
Improving Cloud Datacentre Scalability, Agility and Performance using OpenFlow

Charlie Baker, Ashiq Anjum, Richard Hill, Nik Bessis
School of Computing and Mathematics

University of Derby, Derby, UK
C.Baker2@unimail.derby.ac.uk, {a.anjum, r.hill,

n.bessis}@derby.ac.uk

Saad Liaquat Kiani
Faculty of Engineering and Technology

University of the West of England, Bristol, UK
Saad2.Liaquat@uwe.ac

Abstract — With network infrastructure reaching capacity
limits, new ways of managing network traffic and devices in
Cloud data centres need to be investigated to better scale and
manage the data centre resources. OpenFlow can be a good fit
for the usage within a datacentre due to its promise to reduce
the cost of operations by reducing the time needed to configure
network resources and flexibly managing the operations.
OpenFlow allows a programmable Software Defined Network
to be implemented and network resources such as switches can
be remotely and collectively configured, controlled and
monitored. With increasing number of resources in data
centres, and by consequence the networking hardware and
software, OpenFlow can be used to manage the network
devices and the flow of traffic throughout the network. This
paper investigates if OpenFlow based switches allow for
flexible networking and administration to enable quick
network segmentation, packet re-routing, permit scalability
and allow for quick network setup in Cloud data centres. With
the help of experiments, this work also investigates what design
and implementation considerations need to be made to achieve
scalability, agility and performance in Cloud data centres.

Keywords-component; openflow; networking; cloud
computing; datacentres

I. INTRODUCTION
Data centres are expensive to setup, manage and operate.

On average each rack can cost around $120,000 (~£75,000)
over the Total Cost of Ownership (TCO) - approximately
half of which is hardware and the other half, operating costs
[1]. The average cost of a switch is about $450 (~£285) per
10Gbps Ethernet switch port i.e. the cost of a 10Gbps 48-
port switch can be about $21,600 (~£13,540) [11]. One of
the approaches towards reducing the operating cost of data
centres is to eliminate unneeded hardware and make them
virtualised. Administrating the increasing number of
switches in a data centre is a non-trivial task. Using
OpenFlow based switches would allow all of the switches to
be administered from one central location resulting in quick
setup and configuration which can reduce the costs of
setting up new or modifying existing network
configurations in data centres thus reducing operational,
maintenance and setup costs

The main purpose of switching hardware is to propagate
packets - receiving from a sender and forwarding it on
towards the intended recipient. Switches operate on various
layers of the network stack from layer 1 (repeaters) up to
layer 7; their functional characteristics include network

bridging, routing, address translation, content filtering,
redundancy and load balancing. Switches that carry out
routing functionality usually compartmentalise their
functions into two parts that control the processing of the
incoming packets. These are known as the Control Plane
and the Forwarding or Data Plane. The Control Plane is
responsible for generating the network map or an in-built
routing table, which lists the routes that should be used to
forward packets. The Forwarding/Data Plane is used to
determine, with the help of the table or map produced by the
Control Plane, where the packet should be sent based on
various criteria such as destination, port or the contents of
the packet. Usually the Control and Forwarding planes in a
device are vendor specific, proprietary and closed source.
This means they are not modifiable easily.
OpenFlow is an open standard that allows researchers and
network administrators to design, test and implement
experimental protocols in networks. On a switching device
that does not run OpenFlow, the Control and the Forwarding
planes operate on the same device whereas an OpenFlow
configured device separates these two planes with the
routing decisions being controlled by a controller. A
controller is typically a standard server running on the same
or different device. There can be one or many controllers in
a network, allowing one controller to control a large number
of OpenFlow devices. The controller can be programmed to
route packets depending on various control sets [4]. This
also means that switches can be controlled easily from one
remote location such as a Network Operating Centre (NOC).
Custom control sets allow the switch to route packets in
various ways that do not exist currently in today’s hardware
such as legacy switches.
Switching devices are part of almost every network
infrastructure used in commercial, technology, education
and residential settings. Whilst this is a success for
implementation, success in developing and then deploying
new switching technologies is much more remote due to the
large install base. The sheer number of devices in
widespread deployment has caused network innovation to
stall and stagnate due to the reluctance to experiment with
new ideas. New and alternative approaches are needed due
to the traffic increasing considerably each year [10]. With
network infrastructure slowly reaching capacity limits, new
ways of routing packets may need to be investigated if there
is reluctance to upgrading physical infrastructure. This is
especially the case as Cloud-based applications gain more

2012 Fourth International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4808-1/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/iNCoS.2012.118

20

popularity, possibly increasing the bandwidth usage [3].
Due to the highcost of entry to implementation in realistic
environments, new ideas need to gain confidence to enable
widespread deployment, which is currently a problem for
new protocols. OpenFlow can allow researchers to
experiment in such environments due to its ease of access
and programmable nature whilst running alongside and
without affecting the production networks. Such
experimentation and subsequent analysis can help new
switching and routing approaches gain traction.

Consider the scenario of Cloud datacentres, where many
Cloud-based applications are migrating from physical
servers to virtual servers. Hao et al. [3] show that utilising
OpenFlow enables virtual servers to be seamlessly migrated.
However they conclude that whilst possible in datacentres,
numerous issues remain and require further research.

This work investigates if OpenFlow based switches
allow for easy networking and administration to enable
quick network segmentation, packet re-routing, permit
scalability and allow for quick network setup in Cloud data
centres. Furthermore, this utility of OpenFlow needs to cater
for metrics such as performance and bandwidth in
comparison with existing switches and explore any potential
reduction in cost of configuring network resources.
Establishing the viability of OpenFlow in these aspects can
help persuade the cloud data centre community to
implement OpenFlow in their infrastructures.

The rest of the paper is organised as follows: Section II
presents the work related to our discussion. In Section III,
we present the design of a data centre, its network
configuration and OpenFlow scripts that form the basis of
our experiments, which are discussed in Section IV.
Experimental results and their evaluation is presented in
Section V, and the discussion is concluded in Section VI.

II. RELATED WORK
There are a number of works aimed at improving

OpenFlow including [4], which suggests that using network
based acceleration cards to perform the OpenFlow switching
to improve performance. In [13], the authors argue that load
balancers are expensive, but using OpenFlow tables to
perform the switching can require hundreds or thousands of
rules. They suggest that OpenFlow should allow wildcard
rules and present a prototype implementation of their
approach in Mininet and NOX. CleanSlate
(http://cleanslate.stanford.edu) at Stanford tested the
implementation and deployment of an actual OpenFlow
network. A related project is OpenRoads [14] that aims to
provide a wireless extension of OpenFlow with their final
goal of deploying it in production networks that incorporate
wireless technologies such as WiMAX and Wi-Fi. Their
wireless base stations incorporate flow tables so that they
can be controlled remotely via the OpenFlow protocol.
There have also been some developments with alternatives

to OpenFlow such as the Arista Networks EOS (Extensible
Modular Operating System) [15]. Arista Networks EOS is
made up of components such as CloudVision, which allows
single point administration of hundreds of thousands of
cloud node switches.

Frenetic [16] is high-level programming language for
programming software-defined networks. Frenetic is based
on the argument that most of the languages currently
available for Software Defined Networks are too low level,
complicated and hard to learn. Frenetic uses the functional
reactive programming paradigm, in contrast to the event
driven programming used in OpenFlow. NetCore [17] is
another such programming language that is used for
software-defined networks. NetCore is a high-level,
declarative programming language and is mainly used for
expressing packet-forwarding rules for software-defined
networks. RouteFlow [18] is a project following the
software-defined networking paradigm, utilising an
OpenFlow controller with a RouteFlow server that manages
virtual network environments that connect to virtualised IP
routing engines. The goal of RouteFlow is to centralise
remote IP routing eventually allowing developments such as
virtual routers or “Routers as a Service”. As you can see
there are a number of differing projects that centre on either
OpenFlow or Software Defined Networks and improving
them or providing alternatives to current technologies and
implementations. However, none of these aims to improve
the cloud data centre operations with respect to traffic
management and segmentation, scalability and
administrative control over the resources.

III. DESIGN
To assess the viability of OpenFlow in data centre

routing and how it compares to existing switches in real
world data centres, our work will devise a set of
experiments that utilises OpenFlow along with all the
available tools that come with the testing suite. We will
design a model data centre network, housing a large number
of nodes. The experiments will generate and route traffic
under the control of OpenFlow and test metrics such as
performance, throughput and bandwidth.

A. Network Design
For the experiment, a sample segment of a data centre

network is going to be designed and implemented using the
OpenFlow tools (explained in the next section). Our data
centre design is based on established conceptual and
experimental data centre designs [2][6] (see Fig. I), with the
aim of supporting the generalizability and reproducibility of
our experimental results. A custom network topology has
been designed, based on [2][6] and illustrated in Fig. II that
implements features of each to provide an adequate design
that can be used and tested throughout the experiment.

21

Fig. I shows a network similar to the ones proposed in

[2][6] but they are also linked up to a SAN (Storage Area
Network). It depicts more redundancy features such as the
interconnections between routing, switching and firewall
nodes. A SAN is a separate, high-speed network for storing
data as efficiently and as fast as possible. Most SANs reside

on a separate network due to the specialised hardware
needed. Initially our test implementation, of a design
included a SAN, however was removed from the eventual
design to simplify the experimental setup. Figure I shows
our experimental data centre network layout.

FIGURE I Design of the Cloud data centre used in the experiments

B. Code / Algorithm Design
Our experiments are directed through a script file that is

used to set up the environment for the experiment. The
script contains OpenFlow API based instructions. Fig. II
describes an algorithm that is used to set up the network.
Line 1 imports the required libraries such as the OpenFlow
API. Line 2 and 3 are initialisation methods that are part of
the structures for the Python script. Lines 4-8 instruct all
nodes to set up a unique ID in the network. Lines 9-13 add
all the switching devices in the network. Lines 14-15 do the
same for the host nodes. Lines 16-20 set up connections
between all the nodes, in this case, the main nodes such as
the Firewall, Internet and Core Switches. Each set of Line
21-22 up to Line 28 loop through every set of 48 hosts and
connect them to the correct switch. Finally on Line 29, we
enable all the nodes and then end the definition in Line 30.
This algorithm sets up a network with 192 nodes (host
machines) with 9 switches in the network, producing the
end result of a network topology illustrated earlier in Figure
I. The Internet Switch will act as a host outside of the

network. An important consideration taken into account was
how many nodes would be an adequate in the experimental
network. Too many would prohibitively increase the
network testing time whereas too few would cause the
network to be inadequate for correctly simulating a segment
of a data centre.

C. Alternative Algorithm
Originally this pseudo code included the code to

incorporate a simple SAN setup in the network. Fig. III
shows example code of how the original design was
implemented.

This set of code continues on from Line 27 and 28 and
finishes before the original Line 29 i.e. adding the SAN
features before continuing with the existing script. Lines 31
and 32 set up all the SAN Switches unique IDs that are
similar to the previously defined Switches. Next Lines 33
and 34 loop through all the SAN hosts and add them to the
network. After which the Switches get added to the network

22

on Line 35. After this, each set of SAN hosts are connected
to their corresponding SAN Switch during Lines 36-39.
Finally, it has to loop through every original set of Hosts
from the network and then connect them to the correct SAN
Switch and then carry on executing the existing script.

This script will be used to develop a software-defined
network utilising tools, which consist mainly of a virtual

machine running the OpenFlow testing image (an Ubuntu /
Debian based Unix distribution modified with the
OpenFlow tools). Finally, our experiments will use this test
topology to assess the viability of the use of OpenFlow in a
switch and its feasibility in terms of performance related
metrics.

FIGURE II PSEUDO CODE - SETUP SCRIPT

D. Tools & Environment
Figure IV illustrates the interaction between the components
involved in our experiment. The host machine consists of a
2.7 GHz Intel Core i5 Quad Core system with 16 GB of
RAM executing Windows 7 64-Bit Professional. Oracle’s
VirtualBox virtualization software has been used to host the
OpenFlow virtual machine. The OpenFlow VM testing
environment, derived from the Ubuntu Linux distribution, is
executed in VirtualBox. XMing server [19] running on the

host machine is used to pipe graphical applications from the
VM to the host machine over an SSH tunnel.
Mininet allows creation, interaction with, customization and
sharing of prototype software-defined networks from the
command line or scripting using the OpenFlow protocol. It
allows creation of different types of networks and
performing various tests (throughput, ping, etc.) on
individual nodes and the whole network. The main
advantage of using Mininet is that it allows us to rapidly
prototype real networks without having to resort to setting
up a lab environment; though this is also possible if
required. Mininet also incorporates various test functions for
thorough network testing; these include Iperf, Ping, PingAll,
PingPair and CBench.

FIGURE III PSEUDO CODE - SAN SETUP SCRIPT

These tools, which will be used in our experimental

analysis, are described below:
a) Iperf

Iperf is used to find out the bandwidth between two
nodes. It uses the two ‘farthest away’ nodes in the network
and then finds the maximum amount of bandwidth possible
between them. This is useful for determining how fast the
network can be.

b) Ping
The Ping programs tests the connectivity between two

devices by sending a message to the recipient from the

 ...
27 Loop through last set of nodes.
28 Connect 48 Hosts to Regular Switch 4

// End of existing Code

31 Set up IDs for SAN Hosts Set #1 and #2
32 Set up IDs for SAN Switch #1 and #2

33 Loop through SAN set of Hosts
34 Add SAN Host to Network

35 Add San Switch #1 and #2 to Network

36 Loop through SAN Hosts Set #1
37 Connect Host to Switch #1

38 Loop through SAN Hosts Set #2
39 Connect Host to Switch #2

40 Loop through every original host Set #1 and #2
39 Connect SAN Switch #1 to Set #1 and

 #2 Hosts

40 Loop through every original host Set #3 and #4
41 Connect SAN Switch #2 to Set #3 and

1 Import required libraries

2 Begin definition of my topology:

3 Define initialisation method:

4 Set up ID for Internet node
5 Set up IDs for Router and Firewall nodes
6 Set up IDs for Core Switches
7 Set up IDs for Regular Switches
8 Set up IDs for Host machines

9 Add Internet to Network
10 Add Router to Network
11 Add Firewall to Network
12 Add Core Switch 1 and 2 to Network
13 Add Regular Switch 1, 2, 3 and 4 to

Network

14 Loop through every node.
15 Add node to the network

16 Connect Internet to Router
17 Connect Router to Firewall
18 Connect Firewall to Core Switch 1 and 2
19 Connect Core Switch 1 to Regular Switch

1 and 2
20 Connect Core Switch 2 to Regular Switch

3 and 4

21 Loop through first set of nodes.
22 Connect 48 Hosts to Regular Switch 1

23 Loop through second set of nodes.
24 Connect 48 Hosts to Regular Switch 2

25 Loop through third set of nodes.
26 Connect 48 Hosts to Regular Switch 3
27 Loop through last set of nodes.
28 Connect 48 Hosts to Regular Switch 4
29 Enable all nodes.

30 End definition

23

sender and then awaits a response from the recipient back to
the original sender.

c) PingAll
PingAll utilises the Ping program and loops through

every host in the network and then pings every other host in
the network to check for connectivity. This can take a
considerable amount of time when dealing with a large
number of hosts.

d) PingPair
PingPair only pings between two deepest nodes in the

network.
e) CBench

CBench is used to determine how quickly flows can be
changed on all the switches in a network from the controller.
This is measured in total flow modifications per second.

 FIGURE IV Detailed Image of Components and how they interact

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP
The experiment uses this main set of software/tools to

eventually implement the prototype cloud datacentre
utilizing the OpenFlow protocol. The experimental is
driven through a python file and an execution file with
instructions on how to execute it.

A. Execution
To specify the experimental execution in Mininet, a

custom topology is produced that is executed to
automatically produce networks of various types.
Correctness of the network topology used in the
experiments was initially tested between a smaller
number of nodes. Afterwards, additional nodes were
continually added to build up the network to the full scale.
Fig. II shows the pseudo code for the topology file that
was created and used. By using the custom topology,

start-up and setup (including the generation of the
network) of Mininet was achieved using commands
shown in Fig. V. These two commands start the controller
and then proceed to start up the Mininet environment.

FIGURE V Start-up commands

The first command starts up the remote Controller,
which determines on how packets are routed or flowed.
The packet flow determining rules can be custom made
programmatically, though a default set of rules is also
available. Our experiment uses the learning controller
supplied with the Mininet environment. The second
command starts up Mininet with our custom topology file.

Testing the experimental network required iterating
through each section of code and ensuring the correctness
of individual command executions. Once the correctness
of the script’s execution was verified, the WireShark

openflow@openflowvm:$ controller ptcp:
openflow@openflowvm:$ sudo mn --custom
/home/openflow/mininet/examples/dctopo.py --topo dctopo -
-mac --controller remote

24

application [20] was utilised to view the traffic being
generated in the network. WireShark is a packet sniffer
that allows the user to analyse packets that are passing
through a network. This particular version of WireShark
was pre-setup to include OpenFlow specific features to
allow snooping on OpenFlow related traffic. The use of
this application enabled network inspection to ensure that
the implementation of the designed network was
operating correctly provided a real time view of the
effects of the packets as well as all messages sent between
the switches and controllers. The results of the network
testing are discussed in the following seciton.

B. Testing
To test the design of the network, connectivity tests were
carried out. Tools available from within the Mininet
framework were used for this test. The Pingall function in
Mininet was used to test that each node can connect to
every other node. Due to the number of nodes – 192 in
total – this takes a considerable amount of time as it tests
each node’s connectivity with every other node in the
network. The results show that overall there was a total of
37,056 pings between every host in each test batch. This
shows that this topology is being constructed properly and
that all the nodes are communicating with one and other.
WireShark was used to make sure the OpenFlow
controller was having an effect on any packets at all and
routing them to the correct destination. The PingPair tool
pings pairs of nodes that are the furthest down the tree of
nodes to check for connectivity. Because most of the
nodes at the bottom of the tree are on the same level or
depth, it only checks the connectivity between two nodes
– in this case host 1 and 48. As the output in Fig. VI
illustrates, the PingPair test completed successfully.

FIGURE VI PingPair Testing Output 1

V. RESULTS & EVALUATION

A. Bandwidth
Testing the bandwidth can be particularly useful as it

demonstrates how fast the packets are routed through the
network. Also this shows how fast the controller makes
decisions depending on various situations. For example,
the controller can be running in the kernel space, the user
space and various other ways. Each has its own sets of
pros and cons and issues relating to speed. For this
example, it was executed in the kernel space to benefit
from faster execution of the controller. To test the
bandwidth, iperf tool supplied with the Mininet
environment was used.

TABLE I. BANDWIDTH MEASUREMENTS DATASET

 Bandwidth (MBits/sec)
Test

User Space Switch OpenVSwitch (Kernel) Switch

Attempt
1

Attempt
2

Attempt
3

Attempt
1

Attempt
2

Attempt
3

1 22.8 23.6 27.1 496 585 433
2 23.8 22.0 24 584 580 513
3 25.9 22.6 24.2 589 572 575
4 25.8 22.7 25.5 587 576 572
5 23.5 22.1 24.7 582 579 573
6 22.7 21.9 24.2 578 577 578

Ave. 24.08 22.48 24.95 569.33 578.16 540.67

Table 1 shows the results of doing each test twice
using the User and Kernel Space Switches as well as
using the OpenVSwitch implementation that is bundled
together as part of the OpenFlow testing image. Some of
the switches that are bundled are used for learning
purposes only and will not do anything “intelligent” such
as routing or building route tables. The idea is that you
yourself manually build a flow table and install it on the
switch for it to process flows. This could be a reason as to
why the bandwidth is so low.

B. Flow Modifications Per Second
CBench is a utility for testing the number of flow

modifications per second in a Controller. Obviously the
higher the result the better as the Controller can push out
flows quicker resulting in the flow of packets being
altered quicker. Here the utility test has been run three
times to determine how fast the modifications were
running in the virtual machine.

TABLE II. CBENCH RESULT SET

Test # Min
(fmods/s)

Average
(fmods/s)

Max
(fmods/s)

1 2648.66 2835.58 2736.25
2 2615.00 2800.17 2714.03
3 2622.98 2797.99 2704.18
4 2638.99 2830.22 2733.15
5 2687.99 2882.17 2759.18
6 2573.99 2785.92 2713.84
Average 2631.27 2822.01 2726.77

The results in Table II show the number of flow

modifications these Controllers can propagate per second.
As this test was executing in a virtual machine, we
estimate that the propagation rate would increase
considerably when executed on real world networking
hardware. However, there may not be a real need to
require such a high number of flow modifications per
second unless in stress testing scenarios.

C. Visualising the Results
As a companion to the result sets, graphs are going to

be generated that illustrate the information from the result
sets generated in a more understandable form. As the

h1 -> h48
h48 -> h1

*** Results: 0% dropped (0/2 lost)

25

graph in Fig VII illustrates, the network bandwidth during
these tests is low, especially if this setup is compared with
actual datacentre deployments.. The User switch runs in
the User space memory rather than in the kernel space,
which may explain the low bandwidth achieved in these
tests.

1) Full Bandwidth Results

Figure VIII illustrates a considerable difference in the
speed between the Userspace switches and the
OpenVSwitch switches. This is mainly because of the fact
that the OpenVSwitch switches execute in the kernel
space. Intermittent results of over 1Gbps were also
observed in some of the experiemnts (outliers). Our
presumption is that it relates to the execution in a virtual
machine in contrast to native hardware and we are
investigating this aspect further in our future work. Figure
IX illustrates the bandwidth difference between the
Userspace Switch and the OpenVSwitch.

FIGURE VII USER SWITCH RESULTS FOR TABLE II

Figure VII shows only the User Switch bandwidth

performance in relation to Table II.

FIGURE VIII OPENVSWITCH RESULTS FOR TABLE II

Figure VIII shows the OpenVSwitch data set from Table
II.

FIGURE IX COMBINED RESULTS OF TABLE II

The graph in Figure X displays the number of flow

modifications per second. A flow modification is what
occurs when the Controller has a rule for a particular
packet and knows what it wants to do with it. It will
propogate this rule between the switches or the switch
will ask the controller what to do with it, if unknown. The
graph shows a rather large number of modifications per
second were achived in our experiments.

2) CBench Results

FIGURE X GRAPHICAL RESULTS OF TABLE III

3) Summary of Results

Whilst the experiment has had varying degrees of
results relating to the performance of the network, it has
shown that a simulated model of a datacentre segment can
be implemented to analyse OpenFlow behaviour. Whilst
the bandwidth performance in kernel space execution
switch was better than the Userspace switch – by about
15-20x– it may not be comparable to hardware switches
deployed in datacentres. This can be explained by the fact
that our experiments are being carried out withing
Mininet, which itself is being executed in a virtual
machine.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
OpenFlow and Software Defined Networks are

growing in popularity and use in distributed
infrastructures. Datacentres deployment sizes are
increasing due to demand as more Cloud services are
created and adopted. With the number of devices
increasing within the datacentres – including switches -

26

alternative management mechanisms such as OpenFlow
need to be considered and evaluated against existing
mechanisms to improve scalability, agility and
performance of data centre operations. The experiment
presented in this involved the design, implementation and
testing of a simulated datacentre network segment
utilising the OpenFlow and the associated tools.

The results show that the User space switches offer a
lower performance in comparison to the kernel space
(OpenVSwitch) switches. The results for the kernel space
switches’ performance is not comparable to commercial
switches in a real datacentre due to the framework used
for the simulation (Mininet) and the usage of a virtual
machine to perform the experiment.
OpenFlow could be a good fit for the usage within a
datacentre - to reduce the cost of operations by reducing
the time needed to configure switches. They can be
remotely controlled from one place rather than having to
configure and control them independently. Due to the
early stage of development of these tools, it cannot be
recommended for datacentre switches to be completely
replaced with OpenFlow switches until the software
platform matures. Further research needs to be carried out
using commercial switches with OpenFlow technology
built in rather than replacing them completely. We
specifically propose the following additions in carrying
out experimental analysis in this domain.. Different
OpenFlow controller implementations, e.g. the NOX
controller, Learning controller, the Beacon Controller, can
be used to analyse their performance in an experimental
networks such as the one presented in this paper. Beacon
is a Java based modular controller with support for
threaded and event based operations. Secondly,
comparative studies can be performed in the area of
Software Defined Networks using alternatives to
OpenFlow e.g. RouteFlow.

VII. REFERENCES
[1] American Power Conversion, 2005, Determining Total Cost of

Ownership for Data Center and Network Room Infrastructure
Revision 3. [PDF] Available at:
<http://www.linuxlabs.com/PDF/Data%20Center%20Cost%20of%
20Ownership.pdf> [Accessed: 04/04/2012]

[2] Athenaeum Limited, 1999-2011, California Solar Powered
Datacentre Specification, [Image Online] Available at:
<http://www.ecologicalhosting.com/company/data-centre/solar-
powered> [Accessed 20/12/2011]

[3] Fang Hao, T.V. Lakshman, Sarit Mukherjee, Haoyu Song,
Enhancing Dynamic Cloud-based services using network
virtualization. Proceedings of the 1st ACM workshop on
Virtualized infrastructure systems and architectures, VISA '09,
Pages 37 - 44.

[4] Luo. Y, Accelerating OpenFlow Switching with Network
Processors, ANCS ’09 Proceedings of the 5th ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems. , 2009

[5] McKeown, N, 2008. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communication Review,
Volume 38, Number 2, Pages 69.

[6] Mohammad Al-Fares, 2008, A Scalable Commodity Data Center
Network Architecture, Proceedings of the ACM SIGCOMM 2008
conference on Data communication, Volume 38, Issue 4, Page 65.

[7] Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer Rexford,
Matthew L. Meola, and David Walker. 2010. Frenetic: a high-level
language for OpenFlow networks. In Proceedings of the Workshop
on Programmable Routers for Extensible Services of Tomorrow
(PRESTO '10). Volume 6 , Pages 1-6

[8] Okamura, K, 2010. Design and implementation of application
based routing using OpenFlow. Proceedings of the 5th
International Conference on Future Internet Technologies, CFI '10,
Pages 60 - 67. [Online] Available at:
<http://doi.acm.org/10.1145/1853079.1853096> [Accessed 30
October 2011].

[9] OpenFlow, 2011, OpenFlow: Learn More. [Online] Available at:
<http://www.openflow.org/wp/learnmore> [Accessed: 18/12/2011]

[10] Othman M., Design and Implementation of Application Based
Routing Using OpenFlow, 2010, Proceedings of the 5th
International Conference on Future Internet Technologies, [Online]
Available at: <http://dx.doi.org/10.1145/1853079.1853096>
[Accessed 01/01/2012]

[11] Popa L, Ratnasamy S, Iannaccone G, Krishnamurthy A, Stoica I.
2010. A Cost Comparison of Data Center Network Architectures.
ACM CoNEXT 2010. [Online] Available at:
<http://www.cs.washington.edu/homes/arvind/papers/datacenter_c
omparison.pdf > [Accessed 18/04/2012]

[12] Tanyingyong V., 2010, Improving PC-based OpenFlow Switching
Performance, ANCS ’10 Proceedings of the 6th ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems, [Online], Available at:
<http://dx.doi.org/10.1145/1872007.1872023> [Accessed
01/01/2012]

[13] Wang. R., 2011, OpenFlow-Based Server Load Balancing Gone
Wild, Proceeding Hot-ICE’11, Proceedings of the 11th USENIX
conference on Hot Topics in management of internet, cloud and
enterprise networks and services, [Online] Available at: <
http://static.usenix.org/events/hotice11/tech/full_papers/Wang_Ric
hard.pdf> [Accessed 26/02/2012]

[14] Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Te-Yuan
Huang, Michael Chan, Nikhil Handigol, and Nick McKeown.
Openroads: empowering research in mobile net-works.
SIGCOMM Comput. Commun. Rev., 40(1):125–126, 2010. (Best
Poster at SIGCOMM 2009).

[15] Arista Networks EOS, (http://www.aristanetworks.com
/en/products/eos, Last accesed: July 07, 2012

[16] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher
Monsanto, Jennifer Rexford, Alec Story, and David
Walker. Frenetic: A Network Programming Language. In ACM
SIGPLAN International Conference on Functional Programming
(ICFP), Tokyo, Japan, September 2011.

[17] Christopher Monsanto, Nate Foster, Rob Harrison, and David
Walker, A compiler and run-time system for network
programming languages. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL '12). ACM, New York, NY, USA, 217-230.

[18] C. Esteve Rothenberg, M. Ribeiro Nascimento, M. R. Salvador, C.
Corrêa, S. Lucena, A. Vidal, and F. Verdi. "Revisiting IP Routing
Control Platforms with OpenFlow-based Software-Defined
Networks" In III Future Internet Experimental Research Workshop
(WPEIF), Ouro Preto, MG, Brazil, May 2012.

[19] XMING X Server, http://sourceforge.net/projects/xming/, Last
accesed: July 07, 2012

[20] A. Orebaugh, G. Ramirez, J. Burke, and J. Beale. Wireshark and
Ethereal network protocol analyzer toolkit. Syngress Media Inc,
2007.

27

