQ in traffic networks, the schemes
use real traffic network distance rather than Euclidean distance
in Euclidean space, thus can better meet the requirements
of real-time applications in IoV. Moreover, considering that
some previous work focuses on SKQ requiring exact keyword
matching, and may result in too few results returned due
to the diversity of textual expressions, recently, approximate
spatial keyword query (ASKQ) was explored. ASKQ can
handle spelling errors and conversional spelling difference (for
example, color vs. colour), which appear in real applications
frequently.

However, in many applications of IoV, such as mobile
e-commence, various items are generated with textual de-
scriptions, different attributes, and spatial locations. Corre-
spondingly, the requirement of a user could include a set
of keywords, attribute-value pairs, distance limitation or the
number k of results, for example, “oxford”, “dictionary”,
publish year=2018 & price=1000, and k=5 (means the top-
5 results). To capture the requirements of users, a spatial
keyword search with numeric attributes is needed. Meanwhile,
the more queries and objects involved, the more complex the
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query processing, which makes efficient query processing and
fast feedback on query results a challenge. This calls for
approximate spatial keyword query (A2SK) with locations,
textual descriptions and numeric attribute requirement simul-
taneously. To this end, we also need to make full use of the
potential communication and computing power around query
users in IoV, in addition to efficient query processing methods.

To address the issues mentioned above, this paper explores
the fog computing-based A2SK queries in traffic networks of
IoV (A2SKIV), which poses three major challenges. Firstly,
query users and textual-spatial objects may distribute within a
large traffic networks with millions vertices and edges in IoV.
How to efficiently calculate the network distances between
queries and objects is the first issue need to be handled.
Secondly, with millions of textual-spatial objects in IoV, we
need to consider a large number of keywords and attribute-
value pairs. Moreover, approximate keyword match rather than
exact keyword match is considered which makes A2SKIV
search more complex. Thirdly, many users may initiate queries
simultaneously, the proposed matching method should be
effective enough to significantly reduce the cost of query
processing.

To support network distance pruning, keyword pruning,
and numeric attribute-value pruning simultaneously, a novel
spatial-textual hybrid index structure should be designed,
which should consider the relative invariance of traffic network
structure and the dynamic variation of textual-spatial objects
and queries. Firstly we need a spatial index to keep the traffic
network structure in IoV, thus given the positions of an object
and a query, the network distance between them can be calcu-
lated quickly, while maintaining a reasonable and acceptable
amount of storage space. Meanwhile, a textual & numeric
index on the textual-spatial objects of each traffic network
region (subgraph) is required too. In order to save space
consumption, the textual information and numeric information
need to be organized efficiently and smartly. Moreover, in
order to improve the processing efficiency of a huge amount
of unqualified textual-spatial objects, some efficient pruning
rules are also needed.

In order to meet the requirements mentioned above, this
paper explores A2SKIV comprehensively, and the main con-
tributions of the paper are as follows.

1. The A2SKIV problem is formulated, which distinguishes
itself from existing SKQ query efforts in that it takes into
account textual similarity, numeric similarity, and spatial prox-
imity in traffic network space, simultaneously.

2. A two-level spatial-textual hybrid index STAG-tree is
presented. In addition, several lemmas are presented to prune
a huge amount of unrelated objects. A Top-k A2SKIV query
processing algorithm based on STAG-tree index is designed.
In addition, we discuss how to extend the proposed method
for supporting numeric attributes with interval values.

3. Simulation using two traffic networks together with
their spatial-textual object sets is performed to evaluate the
effectiveness of the proposed STAG-tree index and query
processing algorithm.

The rest of this paper is organized as follows. In Section
II, we review the related work. Section III presents the system

model and problem definitions. In Section IV, we introduce
a hybrid index in detail. Top-k A2SKIV query processing
algorithm is proposed in Section V. Section VI discusses
extending the method for supporting attributes with interval
values. Section VII gives the experimental evaluation, and
finally, Section VIII concludes the paper.

II. RELATED WORK

A. Fog Computing in IoV

In 2012, Cisco came up with the concept of fog computing.
Since then, many efficient schemes were proposed [15]–[20].
An object cloud communication architecture [3] based on
fog computing and intelligent gateway was proposed . Later,
Aazam et al. [21] proposed a system called fog micro data
center, where the fog plays an important role in resource
management, data filtering, preprocessing, data processing and
security measures. Meanwhile, Hou et al. [22] proposed a new
concept of vehicle fog computing (VFC), using vehicles as
infrastructure to take full advantage of their communication
and computation resources. An intelligent VFC system com-
bining parking assistance and intelligent parking was discussed
[7]. In particular, A vehicle reservation auction method based
on VFC perception was designed to guide the vehicle to
the available parking space with less effort during driving.
Meanwhile, the vehicle’s fog ability was utilized to compen-
sate the vehicle’s service cost through monetary reward, thus
helping to delay the sensitive computing service. Yu et al. [6]
discussed the optimal deployment and dimensionality (ODD)
of fog computing-based IoV infrastructure for autonomous
driving. Two different architectural patterns, namely, coupling
pattern and decoupling pattern, were proposed, and the ODD
problem was transformed into two integer linear programming
formulas to reduce the deployment cost. Such efforts improve
the computing and storage capabilities of IoV and enable
lots of applications. In edge-enabled networks, the geographic
diversity of resources and various hardware configurations
need to be carefully managed to ensure efficient utilization
of resources. Lamb et al. [8] analyzed the moving edge
calculation of vehicle networks, and introduced an architecture
of evaluating available resources and allocating the most
reasonable and feasible resources in real time.

B. SKQ Querying in Traffic Networks of IoV

In order to meet user’s interests in IoV, lots of efforts are
made to deal with moving Top-k SKQ processing, direction-
aware SKQ processing, interactive Top-k SKQ querying, key-
word search based on distributed graphs [23], Why-not Range-
Based Skyline Queries [24], and location-aware error-tolerant
keyword search [25]. In order to accelerate the calculation
of long road network distance, a multi-hop distance labeling
scheme (DBM) was proposed [26], which is based on Dijkstra
method. Guo et al. [14] discussed the distributed SKQ search
on the traffic network, and proposed a new distributed index.
By using this index, each machine independently evaluates
search operations in a distributed manner. Gao et al. [27] dis-
cussed reverse Top-k Boolean SKQ search in traffic networks,
which shows how to use arbitrary k to answer the query
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without anticipatory computing. Zhao et al. [28] explored
time-aware SkQ queries on traffic network. They proposed a
novel TG index and several algorithms to efficiently process
this type of queries. To support mobile search and targeted
location-aware advertising, an inverted index-based solution
(ILM) is proposed to improve query performance [29]. Li et
al. [30] studied the intelligent augmented keyword search in
real-life IoVs. A hybrid index called ASKTI was proposed. In
ASKTI, the information of traffic network structure, keywords,
boolean expressions, and spatial information of objects are
smartly organized, so as to prune unqualified traffic network
space as early as possible. Abeywickrama et al. [31] discussed
how to efficiently process SKQ Queries on traffic networks,
and proposed K-SPIN, a versatile framework that avoids key-
word separated indexes to reduce latency and avoid expensive
operations.

To improve query processing performance in IoV, there
are many similarity functions such as edit distance, Jaccard,
and n-gram [32]. To handle the inconsistencies and errors in
queries and data, Alsubaiee et al. [33] proposed a natural index
structure, which enhances the approximate keyword search
ability of the spatial index based on tree. An approximate n-
gram matching method was proposed [34], which uses the long
but approximate n-gram matching as the basis for pruning
k nearest neighbour candidates. Zheng et al. [35] explored
approximate keyword search in semantic track database, and
proposed a hybrid index called Giki. Giki consists of two
components, which are SQ-Tree part using n-grams and K-
Ref part using edit distance.

Although there are many effective query processing methods
in IoV, most schemes face the following limitations: 1) Focus
on exact keyword match, while ignore approximate key-
word match, which can handle spelling errors and traditional
spelling differences that often occur in practical applications;
2) Only keyword matching and attribute-value matching are
considered, ignoring spatial constraints; 3) Limited to Eu-
clidean space, and the query search cannot be processed in
traffic networks in IoV, a realistic application scenario. This
paper fills this gap by developing a two-level spatial-textual
hybrid index, which can overcome the limitations mentioned
above in IoV.

III. SYSTEM MODEL AND PROBLEM DEFINITIONS

This section first gives the system model, and then formu-
lates Top-k A2SKIV queries. Table I lists the notations that
we use in the paper.

A. System Model

To meet the requirements of efficient query processing and
fast feedback on query results, a fog computing-based network
structure FCV is adopted to utilize the computing and storage
capabilities of edge devices, which is a hierarchical structure
consists of three layers. Fig. 1 illustrates the system overview
and scenarios of FCV with moving and parked vehicles’
service and applications.

The proposed FCV considers four scenarios of vehicle
behaviour states. Fog computing has the natural advantage of
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Fig. 1. An Illustration of the system model.

being closer to vehicle endpoints and mobile devices, thus
avoiding the high latency associated with complex system re-
sponses and service failures associated with remote routing to
remote cloud servers. To address communication and comput-
ing power issues, FCV employs vehicles and mobile devices
as the infrastructures, making full use of their communication
and computing resources. Moreover, RSUs and fog devices are
adopted and deployed. In general, the deployment of RSUs
and fog devices focuses on intersections in the city centre and
some road-sides on busy roads.

As shown in Fig. 1, the first layer of FCV is cloud
computing layer which includes cloud servers and gateways.
In particular, the gateway communicates with other heteroge-
neous networks and can also send the filtered underlying data
to cloud servers.

The second one is fog computing layer, including
lightweight fog devices at network edges. Fog devices tem-
porarily cache and process the raw-date collected, and upload
the filtered data to the cloud servers for further processing.
And fog devices can also store some frequently accessed data
for rapid-response processing.

The third layer is accessing layer, which includes RSUs,
vehicles and mobile devices. RSUs provide open service
access points for fog computing vehicles and mobile devices.
Note that although RSUs and fog devices are deployed in
similar locations, we will deploy them separately, taking into
account the flexibility of deployment. RSUs, nearby vehicles
and mobile devices communicate wirelessly, exchanging infor-
mation and collaborating on computing tasks. However, RSUs
communicate with fog devices via wired connection. There are
four types of scenarios in the third layer, as described below.

Fig. 1(a) and (b) illustrate parked vehicles and mobile
devices as infrastructures. A huge number of parked vehicles
are scattered across the traffic network in IoV. These vehicles
and mobile devices become a rich computing infrastructure,



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.2965730, IEEE Internet of
Things Journal

4

TABLE I
SYMBOLS AND DEFINITIONS

Notation Definition
o A textual-spatial object
q An A2SKIV query
q.V (o.V ) A set of attribute-value pairs for q (o)
q.L(o.L) The location of q (o)
Dtd(q, o) The textual distance between o and q
Dnd(q, o) The numeric distance between o and q
Dtr(q, o) The travel distance between o and q
Dtns(q, o) The textual-numeric-spatial distance between o and

q

DLB
tns(q,Gi) The lower-bound textual-numeric-spatial distance

between subgraph Gi and q
dLBed (qi, wi) The lower-bound edit distance between word wi and

query keyword qi

providing powerful computing resources and storage space.
When joining the FCV, they can be used as a small data center
to deal with a variety of complex tasks. Fig. 1(c) and (d)
illustrate moving vehicles working as infrastructures. In urban
areas, traffic is usually slow. In addition, most vehicles travel
very slowly when entering the urban area, especially during
rush hours, and there is good communication between nearby
mobile vehicles and devices. Moving vehicles can constantly
transmit information by establishing new connections. When
nearby moving vehicles join the FCV, they can collaborate
and connect with each other, and complete tasks using local
computing and communication resources.

B. Problem Definition

1) A Traffic Network of IoV: A traffic network of IoV is
modeled as a undirected weighted graph G=(V , E), where
V is a set of vertices, and E is a set of edges. A vertice
v ∈ V represents a road intersection or endpoint in the
traffic network. An edge e(vi, vj , l) ∈ E, represents the road
segment between two vertices vi and vj (i 6= j), and l
represents the length of the road segment. Our model can
be extended to support the directed weighted graph, which
represents unidirectional traffic, by simply allowing the length
of e(vi, vj) be set different from that of e(vj , vi).

2) Spatial-textual Objects with Numeric Attributes and Ap-
proximate Spatial Keyword Queries:

Definition 1. Spatial-textual objects with numeric attributes
in traffic networks of IoV (object for short).

Object o is defined as o = (o.tags, o.V , o.L), where o.tags
is related descriptive tags containing a set of keywords, o.V
is a set of attribute-value pairs, and o.L is a spatial point on
the edge of the traffic network. The size of o.V is the number
of attribute-value pairs represented by n, and so o can be
represented as:
o = {tags,A1 = v1

⋂
A2 = v2

⋂
...
⋂
An = vn, o.L}.

Definition 2. Approximate spatial keyword queries with nu-
meric attributes in IoV (A2SKIV).

An A2SKIV query q is defined as q = (q.W , q.V , q.L),
where q.W is the relevant keywords, q.V is a set of user-given
attribute-value pairs, q.L is a spatial point on the edge of the

traffic network. The size of q.V is the number of attribute-
value pairs represented by m, and so q can be represented
as:
q = {q.W,A1 = v1

⋂
A2 = v2

⋂
...

⋂
Am = vm, q.L}.

3) Match Semantics: For A2SKIV query q and object o, to
measure the relevance between q and o, there are three aspects
should be considered, i.e., textual distance, numeric attribute
distance, and traffic network distance between q and o.

Definition 3. Keyword mapping. For A2SKIV query q and
object o, a keyword mapping from q to o, i.e., q.KM(o), is a
set of keywords, in which each keyword is textual closest to q
among all keywords contained by o in terms of edit distance1,
i.e., wi = argminwj∈o.tags{ded(qi, wj)}.

Definition 4. Textual distance. Given A2SKIV query q and
object o, we first calculate the sum of edit distance between
each keyword wi ∈ q.KM(o) and corresponding keyword qi ∈
q.W . To normalize the sum of edit distance calculated to range
[0, 1], the max{|q.W |, |o.tags|}, which is the greater one
between |q.W | and |o.tags|, is also considered as follows:

Dtd(q, o) =
∑

qi∈q.W

ded(qi, wi)

|q.W | ×max{|q.W |, |o.tags}
. (1)

Next, let’s discuss how to calculate the numeric distance
between query q and object o. Numeric attribute distance refers
to the degree of difference between the values of q and o under
the same numeric attribute, which is expressed as the size of
difference.

For q and o, the numeric distance between q and o under
each numeric attribute Aj (1 ≤ j ≤ m) can be expressed as
follows:

dj =

{
d(q.Aj , o.Aj), if o.Aj exists
+∞. otherwise

(2)

Then we normalize each numeric attribute distance to range
[0, 1], and comprehensively consider the influence of each nu-
meric attribute distance to calculate the total numeric distance
between q and o.

Definition 5. Numeric distance. For each query attribute
Aj ∈ q.V , let Mj = Max(Aj)-Min(Aj) = βj × 10c

j

, where
Max(Aj) and Min(Aj) are the maximum and minimum values
of attribute Aj for all objects in object set O, and 1.0 ≤ βj ≤
10.0. Let ej= cj + 1 ≥ 1, the numeric distance Dnd(q, o)
between q and o can be defined as follows:

Dnd(q, o) =
1

|q.V |
∑

Aj∈q.V
(
dj
Mj

)
1
ej . (3)

Note: if there is any query attribute that is not in o.V ,
Dnd(q, o)=+∞.

1The edit distance between the two strings s1 and s2, ded(s1, s2), can be
defined as the minimum number of edit operations (i.e., insertion, deletion,
or substitution), required to convert from s1 to s2. The n-gram is a common
technique for estimating edit distance between strings. For a string s, the n-
grams can be obtained by sliding a window of length n from the beginning
to the end of the string. In particular, Minhash method [36] can be used to
estimate set similarity.
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Travel distance is another aspect for query effort measure-
ment, which is the length of the shortest path from query q to
object o, i.e., DN (q.l, o.l).

Definition 6. Travel distance. Since the value of Sigmoid
function changes rapidly in the case of small variables, this is
consistent with the intuition that user satisfaction is generally
more sensitive to travel distance in the case of short distance.
Therefore, we use the Sigmoid function to normalize travel
distance to range [0, 1]:

Dtr(q, o) =
2

1 + e−ρ×DN (q.l,o.l)
− 1, (4)

where 0 < ρ ≤ 1 is the distance adjustment parameter.

Finally, we adopt the concept of textual-numeric-spatial
distance and combine the measurement of spatial, textual, and
numeric relevance between q and o by using a simple linear
interpolation. In particular, the textual-numeric-spatial distance
between q and o is a linear combination of the spatial, textual,
and numeric relevance between q and o, each weighted with
parameter α, β and γ, respectively.

Definition 7. Textual-numeric-spatial distance. Formally,
given q and o, the textual-numeric-spatial distance is denoted
as Dtns(q, o), which is defined as:

Dtns(q, o) = α×Dtd(q, o)+β×Dnd(q, o)+γ×Dtr(q, o) (5)

where α, β, γ ≥ 0, and α+ β + γ = 1.

C. Problem Statement

By using the textual-numeric-spatial distance Dtns(q, o) to
measure the combined proximity between query q and object
o, we can formally define Top-k A2SKIV query below.

Definition 8. Top-k A2SKIV query. Given a spatial-textual
object dataset O, a Top-k A2SKIV query q=(q.W , q.V , q.L, k)
retrieves a set of objects Ô ⊆ O, such that |Ô|=k and ∀o ∈ Ô
and o′ ∈ O − Ô, Dtns(q, o) < Dtns(q, o

′).

Example 1. Fig. 2 illustrates an example of Top-k A2SKIV
query on the traffic network in IoV, with 10 spatial-textual
objects and 1 query located on the edges. Each object has a
set of keywords and a set of attribute-value pairs to provide its
description information, and a spatial point on the edge of the
traffic network to describe its location. The query q contains
four items: a set of query keywords {Theater, coffee},
attribute-value pairs for “A1 = 4.4 & A2=45”, a spatial point
ql for its current location, and a value k = 1 for top-1 related
objects wanted. Note A1=“rating”, and A2= “pcc (per capita
consumption)”. We first consider o5, o6, o7 and o9, whose
network distances from query q are the four most shortest
ones among all the objects in O.

Assume M1=Max(A1)-Min(A1)=5-0=5, M2=Max(A2)-
Min(A2)=200-0=200, e1=1, e2=3, ρ=0.1, and α = β = γ
= 1

3 , we can get:
Dtns(q, o6)= 1

3 ×
1
2 × ( 17 + 0) + 1

3 ×
1
2 × ( 0.15 + 0) + 1

3 ×
( 2
e−0.1∗7 − 1) = 0.1631.

Textual-spatial obejcts:
o1:({Restaurant,Theater, Mall},{A1=4.5,A2=70,A3=yes},l1)
o2:({Bakery,Pizza,Bread},{A1=4.6,A2=65,A3=yes},l2)
o3:({Coffee,Italian},A1=4.2,A2=78},l3)
o4:({Coffee,bread},{A1=4.6,A2=55,A3=yes},l4)
o5:({Theater,Italian,Coffee},{A1=4.6,A2=50,A3=yes},l5)
o6:({Theatre,Coffee,Bread},{A1=4.3,A2=45,A3=yes},l6)
o7:({Italian,Fish,Bread},{A1=4.6,A2=62,A3=no},l7)
o8:({Theatre,Pizza,Coffee},{A1=4.5,A2=56,A3=yes},l8)
o9:({Theatre,Coffee},{A1=4.8,A3=yes},l8)
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Fig. 2. An example of Top-k A2SKIV query.
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Fig. 3. The flowchart of Top-k A2SKIV query processing.

Similarly, we can get Dtns(q, o5)=0.1649, Dtns(q, o7)=
0.1682, and Dtns(q, o9)=+∞. Note that Dnd(q, o9)=+∞
since o9 does not have query attribute A2, thus Dtns(q, o9)
equals +∞. Then, object o6 is the top-1 result object of q at
this moment, and other objects can be evaluated similarly.

In the following three sections, the detail method for Top-k
A2SKIV query processing is proposed, which includes hybrid
index construction, Top-k A2SKIV processing scheme design,
and extending our index constructed to support attributes with
interval values. Top-k A2SKIV processing scheme consists
of pruning techniques and query processing algorithms. The
query processing flowchart is then shown in Fig. 3.

IV. HYBRID INDEX FOR A2SKIV QUERY PROCESSING

To improve query performance and efficiently prune irrele-
vant objects for A2SKIV queries as many as possible, a novel
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Fig. 5. The flowchart of building the STAG-tree index.

two-level spatial-textual hybrid index structure STAG-tree is
proposed as shown in Fig. 4, which supports network distance
pruning, textual pruning, and numeric attribute pruning simul-
taneously. STAG-tree also considers the relative invariance of
traffic network structure and the dynamic variation of objects
and queries. Then, the flowchart of building the STAG-tree is
illustrated in Fig. 5.

A. Build G-tree Component

G-tree [37] is an assembly-based index and can efficiently
support location-based queries on traffic network in IoV. A
traffic network is modeled by an undirected weighted graph
G = {V,E} as mentioned before, and G-tree can be con-
structed by using graph partitioning. Firstly, the graph G is
marked as the root of G-tree, and then G is partitioned into f
equal-sized subgraphs G1,G2, ...,Gf , i.e., |VG1 |, |VG2 |, ...|VGf |
are almost the same, and works as the parent node of these
subgraphs. Note for Gi may exist u ∈ Vi such that ∃(u, v) ∈ E
and v /∈ Vi, such node u is called a border, and BGi is used to
represent the border set in graph Gi. Thus, Gi can be denoted
by Gi={EGi , VGi , BGi}, where EGi , VGi , and BGi denote the
vertices, edges, and borders in Gi which meet the following
conditions: 1)

⋃
1≥i≥f VGi=V ; 2) For i 6= j, VGi

⋂
VGj = ∅;

3) For ∀u, v ∈ VGi , if (u, v) ∈ EGi , then (v, u) ∈ EGi ; 4)
For ∀u ∈ VGi ,∃(u, v) ∈ E and v /∈ Vi, then u ∈ BGi}.
Then, subgraph Gi is partitioned recursively, and the steps are
repeated until each subgraph has no more than τ vertices.
Note that f and τ are adjustable parameters. For example, as
shown in Fig. 2, the traffic network G0 is first divided into
two subgraphs G1 and G2. Then G1 (G2, resp.) is divided into
G11 and G12 (G21 and G22, resp.). Assume f = 2 and τ = 6,
the G-tree structure of the traffic network in Fig. 2 can be
obtained as shown in Fig. 4(a). Note that the numbers under
the ID of each subgraph are the IDs of its borders.

To accelerate the shortest path calculation, G-tree keeps
the distance metrics (DM) which include the shortest-path
distance between each border-border pair (border-vertice pair,
resp.) for non-leaf nodes (leaf nodes, resp.). Particularly,
an efficient bottom-up method is adopted to accelerate the
distance computation. In this way, the DMs of the G-tree in
Fig. 4(a) can be obtained, and the DM of each subgraph (or
graph) is given next to it. The total space complexity of G-tree
is O(log2f ∗

√
τ ∗ |V |+ logf

|V |
τ ∗ log

2
2f ∗ |V |), where |V | is

total number of vertices in graph G, f is the fan-out of non-
leaf G-tree nodes for graph G, and τ is maximum number of
vertices contained in each leaf node of G-tree. Note that log22 ,√
τ , and logf

|V |
τ are small numbers, thus the size of G-tree is

scalable. Please refer to [37] for details.

B. Build Textual & Numeric Component

Secondly, as shown in Fig. 4(b), the dynamic part of
the index, i.e., a textual & numeric index on objects, is
constructed. For each non-leaf subgraph (node) Gi:

1) ID of the subgraph Gi is stored;
2) Calculate and keep, a) the keyword signature of all the

objects within Gi; and b) the Min(Ak) and Max(Ak) of each
numeric attribute Ak, which are the minimum and maximum
values of Ak for all the objects in Gi. If no object in Gi has
attribute Ak, Max(Ak) =Min(Ak) = +∞;

3) The entries pointing to the subgraphs of Gi is stored.
For each leaf subgraph (node) Gi, we also calculate and

keep the first two items similar to the non-leaf subgraph:
1) ID of Gi;
2) The keyword signature, and Min(Ak) and Max(Ak) for

each numeric attribute Ak.
The third item of the non-leaf subgraph is not required in

the leaf subgraph, since it does not have any subgraphs. In
addition, for each leaf subgraph we also construct and keep
the TA-ref index part as follows.

TA-ref index. TA-ref index, as shown in Fig. 4(c), is used to
organize the textual and numerical information of the objects
in each nonleaf subgraph, to facilitate textual distance and
numeric distance calculation of objects in subgraphs. TA-ref
index consists of two parts: T-ref and A-ref.

T-ref part. As far as we know, it is unfeasible calculating
the edit distance during query processing by directly using
Wagner-fisher algorithm [32]. Thus, for each leaf subgraph
Gi, we construct the T-ref part to index the edit distance of
the objects within Gi. For Gi, we select a set of reference
keywords R(Gi)= {wGir } to index the edit distances between
the keywords contained in the objects within Gi and R(Gi).

To construct the T-ref part for Gi, we need to divide the
keywords contained in all the objects within Gi into N clusters,
and select a reference keyword wGirn for each cluster, thus
to minimize the mathematical expectation of editing distance
in each cluster. To this end, k-means clustering algorithm is
adopted to obtain each cluster and its corresponding reference
keyword. Thus, each object oi within Gi is indexed in a B+-
tree by the key y(oni ). The key y(oni ) is calculated according
to the edit distance between the keyword wji and the reference
keyword wGirn , i.e., y(oni )=ded(wGirn , w

j
i )+n× C (0 ≤ n ≤ N ),

where C equals the maximum edit distance between the
reference keyword of the cluster and the keywords belonging
to the cluster. To facilitate the edit distance calculation in query
processing, we also calculate and keep the distance lower limit
DL(wGirn) and the distance upper limit DU(wGirn) for each
cluster.

Example 2. Fig. 4(c) gives the T-ref for subgraph G12, where
the keywords of objects within G12 are partitioned into three
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G0
R0

R1 R2

R11 R12 R21 R22

(b) Textual & numeric component

G1

5 8

G11

1 4 5

G12

6 7 8

G21

12 18 21

G22

13 16

G2

12 21

(G.ID,signatures,{[Min(A1),Max(A1)],...[Min(An),Max(An)]},G.sub-entries)

for non-leaf node:

for leaf node:

(c) TA-ref index for leaf subgraph

T-ref:

(a) G-tree component
level 1

level 2

0 9 17

o6

wr1=Theater wr2=coffee wr3=bread

w1 w2 w3

2

o9
w1 w2

A-ref:

0 2 31

A1's range A2's range A3's range

o9

A1 A2 A3

o4

A1 A2

o6

A1 A2 A3

o4
w1 w2

(G.ID,signatures,{[Min(A1),Max(A1)],...[Min(An),Max(An)]},TA-ref)

G0 5 8 12 21

5 0 7 11 14

8 7 0 18 7
12 11 18 0 16

21 14 7 16 0

G1 1 4 5 6 7 8
1 0 12 21 10 16 22
4 12 0 19 13 7 13
5 21 19 0 19 13 7
6 10 13 19 0 6 12
7 17 7 13 6 0 6
8 22 13 7 12 6 0

G2 12 13 16 18 21
12 0 7 17 16 16
13 7 0 10 17 23
16 17 10 0 7 14
18 16 17 7 0 16
21 16 23 14 16 0

G12 6 7 8 9 10 11
6 0 6 12 6 12 18
7 6 0 6 12 6 12
8 12 6 0 18 12 6

G11 1 2 3 4 5
1 0 7 14 12 21
4 12 5 12 0 19
5 21 14 7 19 0

G22 13 14 16 17 19 20
13 0 6 10 13 16 20
16 10 13 0 6 6 12

G21 12 15 18 21
12 0 11 16 16
18 16 5 0 7
21 16 5 7 0

Fig. 4. The STAG-tree index.

clusters, whose reference keyword is “Theater”, “coffee”, and
“bread”, respectively.

A-ref part. A-ref part is to facilitate the numeric distance
calculation of the objects in subgraphs. For each numeric
attribute Ak (1 ≤ k ≤ n) of the system, we use [k − 1, k)
to represent the value range of the objects with attribute Ak.
To map the attribute values of objects to the value ranges of
attributes, each object oi within Gi is indexed in a B+-tree
by the key y(oki ). The key y(oki ) is calculated according to its
attribute value, i.e., y(oki )= oi.VkMk

+ k − 1 (0 ≤ k ≤ n), where
oi.Vk is the attribute value of object oi for Ak, and Mk =
Max(Ak) − Min(Ak). Note that Max(Ak) and Min(Ak)
are the maximum and minimum values of attribute Ak for all
the objects in O.

Example 3. Fig. 4(c) also gives the A-ref for subgraph
G12, where the numeric attributes of objects within G12 are
partitioned into three clusters, whose value range is [0, 1),
[1, 2), and [2, 3), respectively. For example, the attribute
value for A2 of o6 is 45, and M2=100, and then we have
y(o26)= 45

100 + 2− 1 = 1.45.

Remember we partition the traffic network into equally
sized subgraphs, while minimizing the number of border
vertices at the same time. And then, the index part of each
subgraph is constructed accordingly. To allocate the workload
among different fog-devices in the second layer of our FCV
structure, the information of STAG-index is partitioned, each
corresponding to a sub-graph. For a fog-server, the index
part of the subgraph on which it resides and the subgraphs
surrounding it will be stored in the server.

V. PROCESS A2SKIV QUERIES IN IOV

This section introduces the Top-k A2SKIV query process-
ing method based on STAG-tree index.

A. Pruning Techniques

Firstly, several lemmas are introduced to efficiently prune
the unrelated traffic network space and unqualified spatial-
textual objects in IoV.

Lemma 1. Given a Top-k A2SKIV query q=(q.W , q.V , q.L,
k) and a subgraph Gi, Gi can be ignored if

dmin
N (Gi, q) > −

1

ρ
ln(

2
Dtns(q,ok)

γ + 1
− 1),

where ok is the k-th nearest neighbor of q.

Proof: For any object o in Gi, we have
Dtns(q, o) = α×Dtd(q, o) + β ×Dnd(q, o) + γ ×Dtr(q, o)

≥ γ ×Dtr(q, o),

if dmin
N (Gi, q) > −

1

ρ
ln(

2
Dtns(q,ok)

γ + 1
− 1),

through transformation, for each o ∈ Gi we have:

Dtr(q, o) >
Dtns(q, ok)

γ
.

Thus, we have:
Dtns(q, o) ≥ γ ×Dtr(q, o) > Dtns(q, ok).

As a result, any object o in Gi can not be a Top-k result
object. Thus, Gi can be ignored.
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Lemma 2. Given a Top-k A2SKIV query q=(q.W , q.V ,
q.L, k) and a subgraph Gi, if ∀qj ∈ q.W , qj .signature ∩
Gi.signature = ∅, then Gi can be ignored.

Proof: For Gi, if ∀qj ∈ q.W , qj .signature ∩
Gi.signature = ∅, which means that for any query keyword
qj , there is no object in Gi textual similar with qj , hence, Gi
can be ignored.

Lemma 3. Given a Top-k A2SKIV query q=(q.W , q.V ,
q.L, k) and a subgraph Gi, if ∃Aj ∈ q.V , such that
Max(Aj)(orMin(Aj)) for Gi equals +∞, then Gi can be
ignored.

Proof: For subgraph Gi, if ∃Aj ∈ q.V , whose Max(Aj)
(or Min(Aj)) for Gi equals +∞, it means Gi does not include
any object containing attribute Aj , which also means that the
numeric distance dj for any object o in Gi equals +∞. Thus
Dnd(q, o) equals +∞, which in turn makes Dtns(q, o) equal
+∞. Any object o in subgraph Gi can not be a Top-k result
object. Thus, Gi can be ignored.

Lower bound distance computation. The pruning strength
of the above three lemmas is relatively limited. In order to
further reduce unrelated subgraphs, for any subgraph Gi, we
calculate DLB

tns(q,Gi) as follows:

1) Gi is nonleaf subgraph.
• If Gi is not pruned by lemmas 1, 2 or 3, we reduce
DLB
tns(q,Gi) by assuming Dtd(q,Gi) equals 0.

• To calculate DLB
nd (q,Gi), for each query attribute Ak,

we compare its value for Ak, i.e., q.Ak.v, with the
value range [Min(Ak), Max(Ak)] of Gi. If q.Ak.v
falls in [Min(Ak),Max(Ak)], assume that dk = 0;
otherwise dk = min{|q.Ak.v - Min(Ak)|, |q.Ak.v-
Max(Ak)|}. Then, DLB

nd (q,Gi) is obtained by formula
(3).

• To calculate DLB
tr (q,Gi), we use the shortest network

distance between q and the border vertices of Gi, if q
does not belong to Gi; otherwise DLB

tr (q,Gi)=0.
Finally, DLB

tns(q,Gi) = α × 0 + β × DLB
nd (q,Gi) + γ ×

DLB
tr (q,Gi).

2) Gi is leaf subgraph.
• The calculation of DLB

nd (q,Gi) and DLB
tr (q,Gi) is the

same as that of the nonleaf subgraph.
• The TA-ref index of leaf subgraph Gi will be used to

calculate DLB
tns(q,Gi), whose focus is the calculation

of dLBed (qi, wi) for each query keyword qi ∈ q.W and
its most mapping keyword wi for objects in Gi. We
will detail how to determine wi and its corresponding
object oi as follows.
Calculating dLBed (qi, wi) for qi. Since the edit distance
follows the triangle inequality, we make use of the edit
distances between q and reference keywords of the T-
ref part in TA-ref index for Gi.
Firstly, the edit distance between qi and each refer-
ence keyword wGirj , i.e., ded(qi, wGirj ), is calculated. If
ded(qi, w

Gi
rj ) ∈ [DL(wGirj ), DU(wGirj )], let dLBed (qi, wi)

=0, and the processing for ki completes.
Otherwise, we choose wr = argmin0≤j≤n

{ded(qi, wGirj )} and its two bounding values
DL(wGir ) and DU(wGir ), and let dLBed (qi, wi)
equal min((ded(qi, wGir ) − DL(wGir )), ded(qi, wGir )−
DU(wGir ))).
Then, by using all the dLBed (qi, wi), DLB

td (q,Gi) can be
obtained through formula (1).

Finally, DLB
tns(q,Gi) = α×DLB

td (q,Gi)+β×DLB
nd (q,Gi)+

γ ×DLB
tr (q,Gi).

Lemma 4. Given a Top-k A2SKIV query q=(q.W , q.V , q.L,
k) and a subgraph Gi, if DLB

tns(q,Gi) > Dtns(q, ok), where ok
is with the same meaning of Lemma 1, and DLB

tns(q,Gi) is the
lower bound of the textual-numeric-spatial distance between
query q and any object o in Gi, Gi can be ignored.

Proof: Since DLB
tns(q,Gi) > Dtns(q, ok), for any object

o ∈ Gi, there exist at least k objects whose textual-numeric-
spatial distance between query q is smaller than that of o, thus
o can not be a Top-k result object. Hence, Gi can be ignored.

B. A2SKIV Query Processing Algorithm

Now we are ready to discuss the A2SKIV query processing
algorithm using STAG-tree index, which is called A2S2KG.
It takes as inputs a STAG-tree ST and an A2SKIV query
q=(q.W , q.V , q.L, k), and outputs the result object set Sresult.
A2S2KG progressively accesses the nearest subgraphs and
retrieves the most relevant objects. Finally, the k objects with
the smallest textual-numeric-spatial distance value, Dtns(q, o),
form the query result set.

The detailed steps of A2S2KG algorithm are shown in
Algorithm 1. Firstly, a min-heap HG is initialized to empty
for organizing the nodes (subgraphs) or objects to be visited.
Moreover, a set Sresult is adopted to keep the result objects
for query q, and a float Dtsk is initialized to be +∞ for
keeping the textual-numeric-spatial distance of the current k-th
nearest neighbor from query q. In particular, HG is an ordered
structure and DLB

tns(q, Pnode) is the key of a node (subgraph)
Pnode in HG.

A2S2KG first locates the leaf node (subgraph), leaf(q),
where q lies in. For each object o in leaf(q), it inserts o
together with its Dtns(q, o) into heap HG, and updates Dtsk

accordingly, if Dtns(q, o) is no larger than Dtsk (lines 4-
6). Then, it uses pointer Pnode to keep the upper-most node
(subgraph) visited of ST and uses variable PLB to keep the
lower bound of the textual-numeric-spatial distance between
query q and PNode, i.e., DLB

tns(q, PNode). Let Pnode point to
leaf(q) and PLB be DLB

tns(q, PNode) (line 7), and then visit
ST in a bottom-up manner (lines 8-23). If HG is empty, the
Adjust function is called to move Pnode to its parent node and
update PLB accordingly (line 10). Adjust function will also
process each unvisited child nodes of new Pnode. The detail
steps of Adjust function are shown in Algorithm 2.

Next, a tuple (c, dis) is popped-out from HG. Note that
(c, dis) is the head element of HG, and HG is ordered by
the (lower bound of) textual-numeric-spatial distances of its
elements from query q. If dis, which is the (lower bound of)
distance of head element c from query q, is larger than PLB ,
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Algorithm 1: A2S2KG algorithm
input : STAG-tree ST AG, A2SKIV query q=(q.W , q.V , q.L,

k)
output: Set Sresult

1 begin
2 Sresult=∅; float Dtsk = +∞; HG = ∅;
3 Locate the leaf node (subgraph) leaf(q) where q lies;
4 for each object o ∈ leaf(q) do
5 if Dtns(q, o) ≤ Dtsk then
6 HG.push(O,Dtns(q, o)); //update Dtsk

accordingly;

7 PNode=leaf(q); PLB = DLB
tns(q, PNode);

8 while |Sresult| < k && (HG 6= ∅ || PNode 6= R0) do
9 if HG=∅ then

10 Adjust(PNode, PLB , HG);

11 (c, dis)=HG.pop();
12 if dis > PLB&Pnode 6= R0 then
13 Adjust(PNode, PLB , HG);
14 else
15 if c is an object then
16 insert c into Sresult;
17 else
18 if c is a non-leaf subgraph then
19 for each unvisited child node s ∈ c do
20 Gjudge(s);

21 else
22 for each object o ∈ c do
23 Ojudge(o);

then the query answer may be existed in the parent node of
Pnode, thus Adjust function is called to move Pnode to its
parent node and update PLB accordingly (line 13). Otherwise
(dis<= PLB), there are three cases: 1) c is an object, then
c is a result object since c is the object with the minimum
textual-numeric-spatial distance (lines 15-16); 2) c is a non-
leaf subgraph, then for each unvisited subgraph s of c, function
Gjudge (shown in Algorithm 3) is called to process each s;
3) c is a leaf subgraph, then for each object o of c, function
Ojudge is called to process o.

The detailed steps of Adjust function are shown in Algo-
rithm 2. It first moves Pnode to its parent node (line 2). Then,
for each unvisited child node s of Pnode, Gjudge function
(Algorithm 3) is called to check if s possibly contains result
objects, and if true, we calculate the lower bound of the
textual-numeric-spatial distance between s and query q, i.e.,
DLB
tns(q, s). Finally, PLB , which keeps the minimum value of

DLB
tns(q, s) for all the child nodes of Pnode, is returned.
The pseudo-code of Gjudge function is shown in Algorithm

3. For node s, Gjudge uses Lemmas 1, 2 and 3, respectively,
to check if s is a qualified subgraph, otherwise s is safely
pruned and 1, which is the uppermost limit of Dtns(q, s), is
returned. If s is not pruned, we 1) calculate DLB

tns(q, s); 2)
push s together with DLB

tns(q, s) into HG (update Dtsk ac-
cordingly), and return DLB

tns(q, s) if DLB
tns(q, s) ≤ Dtns(q, ok);

otherwise s is pruned by Lemma 4 and 1 is returned, since if
DLB
tns(q, s) > Dtns(q, ok), s can not contain any result object.

The processing step of Ojudge function is similar to that of

Algorithm 2: Adjust function
input : PN , PLB , HG
output: PLB

1 begin
2 PNode=PNode.Parent;
3 for each unvisited child node s of PNode do
4 Dtns=Gjudeg(s);
5 if Dtns < PLB then
6 PLB=Dtns;

Gjudge function, and we omit the discuss for space limitation.
Time complexity analysis. Finally, we discuss the time

complexity of the A2S2KG algorithm. Given an object o and a
Top-k A2SKIV query q=(q.W , q.V , q.L, k), o is a candidate
result object for q if 1) o.V contains all the numeric attributes
of q.V , i.e., ∀q.V.Aj , 1 ≤ i ≤ m,∃o.V.Ai = q.V.Aj , whose
probability can be represented as PrAM (o); 2) ∃qj ∈ q.W ,
qj .signature ∩ Gi.signature 6= ∅, whose probability can be
represented as PrKM (o).

Thus, the total probability of an object o being a candidate
object of q, Prcand(o), equals PrAM (o)∗PrKM (o). Note here
k result objects are required, the total number of objects visited
is k

Prcand(o)
. For each object o being visited, the time costs for

computing its Dtd(q, o) and Dnd(q, o) are O(|q.W |∗|o.tags|)
and O(|q.V | ∗ |o.V |), respectively. Assume Wdis and Vdis are
the total numbers of distinct keywords and distinct numeric
attributes in the system, respectively. Thus the time complexity
for textual and attribute matching in query processing is
O( k

Prcand(o)
∗ (W 2

dis + V 2
dis)).

To estimate the value of PrAM (o), assume m and n are the
numbers of numeric attributes for o and q, respectively, and

m ≥ n, we have: PrAM (o)= Cnn ∗
Cm−n
Vdis−n
CmVdis

=
Cm−n
Vdis−n
CmVdis

. Here

Cij is the number of combinations of taking i elements from
a set of j.

For object o and query q, it is difficult to calculate exact
value of PrKM (o), thus we use the probability of o.tags
containing at least one keyword in q.W to approximate
PrKM (o). Assume m and n are the numbers of keywords
for o and q, respectively, and m ≥ n. Thus we have:

PrKM (o) ≈

1−
CmWdis−n
CmWdis

, if m ≤Wdis − n

1, otherwise

Since we use the G-tree to compute the shortest path
distances, the time cost for computing Dtr(q, o) is O(τ∗logτ+
logf

|V |
τ ∗ log

2
2f ∗ |V |) [37]. To sum up, the time complexity

of A2S2KG algorithm is O( k
Prcand(o)

∗ (W 2
dis + V 2

dis) + τ ∗
logτ + logf

|V |
τ ∗ log

2
2f ∗ |V |).

VI. SUPPORT ATTRIBUTES WITH INTERVAL VALUES

In real applications, the attribute value of an object is not
necessarily a specific value, but usually an interval of values.
In this section, we discuss extending our STAG-tree index to
handle this situation, where the attribute value of the object is
an interval of values.
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Algorithm 3: Gjudge function
input : ST AG, A2SKIV query q, node s
output: DLB

tns(q, s)
1 begin
2 if dmin

N (q, s) > − 1
ρ
ln( 2

Dtsk
γ

+1
− 1) then

3 return 1; //s is pruned by Lemma 1;

4 if ∀qk ∈ q.W , qk.signature ∩ s.signature = ∅ then
5 return 1; //s is pruned by Lemma 2;

6 if ∃Ak ∈ q.V , such that Max(Ak)(orMin(Ak)) for
Gi.SGA equals +∞ then

7 return 1; //c is pruned by Lemma 3;

8 if DLB
tns(q, s) > Dtsk then

9 return 1; //s is pruned by Lemma 4;
10 else
11 HG.push(c,DLB

tns(q, s)); //update Dtsk accordingly;
12 return DLB

tns(q, s);

A. Modification of Numeric Distance Calculation

Firstly, we modify the calculation of the numeric distance
between query q=(q.W , q.V , q.L, k) and object o=(o.tags,
o.V , o.L), for objects with attributes of interval values (IV for
short). Remember that numeric attribute distance refers to the
degree of difference between the values of query q and object
o under the same numeric attribute.

For query q and object o, the numeric distance dk between
q and o for attribute Ak of interval values, can be expressed
as follows:

dk =



+∞, if o.Ak not exists
0, if o.Ak.IV ⊆ q.Ak.IV
Mk, if o.Ak.IV does not intersect

with q.Ak.IV
|o.Ak.IV |−
|o.Ak.IV ∩ q.Ak.IV |, otherwise

(6)
Then, by using formula (3), we normalize each non-infinite

numeric attribute distance to range [0, 1], and comprehen-
sively consider each non-infinite numeric attribute distance to
calculate the total numeric distance between q and o.

Note: 1) Mk = Max(Ak)-Min(Ak); 2) if there is any query
attribute not existing in o.V , the numeric distance between q
and o, i.e., Dnd(q, o), equals +∞.

B. Index Modification

Next, we discuss extending STAG-tree index to support
queries and objects with attributes of interval values. In partic-
ular, the A-ref part needs to be modified to accommodate the
interval values of numeric attributes for objects and queries.

Remember in Subsection IV.A, for each numeric attribute
Ak (1 ≤ k ≤ n), we use [k− 1, k) to represent attribute value
range of Ak. Moreover, we map oi.Vk, which is the attribute
value for Ak of object oi within Gi, to the value range of Ak by
the key y(oki )= oi.VkMk

+k−1 (1 ≤ k ≤ n). To accommodate the
interval values for attribute Ak, we use oi.Vk.L and oi.Vk.R
to represent the left and right bound of the interval values

A-ref:

0 2 31

A1's range A2's range A3's range

o9

A1 A2 A3 A4.LA4.R

o4

A1 A2 A4.LA4.R

o6

A1 A2 A3 A4.LA4.R

4

A4's range

Fig. 6. A-ref modification.

TABLE II
CHARACTERISTICS OF THE DATA SETS

Attribute FL CAL
Number of vertices 1,070,376 21,048
Number of edges 1,356,399 21,693
Number of objects 10M 200k
Avg. number of keywords in objects 6.1 5.2
Avg. number of attributes in objects 4.3 4.1
Number of queries 1k 1k

for oi.Ak, respectively. Then, map oi.Vk.L and oi.Vk.R to the
value range of Ak by the key y(oki .L)= oi.Vk.LMk

+ k − 1 and
y(oki .R)= oi.Vk.RMk

+ k − 1 (1 ≤ k ≤ n), respectively.

Example 4. As shown in Fig. 6, we add the fourth numeric at-
tribute, i.e., A4 (business hours), for the objects in the system,
and the value range of A4 is [3, 4). Assume that the business
hours for o6 are from 8:00 to 12:00, and M4=24 since there
are 24 hours in a day. Thus we have y(o46.L)= 8

24 + 4 − 1 =
3.33, and y(o46.R)= 12

24 + 4− 1 = 3.50.

The query processing steps are similar to that in Section V,
except for the calculation of Dnd(q, o).

VII. PERFORMANCE EVALUATION

A. Experimental Settings
1) Datasets: We use two datasets, Florida (FL for short)

and California (CAL for short), to test the performance of
the proposed methods. FL and CAL consist of the traffic
network, the users, and points of interest (POIs) of Florida
and California, respectively. The object information for CAL
comes from the Geographic Names Information System in
the United States (geonames.usgs.gov/domestic). Each object
includes an object ID, a textual description, and a location
within the road traffic network. For FL dataset, we use the
objects extracted from Twitter (www.twitter.com), and each
object includes an object ID, a Twitter message, a time
of publication, and a location in the Florida transportation
network. The detail information of FL and CAL is shown in
Table II.

2) Queries: To evaluate the performance of A2SKIV, we
generate a set queries including locations, keywords, and
attribute-value pairs. The keywords and attributes of A2SKIV
queries are also obtained from Twitter. In addition, attribute
values are randomly selected and range from 1 to 1000. The
number of query keywords and query attributes ranges from
1 to 5 and 1 to 4, respectively, with a default value of 2.
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TABLE III
EVALUATION PARAMETERS USED IN THE EXPERIMENT

Parameter Values
Object cardinality (|D|) FL: 2,4,6,8,10 (M)

CAL: 10,50,100,150,200 (K)
Number of query results (k) 5,10,15,20,25
Number of query keywords (|q.W |) 1,2,3,4,5
Number of query attributes (|q.V |) 1,2,3,4
Preference parameter α 0.1,0.2,0.33,0.4,0.5
Preference parameter β 0.1,0.2,0.33,0.4,0.5
Preference parameter γ 0.1,0.2,0.33,0.4,0.5

3) Algorithms: Our STAG-tree based method (STAG for
short) will be compared with two baseline methods, DBM
[26] and ILM [29], in terms of memory consumption and pro-
cessing time. Specifically, DBM is based on Dijkstra method.
Starting from query q, DBM performs network expansion
for candidate objects, and calculates the textual-numeric-
spatial distance of the object o encountered from query q,
i.e, Dtns(q, o). In order to accelerate the calculation of long
road network distance, a multi-hop distance labeling scheme
is adopted. ILM is an inverted-list based scheme. For each
keyword w, let the set of n-grams [32] contained in w be Sw.
Thus, for object o, we have So=∪w∈o.tagsSw. For each n-
gram ζ, a list lζ containing the ID of objects, whose n-grams
contain ζ, can be obtained. For each query keyword qi ∈ q.W ,
Sqi is computed, and then by using the Heap Algorithm [38],
the object lists lζj s (for each ζ ∈ Sqi ) are merged, to get
a new list lqi of objects for qi, whose objects are sorted in
descending order of |Sqi ∩ So|. Thus, the objects sharing no
common n-gram with q can be safely pruned. Similarly, for
each query attribute Ai, we also have a list lAi containing the
ID of objects which contain attribute Ai. Thus, the objects
do not contain all the attributes Ai ∈ q.V are ignored.

B. Efficiency Measurement

This subsection evaluates the performance of three methods
by varying the object cardinality, number of query results
(k), number of query keywords, number of query attributes,
and the values of preference parameters (α, β, and γ). The
memory space for query processing is also studied. The main
parameters and their values are shown in Table III.

1) Memory Consumption: The memory consumption of
three methods is shown in Fig. 7, which increases as the
number of objects increases. The more objects, the more
storage space they take up. Generally speaking, STAG and
ILM consume more memory resource than that of DBM for
both FL and CAL data sets. For ILM, the reason is that it
builds an inverted list for each keyword and attribute, and the
object IDs store multiple copies in inverted lists. As for STAG,
we build T-ref and A-ref part to keep the textual and numeric
information of each object.

2) Effect of |D|: The running time of methods w.r.t. the
number of objects in the system is shown in Fig. 8. It is
observed that STAG outperforms its competitors. On average,
STAG-based approach is about 1.87x (17.1x, resp.) faster in
processing time than the compared ILM (DBM, resp.) method.
It is due to the fact that STAG can prune huge amounts
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Fig. 7. Effect of |D| on memory consumption.
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Fig. 8. Effect of |D| on processing time.

of unpromising objects based on network distance, textual
similarity and attribute similarity, simultaneously. Fig. 8 also
shows that the running time of three methods increases as the
object cardinality increases. It is natural since more related
objects need to be considered when there are more objects in
IoV. Moreover, STAG and ILM are much more scalable on FL
and CAL datasets than DBM, because DBM checks objects
in the order being encountered. On the contrary, STAG and
ILM arrange the objects according to keywords and attributes.
Therefore, objects that do not contain all query attributes (or
do not have any keyword similar to any query keyword) can be
pruned securely, which makes both approaches more scalable
than DBM.

3) Effect of k: The effect of value k (number of results
wanted) on the running time of STAG, ILM, and DBM is
evaluated. Fig. 9 shows that STAG significantly outperforms
ILM and DBM, since it uses STAG-tree index to prune large
parts of unqualified objects. On the contrary, DBM performs
the worst because it examines all the objects in the order being
encountered and then computes their textual-numeric-spatial
distance values. As for the stability of methods when the value
of k varies, all methods incur higher cost with larger k, because
the larger k is, the more related objects need to be examined.
For STAG, the increase of k value has no obvious effect on
the performance due to the effective pruning scheme.

4) Effect of |q.W |: We also evaluate the query performance
when the number of query keywords, |q.W |, varies. Fig. 10
shows that the running time of all methods increases with
the increment of |q.W |. For STAG and ILM, the reason
is that an object with any keyword similar to any query
keyword has a chance to be one of the query results, thus
more qualified objects need to be considered with larger
|q.W |. The processing time of DBM increases slightly with
larger |q.W |, because it requires more computation time to
calculate the textual-numeric-spatial distance values of objects.
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Fig. 9. Effect of k on processing time.
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Fig. 10. Effect of |q.W | on processing time.

Not surprisingly, STAG gets the best performance of three
methods. For example, STAG requires only 36.4% (6.3%,
resp.) processing time of ILM (DBM, resp.) when |q.W |
equals 3 for FL data set.

5) Effect of |q.V |: Now we continue to evaluate the impact
of number of query attributes, |q.V |, on performance of three
schemes. Fig. 11 shows that all methods incur less processing
time with larger query attributes. The reason is twofold. On
one hand, a candidate object is needed to contain all query
attributes, and the more query attributes there are, the fewer
eligible objects there are. On the other hand, the calculation
of numeric distance values for candidate objects is little
more difficult with more query attributes. Overall, the former
outweighs the latter, so the total processing cost of the methods
decreases as the number of query attributes increases. It is
worth noting that the decreasing tendency of STAG is more
obviously than its competitors due to its significant pruning
ability, i.e., most of the cells (subgraphs) in STAG tree can be
ignored as more attributes are queried.

6) Effect of α, β, and γ: Parameters α and β control the
importance of textual and numeric similarity between queries
and objects, respectively. When the value of α or β changes
separately, there is no fixed impact pattern on the performance
of query processing. As a result, we do not give the results of
α and β for effective measurement, and only show the impact
of γ on query efficiency. Note that varying the value of γ
means varying the sum of α and β. Fig. 12 gives the query
performance of these three methods for different γ values.
Again, our STAG significantly outperforms its competitors.
On average, it incurs only 38.0% (6.5%, resp.) query time of
ILM (DBM, resp.) for CAL data set. As for the stability of
methods when the value of γ varies, three methods incur lower
cost with larger γ, since larger γ means the spatial proximity
between the query and objects becomes more important, thus
the candidate objects may locate within a more concentrate
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range and fewer relevant objects need to be considered.

VIII. CONCLUSION

This paper formulates and solves fog computing-based
A2SKIV in IoV. A fog-based network structure FCV is
adopted to improve query processing efficiency and reduce
query feedback time. To deal with A2SKIV queries, a two-
level hybrid index STAG-tree is proposed, whose first level
is a G-tree which accelerates the calculation of the network
distance between objects and the query, and whose second
level is the textual & numeric component which efficiently
organizes the information of objects within the subgraphs
of traffic network in IoV. In addition, several lemmas are
presented to prune a huge number of unqualified textual-spatial
objects, and an efficient Top-k A2SKIV query processing
algorithm is presented. The effectiveness of the proposed
index and query processing algorithm is verified by extensive
experimental evaluation using real and composite data sets.
The results also show that the proposed scheme is effective
in applications like mobile search and targeted location-aware
advertising in IoV.

REFERENCES

[1] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang, “Toward cloud-
based vehicular networks with efficient resource management,” IEEE
Network, vol. 27, no. 5, pp. 48–55, 2013.

[2] J. Li, J. Jin, Y. Dong, and H. Zhang, “Virtual fog: A virtualization
enabled fog computing framework for internet of things,” IEEE Internet
of Things Journal, vol. 5, no. 1, pp. 121–131, 2018.

[3] M. Aazam and E. N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in International Conference on
Future Internet of Things and Cloud, 2014, pp. 464–470.

[4] K. Dan, K. Piratla, and C. J. Matthews, “Towards sustainable water
supply: Schematic development of big data collection using internet of
things,” Procedia Engineering, vol. 118, pp. 489–497, 2015.

[5] G. Li, C. Zhou, J. Li, and B. Guo, “Maintaining data freshness in
distributed cyber-physical systems,” IEEE Transactions on Computers,
vol. 68, no. 7, pp. 1077–1090, 2019.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.2965730, IEEE Internet of
Things Journal

13

[6] C. Yu, B. Lin, P. Guo, W. Zhang, S. Li, and R. He, “Deployment and
dimensioning of fog computing-based internet of vehicle infrastructure
for autonomous driving,” IEEE Internet of Things Journal, vol. 6, no. 1,
pp. 149–160, 2019.

[7] Y. Zhang, C.-Y. Wang, and H.-Y. Wei, “Parking reservation auction
for parked vehicle assistance in vehicular fog computing,” IEEE Trans.
Vehicular Technology, vol. 64, no. 4, pp. 3126–3139, 2019.

[8] Z. Lamb and D. Agrawal, “Analysis of mobile edge computing for
vehicular networks,” Sensors, vol. 19, pp. 1303–1323, 2019.

[9] D. Zhang, K. L. Tan, and A. K. H. Tung, “Scalable top-k spatial keyword
search,” in International Conference on Extending Database Technology,
2013, pp. 359–370.

[10] Q. Zhou, G. Li, J. Li, and C. Deng, “Execution-efficient response time
analysis on global multiprocessor platforms,” IEEE Transactions on
Parallel & Distributed Systems, vol. 29, no. 12, pp. 2785–2797, 2018.

[11] Y. E. Carlsson, “Keyword search on spatial network databases: Road
network indexing for efficient query processing,” Master Thesis. Nor-
wegian University of Science and Technology, Trondheim, Norway, pp.
1–63, 2011.

[12] Q. Zhou, G. Li, J. Li, L. C. Shu, C. Zhang, and F. Yang, “Dynamic
priority scheduling of periodic queries in on-demand data dissemination
systems,” Information Systems, vol. 67, pp. 58–70, 2017.

[13] L. Kuang, L. T. Yang, J. Chen, H. Fei, and C. Luo, “A holistic approach
to distributed dimensionality reduction of big data,” IEEE Transactions
on Cloud Computing, vol. 6, no. 2, pp. 506–518, 2018.

[14] L. Guo, J. Shao, H. H. Aung, and K. L. Tan, “Efficient continuous top-
k spatial keyword queries on road networks,” GeoInformatica, vol. 19,
no. 1, pp. 29–60, 2015.

[15] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774–6785, 2019.

[16] F. Kong, J. Li, B. Jiang, and H. Song, “Short-term traffic flow prediction
in smart multimedia system for internet of vehicles based on deep belief
network,” Future Generation Computer Systems, vol. 93, pp. 460–472,
2019.

[17] G. Mastorakis, E. Pallis, C. X. Mavromoustakis, L. Shu, and J. J. P. C.
Rodrigues, “Special issue on multimedia services provision over future
mobile computing systems,” IEEE Systems Journal, vol. 12, no. 1, pp.
12–15, 2018.

[18] M. Mukherjee, S. Lei, and W. Di, “Survey of fog computing: Funda-
mental, network applications, and research challenges,” IEEE Commu-
nications Surveys and Tutorials, vol. 20, no. 3, pp. 1826–1857, 2018.

[19] C. Sheng, W. Liao, C. Luo, L. Ming, and L. Pan, “Cril: An efficient
online adaptive indoor localization system,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 5, pp. 4148–4160, 2017.

[20] S. Salinas, C. Luo, X. Chen, W. Liao, and P. Li, “Efficient secure
outsourcing of large-scale sparse linear systems of equations,” IEEE
Transactions on Big Data, vol. 4, no. 1, pp. 26–39, 2018.

[21] M. Aazam and E. N. Huh, “Dynamic resource provisioning through
fog micro datacenter,” in IEEE International Conference on Pervasive
Computing and Communication Workshops, 2015, pp. 105–110.

[22] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
2016.

[23] Y. Yuan, X. Lian, L. Chen, J. Yu, G. Wang, and Y. Sun, “Keyword
search over distributed graphs,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 6, pp. 1212–1225, 2017.

[24] X. Miao, Y. Gao, G. Su, and C. Gang, “On efficiently answering why-
not range-based skyline queries in road networks,” IEEE Transactions
on Knowledge & Data Engineering, vol. 30, no. 9, pp. 1697–1711, 2018.

[25] J. Yang, Y. Zhang, X. Zhou, J. Wang, H. Hu, and C. Xing, “A
hierarchical framework for top-k location-aware error-tolerant keyword
search,” in Proceedings - International Conference on Data Engineering,
2019, pp. 986–997.

[26] L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao, “The exact distance
to destination in undirected world,” Vldb Journal, vol. 21, no. 6, pp.
869–888, 2012.

[27] Y. Gao, X. Qin, B. Zheng, and G. Chen, “Efficient reverse top-k
boolean spatial keyword queries on road networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 5, pp. 1205–1218,
2015.

[28] J. Zhao, Y. Gao, C. Gang, and C. Rui, “Towards efficient framework
for time-aware spatial keyword queries on road networks,” Acm Trans-
actions on Information Systems, vol. 36, no. 3, pp. 1–48, 2017.

[29] D. Zhang, Y. Li, X. Cao, J. Shao, and H. T. Shen, “Augmented keyword
search on spatial entity databases,” Vldb Journal, vol. 27, no. 2, pp.
225–244, 2018.

[30] Y. Li, M. Wang, R. Zhu, and A. Anjum, “Intelligent augmented keyword
search on spatial entities in real-life internet of vehicles,” Future
Generation Comp. Syst., vol. 2019, no. 94, pp. 697–711, 2019.

[31] T. Abeywickrama, M. A. Cheema, and A. Khan, “K-spin: Efficiently
processing spatial keyword queries on road networks,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. PP, no. 99, pp. 1–1,
2019.

[32] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava, “Approximate string joins in a database (almost) for
free,” in VLDB, 2001, pp. 491–500.

[33] S. Alsubaiee, A. Behm, and L. Chen, “Supporting location-based
approximate-keyword queries,” in Sigspatial International Conference
on Advances in Geographic Information Systems, 2010, pp. 61–70.

[34] X. Wang, X. Ding, A. K. H. Tung, and Z. Zhang, “Efficient and effective
knn sequence search with approximate n-grams,” Proceedings of the
VLDB Endowment, vol. 7, no. 1, pp. 1–12, 2013.

[35] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. Sadiq, and X. Zhou, “Approx-
imate keyword search in semantic trajectory database,” in Proceedings
- International Conference on Data Engineering, 2015, Seoul, South
Korea, pp. 975–986.

[36] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou, “Approximate string
search in spatial databases,” in Proceedings - International Conference
on Data Engineering, 2010, pp. 545–556.

[37] R. Zhong, G. Li, K. L. Tan, and L. Zhou, “G-tree: an efficient index
for knn search on road networks,” ACM International Conference on
Information and Knowledge Management, pp. 39–48, 2013.

[38] S. Sarawagi, S. Sarawagi, A. Kirpal, and A. Kirpal, “Efficient set
joins on similarity predicates,” Proc. of the Acm Sigmod Intl. conf. on
Management of Data, pp. 743–754, 2004.

Yanhong Li is currently a professor at the College
of Computer Science of South-Central University for
Nationalities, China. She received her PhD degree
from Huazhong University of Science and Technol-
ogy (HUST), China, in 2011. Her research interests
include spatial information and communication, and
multimedia network technology. Dr. Li has published
over 25 papers in international journals and confer-
ences in the areas of mobile computing and wireless
networks.

Rongbo Zhu is currently a professor at the College
of Computer Science of South-Central University for
Nationalities, China. He received his PhD degree
in communication and information systems from
Shanghai Jiao Tong University, China, in 2006. Dr.
Zhu has published over 60 papers in international
journals and conferences in the areas of wireless
networks and mobile computing. He is an Associate
Editor of IEEE Access and International Journal
of Radio Frequency Identification Technology and
Applications. Dr. Zhu is a member of the IEEE.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.2965730, IEEE Internet of
Things Journal

14

Shiwen Mao received his Ph.D. in electrical and
computer engineering from Polytechnic University,
Brooklyn, NY. He was the McWane Associate Pro-
fessor in the Department of Electrical and Computer
Engineering at Auburn University, Auburn, AL from
2012 to 2015. Currently, he is the Samuel Ginn
Distinguished Professor and Director of the Wire-
less Engineering Research and Education Center at
Auburn University. His research interests include
wireless networks, multimedia communications, and
smart grid. He is a Fellow of the IEEE.

Ashiq Anjum is currently a professor of Distributed
Systems at the University of Derby, UK. His re-
search interests include data intensive distributed
systems, block chain, Internet of Things and high
performance analytics platforms. Currently he is
investigating high performance distributed platforms
to efficiently process video and genomics data. Dr.
Anjum has more than 70 international academic
publications. He is the member of British Computer
Society, IEEE, ACE, and SIGHPC. He is the Fellow
of Higher Education Academy and the champion of

European Grid Infrastructure.


