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Abstract — With network infrastructure reaching capacity 
limits, new ways of managing network traffic and devices in 
Cloud data centres need to be investigated to better scale and 
manage the data centre resources. OpenFlow can be a good fit 
for the usage within a datacentre due to its promise to reduce 
the cost of operations by reducing the time needed to configure 
network resources and flexibly managing the operations. 
OpenFlow allows a programmable Software Defined Network 
to be implemented and network resources such as switches can 
be remotely and collectively configured, controlled and 
monitored. With increasing number of resources in data 
centres, and by consequence the networking hardware and 
software, OpenFlow can be used to manage the network 
devices and the flow of traffic throughout the network. This 
paper investigates if OpenFlow based switches allow for 
flexible networking and administration to enable quick 
network segmentation, packet re-routing, permit scalability 
and allow for quick network setup in Cloud data centres. With 
the help of experiments, this work also investigates what design 
and implementation considerations need to be made to achieve 
scalability, agility and performance in Cloud data centres.  

Keywords-component; openflow; networking; cloud 
computing; datacentres 

I. INTRODUCTION 
Data centres are expensive to setup, manage and operate. 

On average each rack can cost around $120,000 (~£75,000) 
over the Total Cost of Ownership (TCO) - approximately 
half of which is hardware and the other half, operating costs 
[1]. The average cost of a switch is about $450 (~£285) per 
10Gbps Ethernet switch port i.e. the cost of a 10Gbps 48-
port switch can be about $21,600 (~£13,540) [11]. One of 
the approaches towards reducing the operating cost of data 
centres is to eliminate unneeded hardware and make them 
virtualised. Administrating the increasing number of 
switches in a data centre is a non-trivial task. Using 
OpenFlow based switches would allow all of the switches to 
be administered from one central location resulting in  quick 
setup and configuration which can reduce the costs of 
setting up new or modifying existing network 
configurations in data centres thus reducing operational, 
maintenance and setup costs 

The main purpose of switching hardware is to propagate 
packets - receiving from a sender and forwarding it on 
towards the intended recipient. Switches operate on various 
layers of the network stack from layer 1 (repeaters) up to 
layer 7; their functional characteristics include network 

bridging, routing, address translation, content filtering, 
redundancy and load balancing. Switches that carry out 
routing functionality usually compartmentalise their 
functions into two parts that control the processing of the 
incoming packets. These are known as the Control Plane 
and the Forwarding or Data Plane. The Control Plane is 
responsible for generating the network map or an in-built 
routing table, which lists the routes that should be used to 
forward packets. The Forwarding/Data Plane is used to 
determine, with the help of the table or map produced by the 
Control Plane, where the packet should be sent based on 
various criteria such as destination, port or the contents of 
the packet. Usually the Control and Forwarding planes in a 
device are vendor specific, proprietary and closed source. 
This means they are not modifiable easily. 
OpenFlow is an open standard that allows researchers and 
network administrators to design, test and implement 
experimental protocols in networks. On a switching device 
that does not run OpenFlow, the Control and the Forwarding 
planes operate on the same device whereas an OpenFlow 
configured device separates these two planes with the 
routing decisions being controlled by a controller. A 
controller is typically a standard server running on the same 
or different device. There can be one or many controllers in 
a network, allowing one controller to control a large number 
of OpenFlow devices. The controller can be programmed to 
route packets depending on various control sets [4]. This 
also means that switches can be controlled easily from one 
remote location such as a Network Operating Centre (NOC). 
Custom control sets allow the switch to route packets in 
various ways that do not exist currently in today’s hardware 
such as legacy switches.   
Switching devices are part of almost every network 
infrastructure used in commercial, technology, education 
and residential settings. Whilst this is a success for 
implementation, success in developing and then deploying 
new switching technologies is much more remote due to the 
large install base. The sheer number of devices in 
widespread deployment has caused network innovation to 
stall and stagnate due to the reluctance to experiment with 
new ideas. New and alternative approaches are needed due 
to the traffic increasing considerably each year [10]. With 
network infrastructure slowly reaching capacity limits, new 
ways of routing packets may need to be investigated if there 
is reluctance to upgrading physical infrastructure. This is 
especially the case as Cloud-based applications gain more 
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popularity, possibly increasing the bandwidth usage [3].  
Due to the highcost of entry to implementation in realistic 
environments, new ideas need to gain confidence to enable 
widespread deployment, which is currently a problem for 
new protocols. OpenFlow can allow researchers to 
experiment in such environments due to its ease of access 
and programmable nature whilst running alongside and 
without affecting the production networks. Such 
experimentation and subsequent analysis can help new 
switching and routing approaches gain traction.  

Consider the scenario of Cloud datacentres, where many 
Cloud-based applications are migrating from physical 
servers to virtual servers. Hao et al. [3] show that utilising 
OpenFlow enables virtual servers to be seamlessly migrated. 
However they conclude that whilst possible in datacentres, 
numerous issues remain and require further research.  

This work investigates if OpenFlow based switches 
allow for easy networking and administration to enable 
quick network segmentation, packet re-routing, permit 
scalability and allow for quick network setup in Cloud data 
centres. Furthermore, this utility of OpenFlow needs to cater 
for metrics such as performance and bandwidth in 
comparison with existing switches and explore any potential 
reduction in cost of configuring network resources. 
Establishing the viability of OpenFlow in these aspects can 
help persuade the cloud data centre community to 
implement OpenFlow in their infrastructures.  

The rest of the paper is organised as follows: Section II 
presents the work related to our discussion. In Section III, 
we present the design of a data centre, its network 
configuration and OpenFlow scripts that form the basis of 
our experiments, which are discussed in Section IV. 
Experimental results and their evaluation is presented in 
Section V, and the discussion is concluded in Section VI.  

II. RELATED WORK 
There are a number of works aimed at improving 

OpenFlow including [4], which suggests that using network 
based acceleration cards to perform the OpenFlow switching 
to improve performance. In [13], the authors argue that load 
balancers are expensive, but using OpenFlow tables to 
perform the switching can require hundreds or thousands of 
rules. They suggest that OpenFlow should allow wildcard 
rules and present a prototype implementation of their 
approach in Mininet and NOX. CleanSlate 
(http://cleanslate.stanford.edu) at Stanford tested the 
implementation and deployment of an actual OpenFlow 
network. A related project is OpenRoads [14] that aims to 
provide a wireless extension of OpenFlow with their final 
goal of deploying it in production networks that incorporate 
wireless technologies such as WiMAX and Wi-Fi. Their 
wireless base stations incorporate flow tables so that they 
can be controlled remotely via the OpenFlow protocol. 
There have also been some developments with alternatives 

to OpenFlow such as the Arista Networks EOS (Extensible 
Modular Operating System) [15]. Arista Networks EOS is 
made up of components such as CloudVision, which allows 
single point administration of hundreds of thousands of 
cloud node switches.  

Frenetic [16] is high-level programming language for  
programming software-defined networks. Frenetic is based 
on the argument that most of the languages currently 
available for Software Defined Networks are too low level, 
complicated and hard to learn. Frenetic uses the functional 
reactive programming paradigm, in contrast to the event 
driven programming used in OpenFlow. NetCore [17] is 
another such programming language that is used for 
software-defined networks. NetCore is a high-level, 
declarative programming language and is mainly used for 
expressing packet-forwarding rules for software-defined 
networks.  RouteFlow [18] is a project following the 
software-defined networking paradigm, utilising an 
OpenFlow controller with a RouteFlow server that manages 
virtual network environments that connect to virtualised IP 
routing engines. The goal of RouteFlow is to centralise 
remote IP routing eventually allowing developments such as 
virtual routers or “Routers as a Service”. As you can see 
there are a number of differing projects that centre on either 
OpenFlow or Software Defined Networks and improving 
them or providing alternatives to current technologies and 
implementations. However, none of these aims to improve 
the cloud data centre operations with respect to traffic 
management and segmentation, scalability and 
administrative control over the resources. 

III. DESIGN 
To assess the viability of OpenFlow in data centre 

routing and how it compares to existing switches in real 
world data centres, our work will devise a set of 
experiments that utilises OpenFlow along with all the 
available tools that come with the testing suite. We will 
design a model data centre network, housing a large number 
of nodes. The experiments will generate and route traffic 
under the control of OpenFlow and test metrics such as 
performance, throughput and bandwidth. 

A. Network Design 
For the experiment, a sample segment of a data centre 

network is going to be designed and implemented using the 
OpenFlow tools (explained in the next section). Our data 
centre design is based on established conceptual and 
experimental data centre designs [2][6] (see Fig. I), with the 
aim of supporting the generalizability and reproducibility of 
our experimental results. A custom network topology has 
been designed, based on [2][6] and illustrated in Fig. II that 
implements features of each to provide an adequate design 
that can be used and tested throughout the experiment. 
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Fig. I shows a network similar to the ones proposed in 

[2][6] but they are also linked up to a SAN (Storage Area 
Network). It depicts more redundancy features such as the 
interconnections between routing, switching and firewall 
nodes. A SAN is a separate, high-speed network for storing 
data as efficiently and as fast as possible. Most SANs reside 

on a separate network due to the specialised hardware 
needed.  Initially our test implementation, of a design 
included a SAN, however was removed from the eventual 
design to simplify the experimental setup. Figure I shows 
our experimental data centre network layout.  

 

FIGURE I  Design of the Cloud data centre used in the experiments 

 

B. Code / Algorithm Design 
Our experiments are directed through a script file that is 

used to set up the environment for the experiment. The 
script contains OpenFlow API based instructions. Fig. II 
describes an algorithm that is used to set up the network. 
Line 1 imports the required libraries such as the OpenFlow 
API. Line 2 and 3 are initialisation methods that are part of 
the structures for the Python script. Lines 4-8 instruct all 
nodes to set up a unique ID in the network. Lines 9-13 add 
all the switching devices in the network. Lines 14-15 do the 
same for the host nodes. Lines 16-20 set up connections 
between all the nodes, in this case, the main nodes such as 
the Firewall, Internet and Core Switches. Each set of Line 
21-22 up to Line 28 loop through every set of 48 hosts and 
connect them to the correct switch. Finally on Line 29, we 
enable all the nodes and then end the definition in Line 30. 
This algorithm sets up a network with 192 nodes (host 
machines) with 9 switches in the network, producing the 
end result of a network topology illustrated earlier in Figure 
I. The Internet Switch will act as a host outside of the 

network. An important consideration taken into account was 
how many nodes would be an adequate in the experimental 
network. Too many would prohibitively increase the 
network testing time whereas too few would cause the 
network to be inadequate for correctly simulating a segment 
of a data centre.  

 

C. Alternative Algorithm 
Originally this pseudo code included the code to 

incorporate a simple SAN setup in the network. Fig. III 
shows example code of how the original design was 
implemented. 

 
This set of code continues on from Line 27 and 28 and 
finishes before the original Line 29 i.e. adding the SAN 
features before continuing with the existing script.  Lines 31 
and 32 set up all the SAN Switches unique IDs that are 
similar to the previously defined Switches.  Next Lines 33 
and 34 loop through all the SAN hosts and add them to the 
network. After which the Switches get added to the network 
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on Line 35. After this, each set of SAN hosts are connected 
to their corresponding SAN Switch during Lines 36-39. 
Finally, it has to loop through every original set of Hosts 
from the network and then connect them to the correct SAN 
Switch and then carry on executing the existing script.  

 
This script will be used to develop a software-defined 
network utilising tools, which consist mainly of a virtual 

machine running the OpenFlow testing image (an Ubuntu / 
Debian based Unix distribution modified with the 
OpenFlow tools).  Finally, our experiments will use this test 
topology to assess the viability of the use of OpenFlow in a 
switch and its feasibility in terms of performance related 
metrics.  

  
FIGURE II  PSEUDO CODE - SETUP SCRIPT 

 
D. Tools & Environment 
Figure IV illustrates the interaction between the components 
involved in our experiment. The host machine consists of a 
2.7 GHz Intel Core i5 Quad Core system with 16 GB of 
RAM executing Windows 7 64-Bit Professional. Oracle’s 
VirtualBox virtualization software has been used to host the 
OpenFlow virtual machine.  The OpenFlow VM testing 
environment, derived from the Ubuntu Linux distribution, is 
executed in VirtualBox. XMing server [19] running on the 

host machine is used to pipe graphical applications from the 
VM  to the host machine over an SSH tunnel.   
Mininet allows creation, interaction with, customization and 
sharing of prototype software-defined networks from the 
command line or scripting using the OpenFlow protocol. It 
allows creation of different types of networks and 
performing various tests (throughput, ping, etc.) on 
individual nodes and the whole network. The main 
advantage of using Mininet is that it allows us to rapidly 
prototype real networks without having to resort to setting 
up a lab environment; though this is also possible if 
required. Mininet also incorporates various test functions for 
thorough network testing; these include Iperf, Ping, PingAll, 
PingPair and CBench. 
 

FIGURE III  PSEUDO CODE - SAN SETUP SCRIPT 

 
These tools, which will be used in our experimental 

analysis, are described below: 
a) Iperf 

Iperf is used to find out the bandwidth between two 
nodes. It uses the two ‘farthest away’ nodes in the network 
and then finds the maximum amount of bandwidth possible 
between them. This is useful for determining how fast the 
network can be. 

b) Ping 
The Ping programs tests the connectivity between two 

devices by sending a message to the recipient from the 

           ... 
27 Loop through last set of nodes. 
28               Connect 48 Hosts to Regular Switch 4 

// End of existing Code 
 
31 Set up IDs for SAN Hosts Set #1 and #2 
32 Set up IDs for SAN Switch #1 and #2 
 
33 Loop through SAN set of Hosts 
34     Add SAN Host to Network 
 
35 Add San Switch #1 and #2 to Network 
 
36 Loop through SAN Hosts Set #1 
37     Connect Host to Switch #1 
 
38 Loop through SAN Hosts Set #2 
39     Connect Host to Switch #2 
 
40 Loop through every original host Set #1 and #2 
39     Connect SAN Switch #1 to Set #1 and  

    #2 Hosts 
 
40 Loop through every original host Set #3 and #4 
41 Connect SAN Switch #2 to Set #3 and

1 Import required libraries 
 
2 Begin definition of my topology: 
     
3     Define initialisation method: 
         
4         Set up ID for Internet node 
5         Set up IDs for Router and Firewall nodes 
6         Set up IDs for Core Switches  
7         Set up IDs for Regular Switches 
8         Set up IDs for Host machines 
 
9         Add Internet to Network  
10         Add Router to Network 
11         Add Firewall to Network 
12         Add Core Switch 1 and 2 to Network 
13         Add Regular Switch 1, 2, 3 and 4 to  

Network 
 
14         Loop through every node. 
15             Add node to the network 
         
16         Connect Internet to Router 
17         Connect Router to Firewall 
18         Connect Firewall to Core Switch 1 and 2 
19         Connect Core Switch 1 to Regular Switch  

1 and 2 
20         Connect Core Switch 2 to Regular Switch  

3 and 4 
 

21        Loop through first set of nodes. 
22             Connect 48 Hosts to Regular Switch 1 
 
23         Loop through second set of nodes. 
24             Connect 48 Hosts to Regular Switch 2 
 
25         Loop through third set of nodes. 
26             Connect 48 Hosts to Regular Switch 3 
27         Loop through last set of nodes. 
28             Connect 48 Hosts to Regular Switch 4 
29         Enable all nodes. 

30 End definition  
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sender and then awaits a response from the recipient back to 
the original sender. 

c) PingAll 
PingAll utilises the Ping program and loops through 

every host in the network and then pings every other host in 
the network to check for connectivity. This can take a 
considerable amount of time when dealing with a large 
number of hosts. 

d) PingPair 
PingPair only pings between two deepest nodes in the 

network. 
e) CBench 

CBench is used to determine how quickly flows can be 
changed on all the switches in a network from the controller. 
This is measured in total flow modifications per second. 

 FIGURE IV Detailed Image of Components and how they interact 

 

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP 
The experiment uses this main set of software/tools to 

eventually implement the prototype cloud datacentre 
utilizing the OpenFlow protocol. The experimental is 
driven through a python file and an execution file with 
instructions on how to execute it. 

A. Execution 
To specify the experimental execution in Mininet, a 

custom topology is produced that is executed to 
automatically produce networks of various types. 
Correctness of the network topology used in the 
experiments was initially tested between a smaller 
number of nodes. Afterwards, additional nodes were 
continually added to build up the network to the full scale. 
Fig. II shows the pseudo code for the topology file that 
was created and used.  By using the custom topology, 

start-up and setup (including the generation of the 
network) of Mininet was achieved using commands 
shown in Fig. V. These two commands start the controller 
and then proceed to start up the Mininet environment. 

 
FIGURE V  Start-up commands 

The first command starts up the remote Controller, 
which determines on how packets are routed or flowed. 
The packet flow determining rules can be custom made 
programmatically, though a default set of rules is also 
available. Our experiment uses the learning controller 
supplied with the Mininet environment. The second 
command starts up Mininet with our custom topology file.   

Testing the experimental network required iterating 
through each section of code and ensuring the correctness 
of individual command executions. Once the correctness 
of the script’s execution was verified, the WireShark 

openflow@openflowvm:$ controller ptcp: 
openflow@openflowvm:$ sudo mn --custom 
/home/openflow/mininet/examples/dctopo.py --topo dctopo -
-mac --controller remote 
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application [20] was utilised to view the traffic being 
generated in the network. WireShark is a packet sniffer 
that allows the user to analyse packets that are passing 
through a network. This particular version of WireShark 
was pre-setup to include OpenFlow specific features to 
allow snooping on OpenFlow related traffic. The use of 
this application enabled network inspection to ensure that 
the implementation of the designed network was 
operating correctly provided a real time view of the 
effects of the packets as well as all messages sent between 
the switches and controllers. The results of the network 
testing are discussed in the following seciton. 

B. Testing  
To test the design of the network, connectivity tests were 
carried out. Tools available from within the Mininet 
framework were used for this test. The Pingall function in 
Mininet was used to test that each node can connect to 
every other node. Due to the number of nodes – 192 in 
total – this takes a considerable amount of time as it tests 
each node’s connectivity with every other node in the 
network. The results show that overall there was a total of 
37,056 pings between every host in each test batch. This 
shows that this topology is being constructed properly and 
that all the nodes are communicating with one and other. 
WireShark was used to make sure the OpenFlow 
controller was having an effect on any packets at all and 
routing them to the correct destination. The PingPair tool 
pings pairs of nodes that are the furthest down the tree of 
nodes to check for connectivity. Because most of the 
nodes at the bottom of the tree are on the same level or 
depth, it only checks the connectivity between two nodes 
– in this case host 1 and 48. As the output in Fig. VI 
illustrates, the PingPair test completed successfully. 
 

 
FIGURE VI  PingPair Testing Output 1 

V. RESULTS & EVALUATION 

A. Bandwidth 
Testing the bandwidth can be particularly useful as it 

demonstrates how fast the packets are routed through the 
network. Also this shows how fast the controller makes 
decisions depending on various situations. For example, 
the controller can be running in the kernel space, the user 
space and various other ways. Each has its own sets of 
pros and cons and issues relating to speed. For this 
example, it was executed in the kernel space to benefit 
from faster execution of the controller. To test the 
bandwidth, iperf tool supplied with the Mininet 
environment was used. 

TABLE I.  BANDWIDTH MEASUREMENTS DATASET 

 Bandwidth (MBits/sec) 
Test 

# 
User Space Switch OpenVSwitch (Kernel) Switch 

Attempt 
1 

Attempt 
2 

Attempt 
3 

Attempt 
1 

Attempt 
2 

Attempt 
3 

1 22.8 23.6 27.1 496 585 433 
2 23.8 22.0 24 584 580 513 
3 25.9 22.6 24.2 589 572 575 
4 25.8 22.7 25.5 587 576 572 
5 23.5 22.1 24.7 582 579 573 
6 22.7 21.9 24.2 578 577 578 

Ave. 24.08 22.48 24.95 569.33 578.16 540.67 
 

Table 1 shows the results of doing each test twice 
using the User and Kernel Space Switches as well as 
using the OpenVSwitch implementation that is bundled 
together as part of the OpenFlow testing image. Some of 
the switches that are bundled are used for learning 
purposes only and will not do anything “intelligent” such 
as routing or building route tables. The idea is that you 
yourself manually build a flow table and install it on the 
switch for it to process flows. This could be a reason as to 
why the bandwidth is so low. 

B. Flow Modifications Per Second 
CBench is a utility for testing the number of flow 

modifications per second in a Controller. Obviously the 
higher the result the better as the Controller can push out 
flows quicker resulting in the flow of packets being 
altered quicker. Here the utility test has been run three 
times to determine how fast the modifications were 
running in the virtual machine. 

TABLE II.  CBENCH RESULT SET 

Test # Min 
(fmods/s) 

Average 
(fmods/s) 

Max 
(fmods/s) 

1 2648.66 2835.58 2736.25 
2 2615.00 2800.17 2714.03 
3 2622.98 2797.99 2704.18 
4 2638.99 2830.22 2733.15 
5 2687.99 2882.17 2759.18 
6 2573.99 2785.92 2713.84 
Average 2631.27 2822.01 2726.77 

 
The results in Table II show the number of flow 

modifications these Controllers can propagate per second. 
As this test was executing in a virtual machine, we 
estimate that the propagation rate would increase 
considerably when executed on real world networking 
hardware. However, there may not be a real need to 
require such a high number of flow modifications per 
second unless in stress testing scenarios. 

C. Visualising the Results 
As a companion to the result sets, graphs are going to 

be generated that illustrate the information from the result 
sets generated in a more understandable form. As the 

h1 -> h48 
h48 -> h1 

*** Results: 0% dropped (0/2 lost) 
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graph in Fig VII illustrates, the network bandwidth during 
these tests is low, especially if this setup is compared with 
actual datacentre deployments.. The User switch runs in 
the User space memory rather than in the kernel space, 
which may explain the low bandwidth achieved in these 
tests.  

 
1) Full Bandwidth Results 

Figure VIII illustrates a considerable difference in the 
speed between the Userspace switches and the 
OpenVSwitch switches. This is mainly because of the fact 
that the OpenVSwitch switches execute in the kernel 
space. Intermittent results of over 1Gbps were also 
observed in some of the experiemnts (outliers). Our 
presumption is that it relates to the execution in a virtual 
machine in contrast to native hardware and we are 
investigating this aspect further in our future work. Figure 
IX illustrates the bandwidth  difference between the 
Userspace Switch and the OpenVSwitch. 

 
FIGURE VII  USER SWITCH RESULTS FOR TABLE II 

 
Figure VII shows only the User Switch bandwidth 

performance in relation to Table II.  
 

FIGURE VIII  OPENVSWITCH RESULTS FOR TABLE II 

 
 

Figure VIII shows the OpenVSwitch data set from Table 
II. 
 

FIGURE IX COMBINED RESULTS OF TABLE II 

 
 
The graph in Figure X displays the number of flow 

modifications per second. A flow modification is what 
occurs when the Controller has a rule for a particular 
packet and knows what it wants to do with it. It will 
propogate this rule between the switches or the switch 
will ask the controller what to do with it, if unknown. The 
graph shows a rather large number of modifications per 
second were achived in our experiments.  

  
2) CBench Results 

FIGURE X GRAPHICAL RESULTS OF TABLE III 

 
3) Summary of Results 

Whilst the experiment has had varying degrees of 
results relating to the performance of the network, it has 
shown that a simulated model of a datacentre segment can 
be implemented to analyse OpenFlow behaviour. Whilst 
the bandwidth performance in kernel space execution 
switch was better than the Userspace switch – by about 
15-20x– it may not be comparable to hardware switches 
deployed in datacentres. This can be explained by the fact 
that our experiments are being carried out withing 
Mininet, which itself is being executed in a virtual 
machine.  

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
OpenFlow and Software Defined Networks are 

growing in popularity and use in distributed 
infrastructures. Datacentres deployment sizes are 
increasing due to demand as more Cloud services are 
created and adopted. With the number of devices 
increasing within the datacentres – including switches - 
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alternative management mechanisms such as OpenFlow 
need to be considered and evaluated against existing 
mechanisms to improve scalability, agility and 
performance of data centre operations. The experiment 
presented in this involved the design, implementation and 
testing of a simulated datacentre network segment 
utilising the OpenFlow and the associated tools.  

The results show that the User space switches offer a 
lower performance in comparison to the kernel space 
(OpenVSwitch) switches. The results for the kernel space 
switches’ performance is not comparable to commercial 
switches in a real datacentre due to the framework used 
for the simulation (Mininet) and the usage of a virtual 
machine to perform the experiment.   
OpenFlow could be a good fit for the usage within a 
datacentre - to reduce the cost of operations by reducing 
the time needed to configure switches. They can be 
remotely controlled from one place rather than having to 
configure and control them independently. Due to the 
early stage of development of these tools, it cannot be 
recommended for datacentre switches to be completely 
replaced with OpenFlow switches until the software 
platform matures. Further research needs to be carried out 
using commercial switches with OpenFlow technology 
built in rather than replacing them completely. We 
specifically propose the following additions in carrying 
out experimental analysis in this domain.. Different 
OpenFlow controller implementations, e.g. the NOX 
controller, Learning controller, the Beacon Controller, can 
be used to analyse their performance in an experimental 
networks such as the one presented in this paper. Beacon 
is a Java based modular controller with support for 
threaded  and event based operations. Secondly, 
comparative studies can be performed in the area of 
Software Defined Networks using alternatives to 
OpenFlow e.g. RouteFlow.  
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