
A Multi Interface Grid Discovery System

A. Ali1, A. Anjum1,2, J. Bunn3, F. Khan1, R.McClatchey 2, H. Newman3,
 C. Steenberg3, M. Thomas3, Ian Willers4

1National University of Sciences and Technology, Rawalpindi, Pakistan
Email:{Faisal.khan,Arshad.Ali}@niit.edu.pk

2CCS Research Centre, Univ. of West of England, Frenchay, Bristol BS16 1QY, UK
Email:{Richard.McClatchey,Ashiq.Anjum}@cern.ch

3California Institute of Technology, United States
Email:{ julian.bunn@caltech.edu}{newman, conrad, thomas@hep.caltech.edu}

4European Organization for Nuclear Research, Geneva, Switzerland
Email: Ian.Willers@cern.ch

Abstract

Discovery Systems (DS) can be considered as
entry points for global loosely coupled distributed
systems. An efficient Discovery System in essence
increases the performance, reliability and decision
making capability of the whole distributed system
particularly if the complexity is large as in Grid
systems. With the rapid increase in scale of
distributed applications, existing solutions for
discovery systems are fast becoming either
obsolete or incapable of handling such complexity.
They are particularly ineffective when handling
service lifetimes and providing up-to-date
information, poor at enabling dynamic service
access and they can also impose unwanted
restrictions on interfaces to widely available
information repositories. In this paper we present
essential design characteristics, an implementation
and a performance analysis for a discovery system
capable of overcoming these deficiencies in large,
globally distributed environments.

1. Introduction

Grid computing promises to provide solutions to
complex scientific and industrial problems. This is
achieved by pooling together resources (CPU,
storage and networks) from individual or multiple
institutes – referred to as ‘virtual organizations’.
With the increasingly widespread adoption of the
Grid paradigm of computing, there is an
unprecedented increase in the number of accessible
elements (i.e. CPUs, storage elements, networks
etc) connected to the Grid. However this increase
comes with a price in terms of the management and
coordinated use of these resources, exposed as

(web) services. The nature of these services varies
from highly stable to highly volatile. Services may
appear or disappear: new services can become part
of the Grid and older services can be withdrawn
from the Grid. Moreover, the location of the
services cannot be foreseen. It is therefore
important to have a class of services in the
distributed system that provides scalable and robust
registration and discovery services.

Discovery services or information services
enable service providers, scientists and applications
to query for services and to retrieve up-to-date
information on demand on their location and
interfaces. An information service can also act as a
facilitator for interaction between other Grid
components; it is impossible for a service to
interact with another without knowledge of its
location. One such example of an interaction
facilitated through the discovery service is that of a
job scheduler service, in which an instance of a
scheduler running on one site can interact with
schedulers running on other sites to enable
selection of the optimal execution site. Another
example is an interaction among different replica
location services for choosing the best copy of data
– where “best” could, for example, mean ease of
access or speed of access. There are many such
scenarios where discovery services play major
roles in enabling communication among various
components of the Grid. Figure 1 shows a skeleton
of a generic discovery service.

Most existing service discovery solutions are
not suitable for the dynamic and distributed nature
of the Grid, for several reasons. The main problems
with current implementations are: lack of peer-to-
peer discovery, lack of compliance with standards,
and an absence of dynamic discovery capability for

the renewal of service and multiple interfaces.
Another important consideration for designing DSs
is to build in fault tolerance mechanisms: this is
especially important in a distributed system where
the failure of one component can have a domino
effect on others.

Figure 1. Service Discovery Skeleton

The DS solution that we have developed is

available as part of the Clarens web services
framework [1], a Grid portal for scientists which
enable them to run Grid-based analyses on high
energy physics data. Clarens is being used by
different communities under the OSG (Open
Science Grid) [3] and by the NVO (National
Virtual Observatory) [23].

In the following section we identify the essential
characteristics of a Grid information system. The
architecture and implementation details of our DS
are described in sections 3 and 5 respectively. We
discuss the existing solutions based on these
features in section 4. We then discuss existing and
possible scenarios in which the DS can be utilized.
A performance analysis of the DS is presented in
section 7. We conclude the paper by describing
possible avenues for future work.

2. Design Characteristics

In this section we list design requirements for
building a dynamic and distributed system, which
can help to register and invoke Grid services
virtually instantaneously.

The convergence of Grid and Peer to Peer (P2P)
computing offers many advantages [3], [4]. The
main advantage is scalability. Applications like
Napster [5], Gnutella [6] and SETI@HOME [7] are
examples of how P2P systems can exploit a large
number of loosely interconnected nodes. Moreover
there are other characteristics of P2P systems
which can be exploited when implementing a
discovery service. One such characteristic is
content search. Content search allows P2P
networks to keep a catalogue of distributed
resources (files). The scale of P2P networks makes
searching this catalogue a complex problem since
the nodes can join and leave the network
effectively at random. The churn rate - which is the
rate at which nodes leave and join the network - is

much higher in such applications as compared to
that of Grid. The distributed search capabilities of
P2P file sharing applications can be utilized or
studied for improved performance in the Grid
environment.

We provide support for multiple plug-ins of
different components depending upon the
requirements of the Grid users. This is important
because of the rapid changes in existing
components due to evolving Grid standards.
Providing a plug-in API supports flexibility in
incorporating new components or in improving
existing ones without affecting the overall
functionality of the system. The main reason for
opting for a multi plug-in approach is that there are
multiple applications which exhibit the same or
very similar (discovery) functionality but which are
used by different communities. UDDI [8], ebXML,
relational databases and LDAP can all be used as
registries for storing service information.
Applications like MonALISA, RGMA, MDS4,
GridICE [24] etc. can be used for replication of
discovery information among the different
discovery nodes. These applications are in use by
different Grid communities. For example EGEE is
using RGMA while OSG is using MonALISA. The
pluggable approach enables us to broaden the
usage of the discovery service across multiple
communities and also to take advantage of
different heterogeneous products, many of which
exhibit complementary strengths and weaknesses.

Another important design consideration is the
service information lifetime. There can be many
cases when information on a service is available
within the discovery service but the service itself is
down. These ‘stale’ entries can lead to a
degradation of discovery performance and
reliability. Thus the registration of services needs
to be subject to a lifetime, after which the
registration expires. Service providers should
periodically republish information to avoid deletion
of previous published information.

Each independently running instance of an
information service should keep aggregated data
about all other instances. The benefit of this
approach is that information can be retrieved by
contacting any of the nodes, without bothering
about the location from where the information
regarding the service was published. It also allows
fast retrieval of service data. Although this offers
certain disadvantages in terms of loads on
individual nodes the performance gains in term of
access can overcome this cost.

3. Architecture

The architectural components of our discovery
service can be divided into three main layers: the

service interface, the wrapper and the repository.
The top layer is the service interface which defines
different attributes for describing a service and also
methods for retrieving information from the service
repository. The bottom layer (the repository)
provides different variants for persistent storage of
service related data. To provide an interface
between different kinds of storage systems and our
service interface, we provided a middle layer called
the wrapper.

The service interface provides a way to describe
service information and also different methods for
accessing and manipulating service data. The
choice of parameters was made to have more
flexibility in providing service information. The list
of parameters is given in Table 1 with a list of
methods in Table 2.

Name Description
Endpoint list
{uri, encoding
(soap,
xmlrpc)}

Information on how to access the
service including protocol and
URL

Name Name of the service
Admin Email Email of the administrator who

is managing the server
VO The virtual organization of

which this server is a part.
Site Name of the site
WSDL url URL for retrieving WSDL url
Provider_dn Distinguished name of the

provider of this service
Item {key ,
value}

Arbitrary key-value pair for
describing the properties of the
services

Table 1. Service description

Repositories provide a mechanism for the

persistent storage of service related data. Different
sets of repositories provide more or less flexibility
for storage components since each of the
repositories is suitable for different types of Grid
environments. Relational databases are more
suitable in a more stable environment with large
numbers of services, where high availability is
required.

On the other hand if the Grid environment is
dynamic with reduced service availability or in
cases where a lower response time is desired, then
in-memory caches are best suited as storage
repositories. One severe limitation of in-memory
caches is the need for large amounts of RAM. In-
memory caches do not scale well to large Grid
environments with large numbers of services. An
alternative is to use UDDI (Universal Description

Discovery and Integration) - a more standardized
approach for service description and discovery.

Interface
method

Description

register Publishes service information
with the discovery service.

deregister Removes the service
information from the repository

find Allow users to query the
information service for
particular service or services

find_key Users can query on arbitrary key
value pair(s) with this method.

find_server Same as find but only provides
the information about existing
servers.

Table 2. Service access methods

Figure 2. Discovery Service Architecture

The use of the abovementioned diverse storage
systems leads to the requirement for a bridge to
bind the variety of interfaces together. This
wrapper layer is responsible for the seamless
translation of requests from the interface of the DS
to the underlying repository.

Another important aspect of the discovery or
information service is the ability to co-exist with
other instances. This is achieved through the
replication of service data over all other nodes of
network. We opted for a peer-to-peer method for
dissemination of information using JINI [9] and
MonALISA [10].

MonALISA was selected for information
dissemination for the following reasons:
1. It was already used by various groups for

collecting and aggregating monitoring
information.

2. The publish/subscribe pattern for publishing
and retrieving any arbitrary information in
MonALISA allows us to follow OGSA [4]
based standards.

3. MonALISA is already a core component of the
Ultralight [11] project in which the Discovery
Service is being used.

4. Implementation

A discovery service has been implemented as a
web service within Clarens/JClarens. It is available
in both Python (for Clarens) and Java (for JClarens
[19]). The development work was carried out in
three phases. Each phase built on the previous one.
In this section we will give a description of each
phase.

4.1. Phase I: Centralized Repository

In this phase the development of a prototype
version (or skeleton) of our information service
was undertaken. Initially we provided an API with
the implementation of most of the methods
mentioned in Table 2. Data on each service
(parameters as presented in Table 1) was stored at a
centralized location.

A discovery module was provided as a core
component within the Clarens framework. Each
instance of a Clarens server registered its services
with the locally available information service.
Replication was not possible between servers and
consequently no communication was possible
among different Clarens servers. Figure 3 shows
this simple standalone discovery service.

4.2 Phase II: Service Replication and
Distributed Discovery

Prior to Phase II there was no communication
among individual instances of our discovery
service. The support for the replication of the
service data was built at this stage. We used JINI
and MonALISA to achieve this purpose.
MonALISA uses station servers which are
dynamically interconnected using a JINI peer-to-
peer network. These station servers are capable of
collecting local monitoring data and of sharing it
with other station servers or other interested
clients. Arbitrary information can be sent to the
MonALISA servers using ApMon packets – a

library that uses simple XDR encoded UDP
packets.

Figure 4 depicts how this was achieved. Each
Clarens server upon its startup registered its
services with the local repository and also pushed
them to the MonALISA server. These service
parameters were then published to any of the
known MonALISA station servers. The station
servers used an efficient agent-based system to
propagate the service parameters to other discovery
service instance. The MonALISA
publish/subscribe model allowed its client to get
interested information from its peer-to-peer
network. A JINI-based client was embedded within
each Clarens servers. This client received
information from MonALISA and stored them in
the local repository. In this way service information
from one discovery instance was made available to
others.

Figure 3. Standalone discovery architecture

The other development of note at this stage was
to add service lifetime management. Keeping
information for unavailable services not only
decreases the efficiency of the system, but it may
also hinder the overall working of the Grid
systems. This hindrance is due to the fact that
different Grid components rely on information
obtained from the DS for their working. Thus
lifetime management can be considered as a critical
component of our DS. In our implementation of a
discovery service, the publishing of service
information is subject to a finite lifetime.
Repositories are periodically purged to remove
expired entries from the system. The service
provider is responsible for renewing the service
lifetime. The service expiry is managed by the
provider of the service. So it can be easily adjusted
based on the requirements and nature of the Grid
applications.

4.3 Phase III: Interfacing with Standardized
Components

A UDDI (Universal Description, Discovery and
Integration) repository is a standardized component
for describing, storing and retrieving service
related data. But it is unsuitable for being deployed
in large scale systems with dynamic nature of
services. The use of UDDI repositories is mostly

suitable in a stable environment – i.e. fewer
services with high availabilities. We overcome this
disadvantage of UDDI systems by using it as a
repository with our discovery service. The built-in
replication of the discovery service can help
alleviate the deficiencies in UDDI use due to its
stand-alone nature. Figure 5 shows how UDDI can
take advantage of the global nature of our
information service.

Figure 4. Service replication and distributed
discovery

All distributed instances of UDDI are virtually

linked to one another using the replication
mechanism within our discovery service. The
service data registered to UDDI running within one
VO will be available to other VOs, thus making
UDDI suitable to be deployed in large scale
distributed systems.

A wrapper was built around the UDDI which
translates each call made to our discovery service
to the appropriate UDDI method call. With this
wrapper it is possible to publish and query from the
UDDI registry using both the Discovery Service
interface and the standard UDDI interfaces, but the
services added using the UDDI interface are not
automatically propagated to other Discovery
Service instances. This component is only available
with the java implementation of Clarens. We used
jUDDI [20] with uddi4j [21] for this purpose.

5. Discovery Service: Case Studies

The Discovery Service allows the service data
that is published from anywhere, to be retrieved

from anywhere in the Grid network. This
functionality makes it suitable to be used as a
global information index. In this section we present
different applications as case studies in which our
information system has served the above
mentioned purpose.

FiFigure 5. Discovery Service as UDDI
Repository

5.1 Job Monitoring

Job monitoring involves polling job related
information such as job status within its lifecycle
and to report its status back to user. Figure 6
presents a possible flow of information describing
how job monitoring can be done using the
discovery service. A user submits a job to the
scheduler, which will schedule it to any of the
execution clusters in any VO based on
matchmaking. Now we are interested in knowing
the status of the job during its execution. There
may be many possible statuses of the job. A few of
the possible status messages could be waiting,
executing, halted, aborted etc. For the monitoring
of the job we periodically publish the information
of the job status to our discovery service. This
information is published to any discovery node
known to that site on which our job is being
executed. Users can easily get the status
information regarding the jobs submitted by them
through any of the instances of the discovery
service known to them. Even other services such as

the job steering service can use such information
for taking decisions like rescheduling the job to a
more powerful site (in terms of resources).

Figure 6. Discovery Service as Job Monitoring

5.2 Resource Management

A global information index can provide
desirable functionality in a resource management
framework. The resource related information is
often required in the process of matchmaking i.e.
selecting appropriate resources, in terms of CPU,
memory, software requirements etc, for the
execution of a job. When a user submits a job, its
scheduling is carried out based on a number of
parameters. These might involve the site policy,
particular hardware and software requirements or
other considerations. Our information index is used
to discover Grid resources in order to facilitate the
matchmaking process. Each Virtual Organization
publishes information concerning the resources
available at its disposal and the current status of
their use.

Each site can publish information regarding the
computing power it has into the global index; this
involves the number of CPUs, the processing
power available, the number of jobs being executed
and the number of jobs in the queue. Whenever a
user is interested in submitting a job, the job
contacts the resource broker which does the
matchmaking based on the information received
from the information service. There are also other
components that could be involved when

scheduling a job such as maintaining user quota
and carrying out accounting.

6. Performance Analysis

Results are included for demonstrative purposes
and more accurate results are to follow in future
work.

We calculated the time it takes for retrieving
service related data from the information service
using a java based XML-RPC client. The graphs in
figure 7, 8 and 9 show the results of data retrieval
with varying number of services. These results
were calculated both from the memory-based and
two different database-based storages. The service
retrieval test does not include the time for making
the connection or authenticating the user with the
server. Apparently it seems that the exponential
increase in service retrieval time as number of
service increase is due to the overhead involved in
parsing the XML-RPC response from the Clarens
server. This could be further verified in the
exhaustive testing of our system which is currently
being done. We also noted that the in-memory
cache is suitable for fast retrieval of services data.
The only problem is with the memory over flow
when we register a large number of services or
data. Another test was to measure the time the
information service takes to replicate service
information to other instances of information
services over the wide area network. The Service
retrieval time was calculated based on the
difference in time between a service being
registered at one node of JClarens (running at
NUST, Pakistan) and becoming available at
another node (running at Caltech, USA).

The response we got varied from 3 seconds to
10 seconds, with it rarely going above 22 seconds.
The mean of different observations was 10.7 ± 8.3
seconds. Therefore on average it took about 10.7
seconds for the dissemination of one service across
the Clarens network through the MonALISA
replication mechanism. Figure 10 presents the
values obtained for service retrieval for different
number of attempts. The variance in the upper
values is attributed to the network latency prevalent
in our network. Being initial results we did not try
to find out the actual values of these latencies and
their effect on the service retrieval data.

All of these tests were conducted on an Intel P4
machine with 2.8 GHz process with 256 MB
memory.

Service retrieval (in memory cache)

0.67

1.15

2.1

3.2

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600

of services

time (sec)

Figure 7. Service retrieval (in memory cache)

Service retrieval (HSQLDB)

0.79

1.55

2.35

3.56

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600
of services

time (sec)

Figure 8. Service retrieval (HSQLDB)

Service retrieval (MySQL)

1.1

1.9

2.82

4.09

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600
of services

time (sec)

Figure 9. Service retrieval (MySQL)

Time taken in service replication for different attempts

3.03
1.03

10.81 9.91

22

8.89
7.15

26

7.17

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Attempt Number

time(sec)

Figure 10. Service replication

7. Related Work

A Discovery System is a core component of any
Grid implementation [22], [12] and there are many
existing components available which can perform
the task of discovering Grid resources and services.
In this section we discuss some important
developments in this area of research and provide a
critical analysis of the strengths and weaknesses of
each system..

The DNS (Domain Name System) is perhaps
the best known example of a discovery/information
system. DNSs are usually referred as internet
directory services. They provide mappings between
IP addresses and the internet domain names. DNS
are however not suitable for use in the Grid
environment because of their static nature and
limited query interface.

MDS4 [12] is the discovery and monitoring
component of the Globus [13] toolkit4. It is based
on emerging Grid standards such as WSRF [15]
and WS-Notification [16]. It comprises an index
service, which collects and publishes aggregated
information on Grid resources and a trigger service
which collects information and performs certain
actions based on the specified conditions. This
information can be accessed using the WSRF query
and subscription interfaces. MDS4 mainly focuses
on collecting monitoring information by interfacing
it with detailed monitoring systems but can also be
used for the discovery of resources. Recently we
have held discussions with the Globus group to
provide a bridge between our Discovery Service
and MDS. This will allow us to publish our DS
data into MDS and pull service information from
MDS. In this sense, MDS can be used as yet
another backend repository for our DS.

RGMA [14] is a relational implementation of
GMA [17] (Grid Monitoring Architecture), an
architecture initially presented by the GGF [18]
(Grid Global Forum). This monitoring and
information system works like a large relational
database with SQL queries to retrieve information.
The architectural components of RGMA involve a
virtual database and a set of producers and
consumers. A virtual database is used to organize
users' data into tables and allows data manipulation
using SQL queries. Each virtual database in a Grid
will have a unique name and will belong to any
members of the virtual organization. Information is
queried from these databases by contacting the
consumer and information is provided to databases
by contacting the producers. A mediator or
centralized registry holds information about the
currently available producers. This centralized
registry is a bottleneck in the presence of a large
number of producers. Moreover, services are not

published and retrieved instantly and dynamically
since replication of the data is not in real time.

8. Conclusion

This paper describes the design, implementation
and performance analysis of our discovery and
information system. We presented how our system
tackles the most demanding issues of service
registration, information propagation and service
discovery and access in widely distributed and
diverse systems infrastructures. We discussed some
unique features of the system - the most important
of which include interfacing with different backend
systems - which incorporates flexibility, avoiding
stale service data by imposing a lifetime for each
service entry and providing an updated view of the
dynamically varying distributed systems. The
performance analysis is presented to allow readers
to gauge how our system behaves with changing
number of services. We also presented ongoing
work on the case studies which shows the usability
of our system as a main facilitator for other
components of grid such as job and network
monitoring, scheduling and resource management.

The support of our organizations and of the
CMS experiment at CERN is gratefully
acknowledged..

References
[1] F. van Lingen et al.,, "The Clarens Web Service
Framework for Distributed Scientific Analysis in Grid
Projects", In Proceedings of the International Conference
on Parallel Processing Workshops, Oslo, Norway, June
2005, ISBN 0-7695-2381-1, pp45-52. See also:
http://clarens.sourceforge.net/
[2] Open Science Grid http://www.opensciencegrid.org
[3] I Foster, A. Iamnitchi, “On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing”.
Lecture Notes in Computer Science, 2003. Springer
Verlag
[4] Karan Bhatia. “Peer-To-Peer Requirements On The
Open Grid Services Architecture Framework” GFD-
I.049 OGSAP2P Research Group.
[5]“The Napster Homepage” –
http://www.napster.com.mars
[6] “Gnutella” - http://www.gnutella.com/
[7] “SETI at HOME” - http://setiathome.berkeley.edu/.
[8] UDDI - http://www.uddi.org/
[9] Jini.org - The Community Resource for Jini
Technology - http://www.jini.org/
[10] I. Legrand et al "MonALISA: an Agent Based,
Dynamic Service System to Monitor, Control and
Optimize Grid Based Applications", in Proceedings of
Computing for High Energy Physics, Interlaken,
Switzerland, 2004.
[11] H. Newman et al.,, , "The Ultralight project: The
Network as an Integrated and Managed Resource for

Data Intensive Science", in Computing In Science and
Engineering, Issue on grid computing, 2005
[12] JM Schopf, et al.,, “Monitoring and Discovery in a
Web Services Framework: Functionality and
Performance of the Globus Toolkit’s MDS” Argonne
National Laboratory Technical Report# ANL/MCS-
P1248-0405
[13] The Globus Alliance - http://www.globus.org/
[14] AW Cooke et al.,“The Relational Grid Monitoring
Architecture: Mediating Information about the Grid”-
Journal of Grid Computing (2004) 2: 323–339 ©
Springer 2005
[15] The WS-Resource Framework (Specifications),
http://www.globus.org/wsrf/specs/ws-wsrf.pdf
[16] Web Services based Notification (WS-Notification),
ftp://www6.software.ibm.com/software/developer/library
/ws-notification/WS-BaseN.pdf
[17] GMA – ’A Grid Monitoring Architecture’ GGF
document available at:
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/
[18] GGF – Global Grid Forum ,
http://www.gridforum.org/
[19] M. Thomas et al., "JClarens: A Java Framework for
Developing and Deploying Web Services for Grid
Computing", In Proceedings of 2005 International
Conference on Web Services (ICWS 2005), Orlando,
Florida, July 11-15, 2005, ISBN 0-7695-2409-5 pp141-
148
[20] jUDDI - http://ws.apache.org/juddi/
[21] UDDI4J - http://ws.apache.org/juddi/
[22] K Czajkowski et al., “Grid Information Services
for Distributed Resource Sharing” IEEE Int. Symp High
Performance Distributed Computing Proc (2001). pp.
181-194. [23] “National Virtual Observatory” -
http://www.us-vo.org/index.cfm
[24] S. Andreozzi et. al. “GridICE: a Monitoring Service
for Grid Systems”. In Future Generation Computer
Systems Journal, Elsevier, 21(4):559-571, 2005

