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Abstract—Mobile phones and affordable cameras are gener-
ating large amounts of video data. This data holds information
regarding several activities and incidents. Video analytics systems
have been introduced to extract valuable information from this
data. However, most of these systems are expensive, require
human supervision and are time consuming. The probability
of extracting inaccurate information is also high due to human
involvement.
We have addressed these challenges by proposing a cloud based
high performance video analytics platform. This platform at-
tempts to minimize human intervention, reduce computation time
and enables the processing of a large number of video streams.
It achieves high performance by optimizing the occupancy of
GPU resources in cloud and minimizing the data transfer by
concurrently processing a large number of video streams.
The proposed video processing platform is evaluated in three
stages. The first evaluation was performed at the cloud level in
order to evaluate the scalability of the platform. This evaluation
includes fetching and distributing video streams and efficiently
utilizing available resources within the cloud. The second evalua-
tion was performed at the individual cloud nodes. This evaluation
includes measuring the occupancy level, effect of data transfer
and the extent of concurrency achieved at each node. The third
evaluation was performed at the frame level in order to determine
the performance of object recognition algorithms. To measure
this, compute intensive tasks of the Local Binary Pattern (LBP)
algorithm have been ported on to the GPU resources. The
platform proved to be very scalable with high throughput and
performance when tested on a large number of video streams
with increasing number of nodes.

Keywords– Cloud Computing, Video Processing, High Perfor-
mance and GPUs, Video analytics.

I. INTRODUCTION

Conventional monitoring systems have been deployed for
the security of organizations and individuals. These systems
are usually manual, do not scale well and consume consider-
able time in finding objects of interest. Humans are prone to
errors, therefore, the probability of errors and incorrect infor-
mation becomes higher in these systems. With advancements in
video capture, storage and computing technologies, it has been
realized that organizations and individuals can be protected by
deploying automated digital monitoring systems. The digital
monitoring systems have been introduced and excelled since
the last two decades. These systems use object detection [8],
object recognition [8], object tracking [10][12] and motion
prediction [16] algorithms. These algorithms work on the
individual pixels of a video frame, requiring considerable
computing resources and processing time which becomes quite

expensive for large sets of video data. These systems are
required to process video streams data rapidly and with a
reasonable computational cost. However, the algorithms per-
form slowly and in-efficiently due to their compute intensive
nature. In order to reduce the processing time, video processing
algorithms have been ported to a cluster of CPUs [14][15]. A
CPU consists of a limited number of processing cores and is
well suited for sequential and serial processing of data. The
CPU based implementations are unable to achieve the desired
performance levels due to their sequential processing and the
compute intensive nature of the object detection, recognition
and tracking algorithms.
Specialist hardware resources such as GPUs have recently
been used to speed-up the compute intensive parts of the
algorithms by offloading from CPUs to GPUs. GPUs are
massively parallel devices consisting of a large number of
light weight processing cores to perform compute intensive
tasks concurrently. The number of processing core in a GPU
varies according to its specifications. Several studies [2][3]
have been performed recently to harness the power of GPU
for video processing algorithms. The size and numbers of
video streams necessitate a system that can be scaled up to
process the increasing volumes of video data. In this regard
cloud computing, due to its scalability and agility, has become
a mainstream platform that has been consistently demonstrated
as an infrastructure for scalable processing of massive sets of
video data [26][27].
In this paper, we propose a cloud based high performance
video processing platform. The platform aims to speed-up
the processing of large number of video streams stored in
the cloud based data centres. It also aims to provide high
throughput processing of video streams by maximizing the use
of GPUs mounted on the cloud nodes. In order to achieve these
objectives, the following three measures have been employed
within the platform. The first measure addresses scalability
by processing large sets of video streams within the cloud
platform. These video streams are fetched from the cloud based
video storage and are distributed to the cloud nodes where
each cloud node processes these video streams in parallel. The
second measure parallelizes the video processing tasks within
the GPU mounted cloud nodes, thus achieving high perfor-
mance and high throughput within each node of the cloud
system. These tasks include decoding the video stream and
the processing of each decoded video frame on GPU mounted
cloud nodes. The results are later stored back in the cloud
database. The third measure has been taken to parallelize the



processing of individual frames and keep the GPUs saturated
once the video streams have been decoded. This involves
optimizing the data transfer within the cloud nodes, achieving
optimal occupancy by concurrently processing multiple video
frames and offloading compute intensive tasks of the object
recognition algorithms on GPUs.
The rest of the paper is organized as follows. Section II
reviews the literature and identifies the research gaps in the
existing research. In Section III, we present our approach and
architecture for the cloud based high throughput platform. In
Section IV, we explain the algorithmic details and discuss
the functionality of the local binary pattern histogram algo-
rithm. The implementation details including the workflow and
dataflow of the platform are discussed in Section V. Section
VI describes the experimental environment and the evaluation
parameters of the platform. In Section VII, the results of the
evaluations are presented whereas the paper is concluded with
some future directions in section VIII.

II. RELATED WORK

The research community has realized the compute inten-
sive nature of video processing algorithms and a number
of approaches have been proposed in the literature. In this
section, we will be discussing different studies that have made
contributions towards the resolution of this problem and their
strengths and weaknesses.

Object Detection and Recognition

Video processing and video analytics is an extensively
studied research topic and has applications in various domains.
Quite a large number of algorithms are available today making
noticeable contributions for the detection of various types of
objects. These objects may include persons, faces or vehicles.
The Haar Cascade Classifier algorithm [8] is one of the
most widely used algorithms for object detection. It is based
on Haar like features and uses Adaboost [9] for dimension
reduction and classifier training. Each feature is represented
by a weak classifier in the cascade. A combination of all these
weak classifiers is used to make a strong classifier which is
further used for detecting objects. The HOG features based
person detection [10] works by dividing an image into multiple
cells connected with each other. The algorithm then computes
histograms of oriented gradients for each cell. These gradients
describe the appearance of an object in an image and can be
used to train a classifier for detection.
The object recognition is a much more complicated endeavor
than object detection. Local Binary Patterns (LBP) [11], Local
Ternary Patterns (LTP) [12] and others [13] are widely used
approaches for object recognition. These algorithms compare
the pixels of each cell with its neighborhood. If the value of
cell is greater than its neighbor than 1 is written, otherwise
0 is inserted. In the case of LTP, the difference between
central pixel and neighboring pixels is encoded into a ternary
code. Normalized histogram then provides the feature vector.
Computing the value of each cell is fairly compute intensive.

Object Detection and Recognition in Clouds

When object recognition is performed on large scale data,
it requires large computational resources. Leveraging cloud

infrastructure to fulfil the needs of high computational re-
sources has been a preference in both academic and industrial
sectors. An approach based on SIFT [19] and Gabor [20]
descriptors was proposed in [21], [22] to recognize food
images. These features were clustered by K-means algorithm
[23] to achieve an acceptable recognition rate. To achieve
scalability and performance gains, cloud computing paradigm
was utilized [22]. It was concluded that for small amount of
data, cloud computing performance was not very promising.
This is because of the fact that cloud needs to prepare job
runtime environment before a job is served. However, for large
datasets cloud processing efficiency is far better because clouds
are designed to support these kinds of workloads.
A cloud computing based object recognition system using two
dimensional principle component analysis was implemented on
a Hadoop based cloud server. However, this approach was less
effective for object images with multi-illumination. The mas-
sively parallel cloud computing based approach [23] was also
used to process astronomical images. A parallelised mapper
without applying a parallelised reducer is used. However, there
is no improvement in the image processing routines. Another
cloud based system for analyzing large scale videos was
developed using the MapReduce based clusters [23]. A cluster
of six computers was created and video processing algorithms
were ported to it. The execution time of algorithms was
reduced as compared to a single system. Since the experiments
were executed on a small dataset, scalability was not addressed.
Improvement in accuracy was also not the focus of this work.
The use of GPUs as a high performance general purpose
computing resource was commenced in 2009 [2]. The initial
study was based on the implementation of large scale unsu-
pervised machine learning algorithms, deep belief networks
[17] and sparse coding [18] on GPU resources. These studies
unfolded the power of GPUs to the research community
by achieving a speedup of 5 to 15 times as compared to
the CPU implementations. A parallelised object detection
approach achieved a speed-up of 1.91 times on GPUs [7]. A
parallelised motion estimation approach using a full search
algorithm on GPUs achieved a speedup up of 50 times than
the CPU implementation [4]. Furthermore, studies such as [5]
proposed a GPU implementation of Haar Cascade Classifier
algorithm [8] and achieved a speedup of 13.8 times than a CPU
implementation. Another Haar based face detection approach
on GPUs [6] achieved 2.5 times speedup as compared to its
CPU based implementation.
These approaches provide a good overview of previously
proposed video processing platforms and algorithms. How-
ever, most of the above cited approaches lack scalability and
robustness. These are also computationally expensive as the
dimensionality of features is very high. In the proposed plat-
form, we have adopted the LBPH object recognition algorithm.
LBPH is one of the most commonly adopted object recognition
algorithm. The reason behind this is its computational sim-
plicity and high accuracy rate. The compute intensive parts of
LBP have been ported as a GPU kernel on each cloud node.
Additionally, in order to harness the computation power of
each node within the cloud, three level parallelism has been
proposed in this paper.



III. APPROACH AND ARCHITECTURE

Figure 1 depicts the architecture of our high throughput
video processing cloud platform. The main objective of the
platform is the optimal utilization of each available resource
on a cloud node to provide high throughput multi-video pro-
cessing. These video streams are captured from video sources
and are stored in a cloud based storage. These stored video
streams are later acquired by the platform for processing. The
following three level parallelism has been proposed to achieve
high throughput in the analytics process.

1) Node Level Parallelism: The video processing cluster
manager fetches videos streams from the cloud based video
storage and is responsible for managing workload across each
node in the cluster. The workload represents video streams
being analysed/processed. At the node level, multiple video
streams are received from the video cluster manager and
processed concurrently. Each video stream is allocated to a
particular node where the video stream manager launches the
tasks for decoding and processing the video stream.

2) Video Stream Level Parallelism: Each video stream is
processed in three stages. These stages are 1) video decoding,
2) frame processing and 3) storage of the processed frames.
The video stream manager executes the video processing stages
in parallel to yield better performance and throughput. The
video processing stages are handled by the sub modules,
namely the decoding, processing and storage modules. The
decoding module reads a video stream, extracts encoded video
frames, decodes these frames and stores the decoded frames in
the input frames buffer. The input frames buffer resides within
the main memory of the node. Hence, as soon as the frame
buffer start receiving frames from the decoding module, the
processing module fetches the decoded frames in parallel as
input and applies the video processing algorithms on it.

3) Frame Level Parallelism: The third level of parallelism
is achieved at the frame level where each pixel within a frame
is processed on a GPU. Compute intensive parts of the video
processing algorithm are executed on a GPU by the GPU
Kernel. This GPU Kernel is launched in parallel within a
grid. Each grid consists of thread blocks having a number of
threads. Each thread is mapped with each pixel of a frame
and is responsible for launching the kernel and processing the
assigned pixel, in parallel. Hence, the GPU kernel is launched
as per grid and thread block size which is defined by the
size of frame. Once the threads are finished and synchronized,
the results of the processed frames are pushed to the output
frame buffer. This is another temporary memory buffer for
maintaining the processed frames. It is accessed by the storage
module working in a separate thread and is responsible for
fetching the processed frame from the output buffer and saving
it to the cloud database. In order to evaluate the platform,
the compute intensive parts of the object recognition LBP
algorithm have been ported on the platform. The main aim of
LBP is face recognition from video streams. The algorithmic
details of LBP are explained in Section IV.
The components of the platform and the interaction between
these components are depicted in Figure 1. The cluster man-
ager fetches videos streams from the cloud based video storage
and distributes these to the participating nodes in the cluster.
Each node processes multiple video streams concurrently. The
processing of video streams is handled by the video processing
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Figure 1: Approach and Architecture within the
cloud node

manager. As stated earlier, each video stream is processed in
three stages by the video stream manager. These stages are
video decoding, frame processing and storage of the processed
frames. The decoding module reads a video stream, extracts
encoded video frames, decodes these frames and stores the
decoded frames in an input frame buffer. The processing
module takes the decoded frames as input and applies the
video processing algorithm to extract useful information from
the frames. The GPU kernel implements and executes the
compute intensive part of the video processing algorithm on
a GPU. It launches a number of threads on GPUs to process
the compute intensive part of the video processing algorithm.
Once the threads are finished and synchronized, the results of
the processed frame data are pushed to the output frame buffer.

IV. VIDEO PROCESSING APPROACH

We present our cloud based object recognition approach in
this section. A user of the system submits an object recognition
job and specifies the video streams to be analysed. These
video streams are first fetched from the cloud based video data
store and are decoded to extract individual video frames. Each
frame is then processed individually for object recognition.
The recognition algorithm is applied on each frame for the
recognition purpose.

Case Study:Object Recognition: The system is evaluated
with a case study for face recognition. The face area of each
person is analysed. The algorithm used for face recognition
is LBPH [10]. This was originally designed by the texture
classification community. Later it was used for facial recogni-
tion tasks and was tested on various datasets under complex
conditions. The algorithm performed well and achieved high
accuracy rates. It has the capability to capture fine grained
details in the video frames. Because of these advantages of



LBPH we have employed it on our platform. It makes use
of local binary patterns in order to generate feature vectors.
LBP features are computed by dividing the examined window
into cells. Each cell contains a window of 16x16 pixels. Then
each pixel in the cell is compared to its neighbouring pixels. If
the value of centre pixel is greater than its neighbour pixel, 1
is stored at that location. If it is the other way round then
0 is stored at that location. This is known as the labeling
of pixels. Then histogram is calculated and normalized over
the frequency of each number occurrence. These normalized
histograms give a feature vector of the window.
The original LBP operator was later on extended to work
for images at different scales. This was achieved by enabling
the operator to use the neighborhoods of different sizes. The
neighborhood was defined by a circle containing sampling
points which are evenly spaced. The radius of circle can be
increased to cover large neighborhood which in turn increases
the number of sampling points. In this way images at different
scales can be covered by the operator. The operator was further
extended to use the uniform patterns only. A uniform pattern is
the one in which there are maximum two bitwise transitions.
This transition can be from 0 to 1 and it can also be other
way around. The pattern will said to be non uniform if there
are more than two transitions. Since, it was proved by the
experiments that uniform patterns account 90 percent of all the
patterns so for each uniform pattern, histogram has a separate
bin and all non-uniform patterns are assigned to one separate
bin.
In order to perform face recognition, the face image is divided
into multiple blocks or regions. Then for each block or
region, LBP histogram is computed as explained above. The
feature vector of the whole image is a combination of all
LBP histograms of all regions in an image. This combination
of histograms in one extended histogram makes it spatially
enhanced. It contains not only the appearance information
but also contains the information of spatial relations between
different regions. The spatially enhanced histogram contains
the information about an image at three levels: pixel level,
region level as the pixels of a specific region are summed up,
and holistic level as the histograms of all regions are combined
together to form an enhanced histogram.

Compute Intensive modules of LBPH

In order to reduce the computation demands, LBPH algo-
rithm is used for object recognition in video streams. Figure
2 depicts the compute intensive parts of LBPH algorithm. It
can be seen that computing LBP and histogram are the most
compute intensive steps of this algorithm.
The core LBP computation algorithm is same in both CPU
and GPU implementations. However, working of both the
algorithms is different which affects the performance and use
of available computing resources. In the CPU implementation,
all the pixels are processed sequentially. For a video frame of
height 528 pixels and width 704 pixels, the total number of
pixels to be processed is 371712. This sequential processing is
very slow and time consuming when processing data for large
number of video streams.
On the other hand, the GPU implementation is called GPU
kernel. GPU executes numerous threads as soon as a kernel
is launched. The number of threads on GPU depend upon the
available cores, GPU memory and the register. These number

45%

10%

4%

6%

35%

Total Execution Time

 

 

Compute LBPH
Compute Histogram
Video Decoding
Memory Allocation
Read/Write memory allocation

Figure 2: Total Execution time of a stream within a CPU
node

of threads on a GPU can be controlled by defining thread
block and grid sizes. However, the number of threads may
exceed the frame height and frame width. This needs to be
controlled by processing only those threads which come within
the boundaries of frame height and frame width. As frame data
is available on GPU memory, each pixel is processed by the
threads executing in parallel on a GPU. Once the processing
of a frame data is finished, the processed frame data is copied
back from GPU memory buffer (device) to the CPU memory
buffer (host).

V. IMPLEMENTATION

Figure 3 depicts the work flow implementation within a
node in the platform. Video streams are assigned to each
node by the cluster manager after fetching from the cloud
based video storage. In each node, videos are decoded by the
decoding module and each frame is pushed to the frame buffer.
For this paper, we will name this buffer as Input frame buffer.
The input frame buffer is responsible for maintaining the list
of frames available in a video and makes it available for the
processing module.
The processing module fetches the frame from the Input frame
buffer and calls the LBP kernel. Once the results are received
from the GPU, they are pushed to the processed frame buffer
location in a node. The storage module is working in a separate
thread which is responsible for fetching the processed frame
from the buffer and saving it to the database.
During this process, methods provided with CUDA are uti-
lized. CUDA provides a set of APIs in order to perform
computation on GPU. The first and foremost step is the
allocation of memory size. The device (GPU) memory is
first allocated according to the size of frame data. The frame
data is then transferred from the host RAM to the GPU
memory. We implemented and evaluated different data transfer
mechanisms including page-able memory, pinned memory and
zero copy. Once the frame data has been transferred, kernel is
launched with appropriate configuration. Once the processing
is complete, the frame data with changed values of pixels is
transferred back to the host memory location.
Before execution of the GPU kernel, GPU memory allocation,
thread allocation and Kernel configurations are vital part of a
GPU application. Kernel is the code in the CUDA application
model where the compute intensive parts are executed in
parallel. The Kernel is executed in separate threads, grouped
in blocks and grids. A single block is a collection of warps.
Whereas, a grid is a collection of blocks.



Figure 3: Work Flow Implementation Within a Node

Each warp can handle a maximum of 32 threads simulta-
neously. The CUDA Work Distributor (CWD) is responsible
for allocating threads blocks on GPU. These threads blocks
are allocated at the initialization stage of kernel execution.
The CUDA streams provide the mechanism to perform kernel
execution concurrently. Kernel is executed on the default
stream if multiple CUDA streams are not initialized. We
varied the number of CUDA streams from one to ten in our
implementation.

Data Flow: We explain the flow of data for processing a
video stream in this section. A video stream is fetched by the
video cluster manager and is assigned to one of the nodes in
the platform. The node starts decoding the video stream. While
decoding is being performed, the decoded frames are pushed
to the memory buffer in CPU RAM.
In order to process a decoded frame data on GPU, this
frame data needs to be transferred to GPU RAM. Once the
necessary memory allocations are made, the frame data is later
transferred to the GPU RAM. Appropriate memory allocation
and memory transfer mechanism is required to launch GPU
kernel on the decoded frame data. Once the data has been
processed, it is then returned back to the memory buffer of
CPU. This process is performed in each node of the cluster
for each video assigned to the node by the video processing
cluster manager and is well depicted in Figure 4.

Work Flow: The CUDA Integrated development environ-
ment comprises of host machine (CPU) and the device (GPU).
The host is responsible for executing the host code. Whereas,
the device is responsible to execute instructions on GPU. The
distribution of work flow between host and device is depicted
in Figure 5.
Our platform is initialized with the acquisition of video streams
from the cloud based video storage. Video streams are assigned

to each node by the cluster manager. These video streams
are decoded and individual video frames are extracted. These
frames are then stored to the CPU RAM in the memory buffer.
A separate thread is responsible for fetching the frame from the
buffer and processing the frame data. In order to process frame
data on an available GPU, memory allocation request on GPU
RAM is sent from host to device. Once the memory allocation
on the host memory is successful, the frame data is transferred.
The GPU kernel implements the compute intensive parts of the
algorithm and consists of a set of instructions to be executed
on the device. A number of parallel threads are launched on
the device. Each thread is responsible for launching the kernel
and processing the assigned pixel data. Once the processing is
completed, threads are synchronized and the processed frame
data is transferred to the memory buffer of frame, located in
the main memory of the host.

VI. EXPERIMENTAL SETUP

The experiments are executed on a GPU powered cloud
infrastructure. Each node is equipped with one GPU. Each
node has an Intel Core i7 3.60 GHz processor, 16 GB RAM
and an ASUS GeForce GTX 780 GPU. The GTX 780 is a
Kepler architecture based GPU and consists of 12 Streaming
Microprocessors (SM), 2304 CUDA cores and 3 GB memory.
Each streaming processor can execute 2048 threads in parallel.
These threads are executed in 64 warps with each warp
executing 32 threads in parallel. Each thread has a local
memory of 512 KB and a total of 255 registers per thread.
A total of 16 thread blocks are used by each SM with 2048
bytes of shared memory per block.
The video processing platform is evaluated for concurrency,
throughput, resource consumption and time taken to process
the video streams in the experimental results presented in
this paper. The concurrency of the platform is evaluated by
processing multiple video streams on each node using CUDA
streams. Each CUDA stream is processing a single video
stream. The total video data analysed during these experiments
consists of 5 hours of video recordings. The length of each
individual video stream is around 2 minutes and 51 seconds.
Each video stream is H.264 encoded. The resolution of a the
video stream is 704x528 with a frame rate of 30fps. The data
rate of the video stream is 421 kbps and bitrate is 461 kbps.

RAM

CPU Cores

Video Stream 

storage

Decode Frame

Load decoded frame to GDRAM

Decoded Frames

GPU Memory

CUDA Processing Cores

Process Frame Processed FramesGPU

CPU

Figure 4: Data Flow Within the cloud node
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Figure 5: Sequence of Process Execution in the node

The total numbers of video frames in each video stream are
5130 and the data size of an individual video frame is 371KB.
The execution time, memory bandwidth, memory consumed,
GPU occupancy, throughput and performance are the evalua-
tion parameters of the platform. These parameters are evalu-
ated against single and concurrent CUDA streams. The time
taken for processing individual video frames and multiple
video streams is an important evaluation parameter. The total
video processing time includes video reading time and pro-
cessing the video stream for extracting the useful information
from it.
These parameters are compared for different GPUs and with
CPU implementation. For this purpose, GT 610 GPU has been
used. It consists of a total 48 CUDA cores and have 1 GB
memory. It is a Fermi based GPU and consist of one SM. A
total of 8 thread blocks per SM is supported. Total of 48 warps
per SM is supported where each warp consist of 32 threads.
Each thread is supported with a total of 63 registers per thread
with a local memory of 512 KB.
The difference in architectures lead us to see differences in
the results as well. This enabled us to select a suitable GPU
for a certain type of application. The final results of our 4
node GPU enabled cloud platform are compared with a 4 node
Hadoop cluster without GPUs. The 4 nodes Hadoop cluster
was deployed on Openstack with each node having 8 GB RAM
and data storage of 100 GB. The installed operating system is
cloud image of Ubuntu 15.04. The algorithms of OpenCV 3.0
RC1, using the JNI wrappers compiled in Java 1.8 for native
C++ library, were utilized for the LBP algorithm.

VII. RESULTS AND DISCUSSION

In this section we present the evaluation results of our high
performance video processing platform using the case study
discussed in section IV. These results have been produced by
executing the face recognition case study on the platform. The
video processing results from the GPU platform are compared
with the CPU based cluster. The same dataset is executed on
different sets of GPUs to evaluate the suitability of a GPU
architecture for face recognition applications.
Different aspects of the GPU platform such as memory al-
location, memory bandwidth, GPU occupancy and the time
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Figure 6: Frame Processing Operations and Processing Time

taken by algorithm are evaluated to analyse the performance
of the platform . These experiments also cover several other
aspects such as the effect of increasing number of concurrent
video streams on the platform with an increasing cluster size in
order to evaluate the scalability of the platform. The remainder
of this section explains the evaluation results of the platform.

1. Effect of Data Transfer between CPU and GPU in a
Cloud Node: This set of experiments evaluates the effect of
page-able, pinned and zero copy memory allocation and data
transfers on the throughput of the video processing platform.
The number of video streams in these experiments is varied
from 1 to 10 within a node. For a 704 x 528 video resolution,
each video frame required 371.712 KBs of memory allocation.
The data transfer per second is 10.89MB for one video stream
recorded at 30fps. The maximum data transfer per second
varied from 10.89MB to 108.9MB for 1 to 10 video streams
in this set of experiments.
The total elapsed time to transfer video frame data from CPU
to GPU memory with pageable memory, pinned memory and
zero copy is summarized in Table I. The zero copy memory
transfer took the least time as it allows the GPU to access
video frame data directly from the main memory by mapping
the CPU and GPU memory address space.

Transferring the processed video frame data from GPU to
CPU memory was fastest with zero copy memory transfer and
took the least time. The time taken to transfer processed video
frame data from GPU to CPU memory is summarized in Table
I.

2. Frame Processing Time: The processing time of an
individual video frame is analysed on CPU, GT 610 and GTX
780 GPUs. We have also analysed the video frame processing

CUDA
Streams

Data Transfer Time (in Milliseconds)
CPU to GPU GPU to CPU

Pageable Pinned Zero Copy Pageable Pinned Zero Copy

1 0.113 0.104 0.001 0.123 0.1 0.001

2 0.212 0.117 0.025 0.16 0.151 0.011

3 0.321 0.208 0.12 0.311 0.233 0.0869

4 0.36 0.215 0.126 0.374 0.293 0.126

5 0.42 0.286 0.197 0.438 0.415 0.196

6 0.471 0.313 0.216 0.489 0.502 0.275

7 0.56 0.373 0.267 0.597 0.686 0.328

8 0.612 0.431 0.316 0.65 0.83 0.38

9 0.643 0.499 0.322 0.795 0.878 0.485

10 0.733 0.517 0.397 0.872 0.982 0.509

Table I: Data Transfer Time from CPU to GPU and GPU to
CPU
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Figure 7: Elapsed Time to Process multiple frames

time with page able, pinned and zero copy memory transfer
mechanisms.
The first experiment was performed to determine the effect
of data transfer mechanism while processing a single frame.
Figure 6 depicts the required time to process a single video
frame with different data transfer mechanisms. The figure
depicts the impact of Frame Reading and Decoding time, frame
data transfer from CPU to GPU and GPU to CPU and frame
Processing time on the total Frame Processing time of each
video stream. The zero copy remains the fastest because of
the direct video frame data access from GPU to CPU. In zero
copy mechanism, the GPU memory address space is mapped
to the CPU memory address space and GPU accesses CPU
memory as its own address space. This means that whenever
data is to be copied from host to device, GPU is able to access
the particular memory location in host memory. The processed
video frame data is also copied back to the host from GPU
memory in the same way. The zero copy memory is used in
the rest of the experiments reported in this paper.

The second set of experiments was performed for evaluat-
ing the impact of processing multiple frames on the platform
against the CPU based Cluster. Figure 7 shows the time it
takes to process multiple frames on the platform. The platform
is faster because of the availability of dedicated hardware
processing cores. Secondly, the three level approach discussed
previously spawns numerous threads for each frame within
the dedicated hardware which launches further numerous
lightweight threads to operate on individual pixels of each
video frame in parallel. In each lightweight thread, kernel is
launched for each pixel. The processing time of multiple video
frames within multiple video streams reduces significantly as
depicted in Figure 7.

The third set of experiments was performed to evaluate the
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Figure 8: Frame Processing Time and number of Video
Streams
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Figure 9: Memory Consumption of GPU on Each Cloud
Node

effect of data transfer in order to achieve high performance
within the platform. The performance was measured with the
number of frames processed per second. Figure 8 depicts
the number of frames processed per second using different
data transfer mechanisms. The highest throughput was also
achieved by the zero copy mechanism with the increasing
number of video streams. From the graph it is observed that
the highest throughput is achieved with two video streams. The
frame processing per second for one video stream remained
135 whereas with two concurrent video streams, frames pro-
cessing per second reaches 100 for each video stream. With
three video streams, a steep reduction was observed in the
frame processing per second which reaches to 38 for each
video stream. It is due to the reason that data transfer time
from CPU to GPU and GPU to CPU remains optimized with
two CUDA streams as summarized in Table I.

3. Resource Consumption:

GPU Memory Consumption:

GPU has limited memory and this memory is further di-
vided into global/shared and local memories. In this evaluation,
we analysed the GPU memory usage while processing multi-
ple video streams using CUDA streams. The GPU memory
consumption is also dependent on the memory bandwidth of a
GPU and the number of stream pipelines. As mentioned earlier,
the GTX 780 has 3GB of memory, 16 stream pipelines and its
memory bandwidth is 288.4 GB/s. The memory consumption
kept on increasing with the increase in number of CUDA
streams. The GT 610 has 1GB memory and only one stream
pipeline. GT 610 have a memory bandwidth of 14.4 GB/s. It
was able to process only one CUDA stream at any given time
and the memory consumption is constant. The processing of
multiple video streams on GT 610 is sequential and CUDA
streams has no effect on the overall throughput of the system.
This behavior is well depicted in Figure 9.

CPU Memory Consumption:

The video processing is initiated on CPUs and only the
compute intensive part of the algorithm is off loaded to a GPU.
One thread is launched for each CUDA stream. Each CPU
thread is responsible for decoding a video stream, extracting
video frames from it, storing the frames in frame buffers and
initializing a CUDA stream. A linear increasing behaviour in
the memory usage is observed with an increasing number of
CUDA streams. This behaviour is depicted in Figure 10.
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GPU Occupancy:

GTX 780 has 2304 processing cores and can execute 2048
threads in parallel. These threads execute in blocks of threads
with a minimum of one warp of threads per block. Each warp
consist of a maximum of 32 threads. A thread starts execution
after all of its required resources (memory, registers etc.) and
the data become available. A higher number of thread blocks
leads to a higher GPU occupancy.

GPU Occupancy is an indicator of the utilization of a GPU.
A higher utilization of GPU can cover memory transfer and
global memory load latencies. However, a higher occupancy
does not necessarily mean a higher performance. Memory/data
bound applications such as video processing do not benefit
from a higher GPU occupancy. The processing is dependent on
the data transfer from CPU to GPU as well as data accessibility
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Five Hour Video Stream Processing

within the GPU RAM. This means that while accessing the
data from the GPU memory, threads do not stall the memory
access.
The first experiment was performed to evaluate the GPU Occu-
pancy at each block size when executing the video processing
kernel for each pixel. As shown in Figure 11(a), the GPU
occupancy depicted an increasing trend with an increasing
block size until 128 thread blocks and became 100% . A block
size of 768 thread blocks depicted lowest performance of 75%
occupancy because threads stalled the memory access for the
frame data within the GPU memory. In order to validate this
experiment, the frame processing per second was measured
at different block sizes depicted in Figure 11(b). The highest
number of frames processed per second was found on the block
size of 256 thread block size. The effect of thread block size
and occupancy achieved on video processing is depicted in
Figure 12.

4. Video Processing Operations: Video processing op-
erations include video reading and decoding, data transfer
between CPU memory and GPU memory and algorithm
execution on the data. This experiment was performed to
evaluate the time required to complete these operations and
their implications on video stream processing in the platform.
As the video streams in a cloud node are increased from 1 to
10, we analysed that video reading and decoding operations
take maximum percentage of time as shown in Figure 13.
It is because of the reason that in our platform a video stream
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Figure 13: Mean Time while Processing Multiple Video
Streams



is acquired by the video processing cluster manager from the
physical storage. This means that a constant transfer of video
streams from the physical storage to the memory of video
processing cluster manager remained a major bottleneck during
this study. This aspect of the platform is being dealt in the next
phase of our experiments which are making use of in memory
storage approaches.

5. Comparison with non- GPU based Cloud:

High Throughput Comparison:

A higher video resolution means processing of more data.
The effect of varying video stream resolution in our platform
is depicted in Figure 14 where video streams of different
resolutions are used. The length of the video stream remained
2 minutes 51 seconds in this set of experiments.
The platform achieves 15 times higher throughput than our
CPU based cloud. The video processing time on a GPU also
includes overall time for decoding a video stream. Table II
summarizes the processing times for different video resolu-
tions. The highest speedup was achieved for the high resolution
videos. It is due to the reason that processing each pixel
sequentially is inefficient and does not utilize all the available
CPU resources. Whereas, a GPU processes each pixel of a
video frame in parallel. No significant speedup was observed
for the low resolution video streams due to the data transfer
overheads from CPU to GPU. It is due to the fact that a GPU
waits for the data transfer from a CPU.
The results of experimentation performed on our platform
using multiple videos of 704x528 resolution were 15X times
faster than a non GPU-based cloud as shown in Figure 15.
The reasons behind the achieved speed-up is optimized frame
data transfer from CPU to GPU and parallel processing of
video frames data on GPUs. We analysed that using zero copy
data transfer mechanism provides GPU with direct access to
CPU memory location and provided a higher throughput than
any other CPU to GPU data transfer mechanism. The other
reason behind the achieved speed-up is optimized utilization of
resources on the GPUs. This was achieved by determining the
optimal number of thread block size required to process each
frame. The concurrent processing of multiple video streams
also contributed in achieving the high throughput. The max-
imum throughput is achieved when each node is processing
two video streams concurrently. The GPU memory allocation
and the video frame data transfer remain the fastest with two
video streams. Increasing the number of video streams to
three or more resulted in a sequential video data transfer and
consequently the processing on the GPUs became slower.

Scalability Comparison:

Figure 15 depicts vertical as well as horizontal scalability
of the platform against the CPU based Cloud platform. Mul-
tiple video streams were processed on the CPU based cluster.
Over the non GPU based cloud, 5 hours of video data took
nearly 25.416 minutes to process on a cluster having 4 worker
nodes. The figure also provides a comparison of scalability
between the CPU based cloud and the proposed platform. The
figure provides a comparison of an increasing number of nodes
with the increasing number of video streams. From Figure
15(a) it is visible that the overhead within the CPU based
Cluster is continuously increasing resulting in the increase

Video
Resolution

Video Processing Time
CPU GT 610 GTX 780

256x144 1.19 0.913 0.84
352x240 5.41 2.338 1.86
480x360 11.363 3.104 2.508
640x480 19.147 4.340 3.804
704x528 21.474 3.839 3.202

1280x720 41.437 7.783 7.033
1920x1080 95.999 15.391 12.341

Table II: Processing of Video Streams with Different
Resolutions

of inefficiency and processing time. Figure 15(b) depicts the
scalability of our high performance video processing platform.
From the figure it is visible that the platform is highly scalable,
both vertically and horizontally because of the exploitation
of a heterogeneous architecture, the three level parallelism
approach and due to the optimal utilization of resources.

VIII. CONCLUSION AND FUTURE WORK

A high performance video processing platform has been
presented in this paper. The platform is capable of processing
multiple videos concurrently and efficiently. A three level
parallelism approach has been implemented to achieve high
performance, high throughput and scalability in the platform.
Several factors such as optimized resource utilization of
GPUs, optimal data transfer mechanisms, improved occupancy
and efficient memory allocation contributed towards the high
throughput. Whereas, mapping each and every pixel of video
stream on the light-weight GPU threads remained vital factor
for achieving high performance in the platform.
The results of face recognition case study showed an accuracy
of 95 percent with a performance gain of 15 times as compared
to other contemporary approaches. The reason behind this
performance is the optimal load distribution and resource
allocation approach where the load is intelligently shared
between the GPUs and CPUs on each node. Because of this
approach, CPUs on each node keep on decoding the frames and
GPUs keep on processing them in parallel. The performance
achieved is dependent on the resolution of each video stream.
When the resolution of a video stream is increased, a higher
performance was achieved, meaning the platform is better
suited for large scale video analytics.
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Figure 15: Vertical and Horizontal Scalability

It is important to mention that transferring video stream from
video storage to the main memory of worker nodes remaines
a bottleneck in achieving further performance gains. Video
streams are first loaded from video storage to the main memory
and are then processed on the platform. I/O delays occur due
to the constant movement of video streams and this becomes
one of the major performance bottlenecks. Leveraging an
in-memory processing cluster which provides distributed in-
memory architecture is likely to overcome this problem and is
one of the future directions of this work.
We will also like to make the system more generic by detecting
and recognizing objects from different object classes such
as cars, bikes and pedestrians. The optimization of detection
and recognition algorithms will also be the part of our future
work. Since the platform and algorithms are not suitable for
live streaming analytics, mechanisms will be addressed where
GPUs can be utilized on the in-memory processing cluster.
With the utilization of an in- memory cluster coupled with
the computation power of GPUs, we can anticipate a higher
performance of the video processing platform for live video
streams analysis.
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