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Abstract 

 

In scientific environments such as High Energy Physics (HEP), hundreds of end-users may 
individually or collectively submit thousands of jobs that access subsets of the petabytes of 
HEP data distributed over the world. Given the large number of jobs that can result from the 
splitting process and the amount of data being used by these jobs, it is possible to submit the 
job clusters (batch of similar jobs) to some scheduler as a unique entity, with subsequent 
optimization in the handling of the input datasets. In this process, known as bulk scheduling, 
jobs compete for scarce compute and storage resources and this can distribute the load 
disproportionately among available Grid nodes. Moreover, the Grid scheduling decisions are 
often made on the basis of jobs being either data or computation intensive: in data intensive 
situations jobs may be pushed to the data and in computation intensive situations data may 
be pulled to the jobs. This kind of scheduling, in which there is no consideration of network 
characteristics, can lead to performance degradation in a Grid environment and may result 
in large processing queues and job execution delays due to site overloads. Furthermore, 
previous approaches have been based on so-called greedy algorithms where a job is 
submitted to a ‘best’ resource without assessing the global cost of this action. However, this 
can lead to a skewing (unproportional distribution) in the distribution of resources and can 
result in large queues, reduced performance and throughput degradation for the remainder 
of the jobs. In this thesis we investigate a Data Intensive and Network Aware (DIANA) meta-
scheduling approach which takes into account a cost based mechanism to map jobs against 
the resources when making scheduling decisions across multiple sites. We also present an 
extended version of the DIANA scheduling system which not only allocates best available 
resources to a job but also checks the global state of jobs and resources so that the output of 
the whole Grid is maximized and no single user or job can undergo starvation. DIANA is a 
performance-aware and an economy-guided Meta Scheduler. The DIANA meta-schedulers 
create a peer-to-peer hierarchy of schedulers to accomplish resource management, since 
existing scheduling hierarchies are not sufficient for Grid systems due to their inability to 
change with evolving loads and due to the dynamic and volatile nature of the resources. We 
detail the DIANA scheduling algorithm and its queue management system for coping with the 
load distribution and supporting bulk job scheduling. Results indicate that considerable 
performance improvements can be gained by adopting the DIANA scheduling approach. 
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Chapter 1 
Introduction 

 

1.1 Introduction 

In this thesis I report on Data Intensive and Network Aware (DIANA) Grid scheduling. The 

goal of this thesis is to explore the combined impact of network characteristics, computing 

resources and data intensive jobs on the scheduling decisions when the resources are 

distributed over the global Grid. In Grids, for example LCG computing Grid [174] and Open 

Science Grid [173], scheduling decisions are often made on the basis of jobs being either data 

or computation intensive: in data intensive situations jobs may be pushed to the data and in 

computation intensive situations data may be pulled to the jobs. This scheduling approach 

can lead to performance degradation in a Grid environment and may result in large 

processing queues and job execution delays due to site overloads.  

In the scientific analysis environment, a large number of tasks need to access Grid resources 

and users can submit a number of jobs which consume and produce a great deal of data that is 

potentially distributed worldwide. All these jobs will compete for scarce resources and this is 

likely to distribute the load disproportionately among the Grid nodes. Moreover, current 

scheduling systems [5] [6] [8] are inflexible to changing schedules and behave like static 

time-dependent Grid systems. These schedulers cannot meet the input constraints such as 

network characteristics and data location at runtime.  The job scheduler should take into 

consideration input parameters such as data location, data size, site availability, network 

characteristics, computation power and different optimization parameters in making 

scheduling decisions.  

In this thesis we describe a Data Intensive and Network Aware (DIANA) meta-scheduling 

approach which takes into account data, processing power and network characteristics when 

making scheduling decisions across multiple sites. The DIANA approach considers the Grid 

as a combination of active network elements [171] (to include the network as an integral Grid 

component that offers reliable, and if possible guaranteed, levels of service) and takes 

network characteristics as a first class criterion in the scheduling decision matrix, along with 

computations and data. The scheduler can make “intelligent” decisions by taking into account 



 

 9

the changing state of the network, the locality and the size of the data and the pool of 

processing cycles.  

1.1.1 Grid Systems 

Grid systems [1] [2] are interconnected collections of heterogeneous and geographically 

distributed resources harnessed together to satisfy the various needs of users. Grids can be 

classified into Computational Grids and Data Grids: 

• Computational Grids, for example TeraGrid [172], are used for compute intensive 

operations and apply the resources of many computers in a network to a single 

problem that requires a large number of computer processing cycles for massive 

throughput and enhanced computing capability.  

• Data Grids [173][174], on the other hand, support data intensive operations and 

promise to build the next generation computing infrastructures by providing intensive 

computation and analysis of shared large-scale datasets, from hundreds of Terabytes 

to Petabytes, across widely distributed scientific communities. This process involves 

a secure, reliable data transport protocol and a replica management system which 

replicates data to geographically distributed storage repositories to achieve high-

performance data access.  

Resource management is a central task in any Grid system. The Grid’s basic responsibility is 

to accept requests from users, match these requests to available resources for which the user 

has access and then schedule execution using the matched resources. Resources include 

“traditional” resources like compute cycles, network bandwidth and storage systems. Typical 

resource management systems are Globus GRAM [5], WMS [6] from EDG, SGE [7], Condor 

[8] and the EuroGrid-Unicore [9] resource broker. Effective resource management and 

scheduling is a challenging issue, and data location and networks in addition to the 

computing power are critical factors in making scheduling decisions. The quality and 

consistency of networks are among the most important factors in this whole scheduling 

paradigm since the Grid can be subject to failure if networks do not perform well. Moreover, 

a site that has the targeted data may not be the best place for computation even if it has 

sufficient available computing power since these processors might be required to wait for a 

long time to fetch remote data from the storage media. Similarly, a site with the required data 
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may not be a good place to perform the computation if it does not have sufficient available 

computational resources. All these parameters need to be considered while making efficient 

scheduling decisions. Grid applications are becoming more and more network dependent 

with more demanding requirements in areas such as data access or interactivity, both with 

user tasks and other tasks. The specific kind of tasks that request computations are usually 

referred to as “jobs” and are dependent on storage, network capacity and computation. A job 

is an application or task performed on High Performance Computing resources. A Job may 

be composed of steps/sections as individual schedulable entities. When a job is submitted to a 

Grid scheduling system, the scheduling system has the responsibility to select a suitable 

resource and then manage the job execution. The system will then pass the job to an 

appropriate computing resource (often referred to as a Computing Element (CE) [10]) for 

execution, taking into account the requirements and the preferences expressed in the job 

description. The determination of which resources should be used is the outcome of a 

matchmaking process between submission requests and the available resources. The 

availability of resources for a particular task depends not only on the state of the resources, 

but also on the utilization policies that have been put in place by the resource administrators 

and/or the administrator of the Virtual Organization (VO) to which the user belongs.  

1.1.2 Meta-Scheduler 

A meta-scheduler, as shown in Figure 1.1, facilitates the requesting of resources from more 

than one site for single or bulk jobs (see section 1.1.3) and performs load balancing of 

workloads across multiple sites. The fundamental difference between a meta-sheduler and 

local schedulers is that a meta-scheduler does not own the resources and has no autonomy in 

its decisions. Each site also has its own local scheduler to determine how its job queue is 

processed. The meta-scheduler maintains a global queue in which jobs waiting to be allocated 

to sites are queued for a certain time.  A meta-scheduling system works on the basis that the 

“new task” which needs to be executed has to make itself known to a so-called 

“matchmaker”. This matchmaker acts as a gateway to the Grid. It selects resources from a 

global directory (e.g. an information service) and then allocates the job to one of the available 

Grid sites. Typically, this job allocation is done in two stages. Firstly a job is allocated to a 

particular site on the Grid by a meta-scheduler and then within that site, the job will be 

scheduled onto the individual processors by a Local Resource Management System (LRMS).    
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Figure 1.1:  A Grid Meta-Scheduler interacting with Local Resource Manager Systems  

1.1.3  Bulk Scheduling 

In Scientific Analysis Environments such as the High Energy Physics (HEP), hundreds of 

end users submit (individually or collectively) thousands of jobs that access some subset of 

data distributed all over the world, this process being known as the bulk submission. The 

similar jobs are composed in a single bundle and are called the bulk jobs.  To improve the 

scheduling and execution process, large jobs are divided into smaller jobs and the resulting 

sub-jobs can be submitted on one or more sites. Given the possibly large number of jobs 

resulting from the job-splitting procedure, it should be possible to submit the bulk jobs, in the 

form of job clusters, to the scheduler as a unique entity, with optimization in the handling of 

the input and output data. For example, the CMS physicist normally runs the complete 

analysis in parallel by submitting hundreds or thousands of jobs accessing different data files. 

A job generally consists of many subjobs [111] and some large jobs might even contain tens 

of thousands of subjobs which can start and run in parallel. Subjobs do not communicate with 

each other directly using any inter-process communication layer (such as MPI). Instead all 

data is passed, asynchronously, via datasets. Consequently if the data is concentrated on a 

single service, then this places a large burden on that service and the network to that service 

and this necessitates a special scheduling mechanism. A subjob generally has one or more 

datasets as its input, and will generally create or update at least one dataset to store its output. 
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Presented below are the estimates [128] for the typical number of jobs from users and their 

computation and data related requirements which should be supported by the CMS Grid. 

• Number of simultaneously active users: 100 (1000) 

• Number of jobs submitted per day: 250 (10,000) 

• Number of jobs being processed in parallel: 50 (1000) 

• Job turnaround time: 30 seconds (for tiny jobs) – 1 month (for huge jobs) (0.2 seconds - 5 months) 

• Number of datasets that serve as input to a subjob: 0-10 (0-50) 

• Average number of datasets accessed by a job: 107 (250,000) 

• Average size of the dataset accessed by a job: 30GB (1-3 TB) 

Note that the above parameters have a wide range of values, so that simple averages are not 

very meaningful in the absence of variances. For each parameter, the first value given is the 

expected value that needs to be supported as a minimum by the Grid system to be useful to 

CMS. The second value, in parentheses, is the expected value that is needed to support 

maximum levels of usage by individual physicists. Given these statistics about workloads, it 

is clearly challenging to intelligently schedule jobs and to improve resource usage over the 

Grid. All jobs will compete for the scarce resources and this is likely to distribute the load 

disproportionately among the Grid nodes. A scheduling system is required which not only 

allocates the best available resources to a job but also checks the global state of all the jobs 

and resources so that the strategic output of the whole Grid is maximized and no single job or 

user can consume the whole resources. This has led us to consider a bulk scheduling 

approach for tackling such distributed analysis scenarios.  

1.2 Problem Description 

Traditionally, in the case of data intensive jobs, scheduling decisions have been made by 

moving the executables to the data and in the case of computation intensive jobs by moving 

data to the executables. Data intensive applications, through millions of jobs submitted 

individually or in bulk, analyze large amounts of data which are replicated to geographically 

distributed sites. If data are not replicated to the site where the jobs are supposed to be 

executed, the data needs to be fetched from remote sites. This data transfer from other sites 

will definitely degrade the overall performance of the job execution. If a computing job runs 

at a remote site, the produced output data need to be transferred to the user so he can analyze 

the result locally. In order to support this type of phenomenon, the Grid has a high number of 
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Computing Services (CE) and Storage Services (SE) (see figure 1.2) each of them identified 

by a unique ID through an information service. 

 
      

Figure 1.2: Multiple sites Grid Meta-scheduling 

Each data intensive job produces and consumes different amounts of data. For performance 

gains in the overall job execution time and to maximize the Grid throughput, we need to align 

and co-schedule the computation and the data (input as well as output) in such a way that we 

can reduce the overall computation and data transfer cost. We may even decide to send both 

the data and the executables to a third location depending on the capabilities and 

characteristics of the computing, network and storage resources.  This is a simple problem if 

taken from a local resource management point of view but can be challenging from a meta-

scheduling context where it is intended to optimize the overall Grid throughput. We consider 

only meta-scheduling, a process which allows a user to schedule a job across multiple sites.  

As we add more complexity to the Grid, particularly with geographically dispersed sites or 

nodes and with increasing number of jobs, it becomes common for the meta-scheduler and 
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data mover (or data transfer service) to make decisions which may be in conflict with 

decisions that would be arrived at from a local scheduling point of view. This is not 

surprising since, originally, many of the scheduling technologies were developed under the 

assumption that all the collaborating systems were on the same local area network (LAN). If 

we extend these scheduling or local resource management systems over longer distances, we 

can begin to see the limitations of the global decision-making systems.  

The Grid will have a number of computational sites which are connected by a number of 

different WAN links. These links will normally have different bandwidths and latencies. We 

require the Grid to support a number of varied workloads especially for the bulk scheduling 

process, and this, in combination with the network requirements, leads to the likelihood that 

some executables and data items will be large compared to the available network bandwidths 

and latencies. Given these constraints on the overall system, we need to find a way to 

distribute workloads across all the available systems to maximize the utilization of the 

available systems. The costs of performing computation will vary according to the types of 

machines used, the network bandwidth consumed, the number of jobs and their frequency, 

the state and reliability of the network system, the losses and routing issues in the networks, 

and will also depend on other factors, such as the amount and the location of the data 

required. These parameters need to be taken into account when work is scheduled to ensure 

the effective use of resources to minimize cost and yet maximize workload throughput. 

Hence, the centralized scheduling algorithms that focus only on maximizing processor 

utilization by mapping jobs to idle processors, and/or on disregarding network costs, queue 

times, job priorities and costs associated with accessing remote data are unlikely to be 

efficient [17]. Similarly, the scheduling decisions which always force the job movement 

towards the data without taking the Grid “weather”, the network load and the data size and 

location into consideration can lead to significant inefficiencies in performance and can be 

responsible for large job queues and processing delays. Considering the effects of and 

compensating for network characteristics can avoid making these less-than-ideal scheduling 

decisions. We not only need to use the network and other characteristics while aligning data 

and computations but we also need to optimize the task queues of the meta-scheduler on the 

basis of this correlation so that these characteristics can play an important role in the 

matchmaking process and on Grid scheduling optimization. Thus, a decentralized meta 
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scheduling mechanism is required that should consider the job execution, queue statistics, 

priorities and data transfer and their relation with various network parameters collected 

through different monitoring tools [11] [12] on multiple sites, so that we can ascertain the 

performance of the jobs on the basis of these characteristics and hence can optimize the meta-

scheduling [13] [14]. Our big challenge then becomes finding a means to express these 

requirements in a format that the meta-scheduler engine can understand. This engine should 

use mathematical techniques to make decisions and to generate the overall behaviour of the 

system based on the global network characteristics in local environments.  

The basic job scheduling algorithm at each site should be driven by a weighting value 

calculated for each potential target location which is a function of the available network 

characteristics, the processing cycles, job priorities, queue length and input and output 

“sandboxes” of data and the one having least cost should be given priority [175]. This should 

also consider the Grid as a combination of the active network elements and must take the 

network as a first class criterion in the scheduling decision matrix. Both the scheduling of 

resources and/or the moving of data from place to place as needed, as well as overseeing the 

task execution through to completion, need to be performed on the basis of a "network and 

strategic view" of the overall Grid system. This should ensure an optimized distribution of 

work and the Meta-Scheduler should then make intelligent decisions by taking into account 

the changing state of the Grid network, locality and the size of the data, number of jobs and 

the pool of processing cycles. The obvious impact from this approach should bring the 

network and Grid applications closer and should therefore help further to understand the 

needs of each other which evolved independently. 

1.3 Research Hypothesis and Research Questions 

The research hypothesis investigated in this thesis asserts that: 

Data intensive bulk scheduling can be significantly improved by taking into consideration a 

combination of network, data and compute costs, as well as by implementing effective queue 

management and priority control. 

This thesis will therefore attempt to answers the following research questions: 
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• 1. What level of optimization is achieved when we co-allocate and co-schedule the 

compute intensive and data intensive jobs on the best ranked resources? What if data 

is moved towards jobs or both data and jobs are moved toward a third location?   

• 2. How can network managed services and network characteristics optimize the data 

intensive Meta scheduling in the Grid? 

• 3. What are the important bulk scheduling optimization strategies for the meta-

scheduling process and how can such schedulers optimize the bulk scheduling? Can 

priority and queuing techniques play any role in the bulk scheduling optimization? 

• 4. Can the inclusion of the network, data and compute costs in the scheduling 

decisions optimize the meta-scheduler queue and execution times?  

• 5. Are centralized algorithms and environments less effective than their decentralized 

counterparts when scheduling data intensive bulk jobs? Can scheduling hierarchies 

have any impact on the scheduling optimization? Can the decentralized scheduling 

solutions scale at the global Grid level and are they also stable enough to 

accommodate large number of jobs and resources? 

1.4 Work Performed in this Programme of Research 

In this section, a list of the salient features of the research work done in this thesis is given. 

Although detailed description of the work will be presented in the following chapters, major 

tasks that have been performed and will be described in this thesis are outlined below. 

• An adaptive scheduling algorithm “DIANA” has been created which takes the 

network, size and location of the data and compute information from various 

information resources and helps to select an optimum site for job execution. It also 

includes site loads and the site having the overall least cost is selected. 

• A DIANA Scheduler has been created which implements the DIANA scheduling 

algorithm. This is a generic scheduler in which a wide variety of the algorithms can 

be implemented and performs matchmaking with the gLite resource broker. The 

DIANA Scheduler works with various network monitoring tools, information and 

directory services and replica catalogs to make optimal scheduling decisions. 
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• The issue of the bulk scheduling has been handled in the DIANA Scheduler. A 

comparative analysis of the simulation as well as experimental results is given. 

Moreover, the DIANA scheduling algorithm has been extended to accommodate an 

economy aware bulk scheduling for data intensive environments. Scalability tests 

have been conducted to test DIANA approach for bulk scheduling and the results are 

presented in chapter 8. 

• Scheduling hierarchies were investigated and a peer-to-peer (P2P) scheduling 

architecture has been proposed for the bulk scheduling optimization. A detail analysis 

and architecture is discussed in chapter 5 and the related results are presented in 

chapter 8. 

• A Discovery Service has been designed and discussed which enables the quick 

discovery of the resources and network information. This also facilitates the 

decentralized functioning of the DIANA meta-scheduler and chapter 6 discusses and 

covers the details of this Discovery Service. Results related to the Discovery Service 

are presented in the chapter 8. 

• A Data Location Service has been created which selects the best replica of a data set 

from the available physical replicas. This decision is made on the basis of data 

location and network characteristics. This uses the Data Location Interface (DLI) 

which is created as a module of the EDG Work Load Management system [6].  The 

Data Location Service (DLS) is discussed in chapter 7. 

• A Test setup was created on the EGEE GILDA [15] Testbed to test the DIANA 

Scheduler and its algorithms. The Data Location Service was also deployed on the 

GILDA Testbed. 

• Results were taken from the test setup mentioned above and presented in journal and 

conference papers (As listed in Appendix-B). These results were based on the actual 

measurements taken from the experimental setup. These results depict the 

contribution of this research work. 

• A simulation study of the points discussed above has been carried out. This provides 

an in-depth analysis of the results and helped to identify the issues which could not be 

highlighted due to limitation of the experimental setup. To establish a test setup and 
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then to make the tests on this large Grid testbed is lengthy and time consuming 

process. On the other hand, the simulations helped to find the extensive conclusions 

and provided a detailed image of the system and results.  

1.5 Thesis Organization 

In this thesis, we introduce a Data Intensive and Network Aware (DIANA) meta-scheduling 

approach which takes into account the network characteristics along with computation and 

data when scheduling single or bulk jobs. This section illustrates the thesis organization as 

shown in figure 1.3. In this Chapter 1, the nature of the research problem has been 

established and the issues involved it its study have been identified. In Chapter 2, the 

research background is illustrated and an overview of the literature survey is described. The 

projects which are active in this area of research as well as the current efforts of various 

standard bodies are also cited. A requirement analysis of the DIANA Meta Scheduling is 

provided in chapter 3 where a Use Case base methodology has been adopted to capture the 

requirements. Chapter 4 provides an overview and discusses the proposed scheduling 

optimization approaches and associated algorithms. A cost matrix, dependent on data, 

computation and network costs, has been created and approaches are given to populate and 

search the relevant costs, which then become part of the Meta scheduling process.  

 

Figure 1.3: Thesis Organization 
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Chapter 5 describes the scheduling hierarchies for scheduling optimization and illustrates the 

architecture of the proposed system and highlights the components of this architecture. 

Chapter 6 describes the process to extract and analyze the network values and their impact on 

the scheduling decisions and explains the role of high performance networks and how 

network managed services influence data intensive scheduling decisions. It also discusses the 

discovery and information communication algorithm which facilitates the scheduler in the 

discovery and decentralized scheduling decisions. Chapter 7 describes the data related 

aspects of scheduling and illustrates the design and implementation of a Data Location 

Service (DLS). A detailed description of the results is given in Chapter 8. That chapter also 

describes the deployment of the system on a Grid testbed and gives details of the 

environment and issues involved with this experimental setup. Further simulation results of 

various approaches and algorithms are also presented in this chapter. Chapter 9 draws thesis 

conclusions and gives a critical and concise summary of the work that has been carried out, 

its application areas and its limitations and describes potential future extensions of the thesis 

work. 
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Chapter 2 

 

Current Research in Grid Scheduling and Resource Management 
 

The first chapter of this thesis introduced the research hypothesis that this thesis attempts to 

prove and the consequent research questions that it will attempt to answer. This chapter will 

survey the research undertaken in the thesis domain and will describe how it relates to the 

work of others. It will do this by identifying relevant background knowledge from previous 

research as well as describing alternative approaches to that undertaken in this thesis.  

This chapter introduces the scheduling and resource management from the GGF [16] 

perspective and describes the components that comprise a Grid Resource Management 

System (GRMS). Since this study concentrates on data intensive and network aware Grid 

scheduling, this chapter gives an overview of research on data-aware scheduling and 

describes how network and bandwidth is a prime concern for data-intensive scheduling. A 

survey of the projects offering scheduling optimization in particular and meta-scheduling in 

general is also provided. This chapter identifies relevant research from other projects and 

activity in the field of standards.  

2. 1 Grid Resource Management Systems (GRMS) 

A computational Grid is a hardware and software infrastructure that provides dependable, 

consistent, pervasive, and inexpensive access to high-end computational capabilities as 

defined by Ian Foster et al. in their article [1]. Globus architects K. Czajkowski et al. state 

that resource management systems deal with managing a system and application tasks, 

involving security and fault tolerance along with scheduling [3]. R. Buyya from the 

university of Melbourne and others define Grid resource management as the process of 

identifying resource requirements, matching resources to applications, allocating those 

resources, and scheduling and monitoring Grid resources over time, in order to run Grid 

applications as efficiently as possible [4]. Grid applications compete for resources that are 

very different in nature including processors, data, scientific instruments, networks, and other 

services. While Grids have become almost commonplace, the use of good Grid resource 

management tools is far from ubiquitous because of the many open issues that remain in the 
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field such as data intensive scheduling, cost based scheduling, network aware scheduling, the 

bulk scheduling, and decentralized and priority aware scheduling. 
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Figure 2.1: Services in the scheduling process (Adopted from the GGF scheduling area) 

2.1.1      The Grid Scheduling Process 

The Grid scheduler is a component (service) of the Grid Resource Management System and 

depends on the other services and components as shown in Figure-2.1. The Global Grid 

Forum (GGF) is a standard body for Grid related standards. The GGF scheduling working 

group has defined a standard for scheduling and a resource management architecture that 

supports cooperation between different scheduling instances for Grid resources [16]. The 

Grid Scheduler as shown in Figure-2.1 is one defined component. The Grid Scheduler 

discovers the resources available and chooses the best fit resources for the job. In order to 

filter unacceptable resources, the Grid Scheduler undertakes matchmaking between the 

resource specification in the job request and the resource owner’s preference in the resource 

owner policy. The resource owner policy is delivered from the resource by the information 

service. Then the candidates selected from the matchmaking process enter the scheduling 

process and the final winners are picked out, based on the scheduling algorithm. The final 

process in Grid scheduling is the reservation of the resources which need to be scheduled in 
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future. Some of the components of the Grid scheduling service are discussed in the next 

section. 

2.1.2 Scheduling Steps   

This section describes Grid scheduling steps as defined by the GGF scheduling working 

group and how the scheduling process works. There are three scheduling phases which are 

further divided into individual steps. Each step is performed by an autonomous component 

which coordinates and communicates with other components to perform the scheduling 

process. The first phase of the scheduling process deals with discovery of the distributed 

resources. To offer dynamic resources and to provide user convenience, a Grid scheduling 

service should be able to discover and select available resources from a Grid environment. 

This is managed by an Information service as shown in the Figure 2.1. The scheduling 

service is aided by this information service and this is normally accomplished in three steps: 

authorization filtering, job requirement knowledge and filtering to meet the minimal job 

requirements. The Grid environment is so dynamic and unpredictable that a Grid job should 

wait in the job queue until the scheduling process ends. A Queuing mechanism supports these 

basic scheduling capabilities. It allows administrators to customize existing policies and 

define new scheduling policies for their virtual organization. The jobs wait in a queue until a 

suitable resource is found on a particular site for their execution. Priorities and policies are 

used to manage the operation of the queue. 

The second phase within the scheduling process is brokering and resource selection. Given a 

group of possible resources (or a group of possible resource sets), all of which meet the 

minimum requirements for the job, a single resource (or single resource set) must be selected 

on which to schedule the job. This is generally done in two steps: information gathering 

which is the responsibility of the Information Service and decision making which is managed 

by the Scheduling Service. Scheduling is a process of matching a job to the appropriate 

resources. In this second phase, various scheduling algorithm could be applied. The 

Scheduling Service is further supported by Network Management and Data Management 

Services. 

The third phase of meta-scheduling is the running of the job and this is performed by a job 

execution component. This involves a number of steps, few of which have been defined in a 
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uniform way between resources. Once resources have been chosen, the application must be 

submitted to the resources. This may be as easy as running a single command or as 

complicated as running a series of scripts, and may or may not include setup or staging. The 

Preparation stage may involve setup, staging, claiming a reservation, or other actions needed 

to prepare the resource to run the application. It may be the case that to make the best use of a 

given system, part or all of the resources will have to be reserved in advance by a Reservation 

component.  Depending on the resource, this can be easy or difficult to achieve, but it may be 

done with mechanical means as opposed to human means, and the reservations may or may 

not expire with or without cost. The Monitoring of job status and resource status is performed 

once the job is being executed and this is managed by Job Supervisor Service.   

Although resource monitoring is required to monitor and discover resources, it would be 

supported by an information service. Monitoring service facilitates the discovery of resources 

by identifying the available resources. Depending on the application and its running time, 

users may monitor the progress of their application and possibly change their mind about 

where or how it is executing. Job Steering and control also lie under the functional 

boundaries of this step. The job execution is supported by a Compute Manager, Network 

Manager and a Storage Manager which are managed by a local scheduler which 

communicates with the global scheduling system. 

2.1.3 Meta versus Local Scheduling 

Sebastian Ho and Eddy Caron [20][22] state that a meta-scheduler facilitates the requesting 

of resources from more than one machine for single or bulk jobs and performs load balancing 

of workloads across multiple sites. It coordinates communications between multiple 

heterogeneous schedulers that operate at the local or cluster level. In addition to providing a 

common entry point, a meta-scheduler also enables global access and coordination, whilst 

maintaining local control and ownership of resources. The fundamental difference between a 

Meta-scheduler and other common local schedulers is that a Meta-scheduler does not own the 

resources and has no autonomy in its decisions. Therefore it does not have total control over 

the resources.  Furthermore, a Meta-scheduler does not have control over the entire set of 

jobs on the system, nor does it even necessarily know about them. So decisions about an 

entire set of jobs regarding some resource cannot be made by a Meta-Scheduler. This lack of 
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ownership and control are the sources of many of the problems to be solved in the Meta-

scheduling domain. 

2.2     Scheduling Aspects of Data-Intensive Resource Management 

This section gives an overview of the research progress in data management from the meta 

scheduling point of view. Data is an important aspect of the scheduling and the scheduler 

cannot take optimized decisions if data location, replica management and file transfer are not 

synchronized with the scheduling approach. According to Ranganathan and Foster et al. from 

Argonne National Labs [17], it is important for data-intensive jobs to take data location into 

account when determining job placement for these jobs. This increases the performance of 

the system and reduces the execution time of the jobs. Replication of data from primary 

repositories to other locations can also be an important optimization step, so as to reduce the 

frequency of remote data access. Since resources in the Grid are connected by wide area 

network links, bandwidth limitation is an issue that must be considered when running these 

applications on such environments. For these applications, the data reuse pattern can be 

exploited to achieve better performance. Here some important issues which discuss the data 

and scheduling relation are introduced. 

2.2.1 Data-Aware Scheduling 

There are a number of methodological approaches that impact on scheduling performance. 

One such approach proposed by Cirne et al. from the MyGrid project is that of data-aware 

scheduling [18] [19], the process of scheduling tasks close to the data that they require. Baru 

et al. [21] prove that considerable performance improvements can be gained by taking into 

account the amount (and transfer rate) of data transfer that is required during a task 

execution. For example, this functionality is to be found in the JOSH (JOb Scheduling 

Hierarchy) [176] software, a new GT3-based hierarchical scheduler for the Sun Grid Engine. 

This system takes load and data proximity into account. Several computational Grid test beds 

are operational, but the challenges being faced by experiments at CERN have led to the 

concept of a petascale virtual-data Grid as described by Paul Avery et al. in their article [24]. 

"Petascale" emphasizes the massive CPU resources (Petaflops) and the enormous datasets 

(Petabytes) that must be harnessed, while "virtual" refers to data products that may not be 

physically stored but exist only as specifications as to how they may be derived from other 
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data. The central problem is the coordinated management of computation and data and not 

simply data movement.  

2.2.2     Replica Location and Scheduling Optimization 

The Replica Location Service (RLS) provides a framework for tracking the physical locations 

of data that have been replicated. A number of research projects are under way which are 

tackling the Grid scheduling issues in general and optimization issues in particular.  The 

Replica Optimization Service (ROS) as described by Bell et al. in [30] and by Cameron et al. 

[31] is the most related work that provides a functional system. The ROS selects a best 

location for replicas based on network and storage costs. The system was fully integrated 

with the European Data Grid’s (EDG) workload management system  and provided much of 

the functionality described here. However, the system used a “complicated” network 

monitoring infrastructure that was not further maintained within the EGEE/LCG projects and 

therefore the ROS was no longer deployed. Stockinger et al. [32] state that hierarchical 

storage systems are the main source of bottlenecks rather than network parameters. The 

GRESS project [33] is more like a framework into which various algorithms can be plugged 

to test their effectiveness. Moreover, Tan et al. [34] state performance results of various 

algorithms and give possible scenarios in which they can increase the scheduling efficiency. 

Nabrzyski et al. [35] outline an AI knowledge based Meta-Scheduler which performs a multi-

criteria search technique while making scheduling decisions. Chervenak et al. [36] describe 

Giggle, a framework to construct a decentralized, scalable and efficient replica location 

service. Ranganathan et al. [17] study the widely used dynamic replica strategies using 

simulation results. Their simulation results show that the job scheduling considering data 

locations shows promising performance. However none of the abovementioned approaches 

has considered the data intensive scheduling or treats the network as a resource in the 

scheduling decisions. 

2.2.3      Data Schedulers and Meta Scheduling  

Data placement jobs should be treated differently from computational jobs, since they may 

have different semantics and different characteristics. For this purpose, a data scheduler for 

data placement activities in the Grid is required. The PhedEX project [37] at CMS [89] is a 

large-scale data staging, transfer and data scheduling environment which uses intelligent 
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agents to take individual data scheduling and transfer decisions and exploits the efficient 

bandwidth use while making data placement decisions. The Stork project [38] suggests data 

placement activities are equally important to that of computational jobs in the Grid so that 

data-intensive jobs are automatically queued, scheduled, monitored, managed, and even 

check-pointed as is done in the Condor project for computation jobs. Stork uses the 

capabilities of Condor for compute related jobs and suggests a way to associate the data 

placement activities with compute jobs while scheduling data-intensive jobs.  Thain et al. 

[39] describe a system that binds jobs and data together by binding execution and storage 

sites into I/O communities. Basney et al. define an execution framework which provides an 

affinity between CPU and data resources in the Grid to run applications on the CPUs which 

have needed access to datasets. Although co-allocation is considered in their findings, 

network aware scheduling is not discussed at all. Moreover, none of the approaches 

considered bulk scheduling as a core scheduling problem and it is simply ignored in their 

discussion. 

2.2.4      Impact of Data Location on Scheduling 

Data location can be very important in making successful scheduling decisions. It may 

particularly be an issue in the case of data intensive environment and the complete schedule 

may fail if data location is not taken into account. Santos-Neto et al. state [41] that it is very 

important to take data transfer into account to achieve efficient scheduling of data-intensive 

applications on Grids since these are costly operations. Foster and Ranganathan suggest [17] 

that the traditional paradigm for scientific syntheses is to gather data at a single location and 

transform it into a common format prior to exploring it. They suggest that an effective 

optimization is to decouple data movement and computation so the data is staged to locations 

“near” (in terms of some access cost metric) to where it is required. Chameleon [42] 

implements a data Grid scheduler that takes into account both data location and processor 

cycles in its decision matrix but their algorithm is based on a ‘shortest response time first’ 

and instead in this thesis work we aim at a network-aware adaptive algorithm which takes 

dynamic decisions while scheduling data-intensive jobs. The greedy scheduling algorithms 

used by Chameleon have high resource cost and other shortcomings and this is one reason 

why we have used network-aware adaptive algorithms for our scheduling matrix.  
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2.3      Network Aware Scheduling  

The network is the central point of any large distributed or Grid system and it is natural to 

include network characteristics in the scheduling systems. Network characteristics such as the 

bandwidth between the distributed sites, packet loss and round trip time (RTT) actually drive 

the modern day distributed systems and such characteristics can influence the scheduling 

efficiency by improving its schedule policy and  selecting the reliable and better nodes for 

data transfer and job execution. L. Boloni and D. Marinesc describe Bond [51], a Java based 

object oriented middleware system for network computing. Bond has a two level scheduler 

based on a stock market or computational economy approach. It is mostly used for 

multimedia applications and has no real applications for data intensive problems. Chandra et 

al. from Carnegie Mellon University state that Darwin [52] is a customizable resource 

management system for creating value added network services; it also provides mechanisms 

for scheduling computation in non-network nodes. However it has not been designed for data 

intensive applications and its main use is in multimedia applications. The Globus project 

offers Grid information services via an LDAP-based network directory called MDS [53] 

which follows both push and pull protocols for resource dissemination. Although the Globus 

Meta Scheduler can be used for data intensive applications there is no mechanism in it by 

which it can measure and monitor the network in real time and can include it in the 

scheduling decisions. 

Neary et al. from the University of California describe the Javelin [54] project. Javelin is a 

Java based project for internet-wide parallel computing and can be considered a 

computational Grid for high-throughput computing. Javelin provides solutions for the parallel 

applications and is ill-suited for network centric data intensive applications. The University 

of the Lancaster Distributed Multimedia Research Group (DMRG) has a Generic Object 

Platform Infrastructure (GOPI) project [55] based on CORBA with RM-ODP extension. It 

provides an extensible architecture for adaptive multimedia applications and forms a 

multimedia service Grid. The MOL [56] project at University of Paderborn  is developing 

technologies that aim at utilizing multiple WAN-connected high performance systems as a 

computational resource for solving large-scale problems that are intractable on a single 

supercomputer. Its kernel offers basic generic infrastructure and core services for robust 

resource management that can be used to construct higher level services. The MSHN project 
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[57] at Purdue University is developing a resource management system for distributed 

heterogeneous environments. One unique aspect of MSHN is that it is targeted to support 

applications that can adapt to resource conditions in the Grid.  Both MOL and MSHN are 

good for computation intensive applications but not suitable for data aware scheduling.  

Netsolve [58] project of the Oak Ridge National Laboratory has produced a client-agent-

server paradigm based network-enabled application server. Netsolve offers the ability to 

search for resources, to choose the best one available and to solve a problem with retry for 

fault-tolerance. Although it takes into account the network traffic in the scheduling matrix, it 

does not select the replicas on the basis of some optimal criteria and does not support data 

intensive scheduling. Kapadia and Figueiredo from Purdue University describe the work 

performed under PUNCH [59] project. PUNCH is a middleware Testbed that provides 

operating system services in a network-based computing environment. A network operating 

system (OS) layer provides distributed process management and data browsing services. It is 

more like a local scheduler, a browsing and data management system rather than a resource 

management system. This discussion indicates that although there are a number of scheduling 

solutions, none of them resolves the bulk scheduling problem in particular. Similarly, the 

network issues have not been adequately addressed in available scheduling products and 

tools. 

Network aware scheduling techniques have been studied in practice by introducing QoS 

mechanisms that enable service providers to partition their services based on quality criteria 

such as priority, fairness, and economic gain [178]. But the problem under study is different 

to the multimedia applications. Although multimedia applications are dependant on the 

network characteristics to provide desired QOS, they are not as data intensive as is the case 

with Grid applications. Furthermore, in multimedia applications scheduling systems are not 

exposed to the same number of jobs as is the case with Grid applications. 

2.3.1 Bandwidth Factor 

The key to deriving insight and knowledge is often the correlation of data from multiple 

sources as asserted by Ian Foster et al. [87] [96]. The traditional paradigm for such syntheses 

is to gather data at a single location and transform it into a common format prior to exploring 

it. However, the expense of this approach in terms of network resources has meant that most 
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data is never correlated or compared to other data as expressed by Beck and his colleagues 

from University of Tennessee [97]. One factor driving this new paradigm is the recent 

dramatic improvements in network performance. Few Internet networks move data at more 

than a megabit per second (Mbps) and would take weeks to move a terabyte. The term 

Bandwidth is used to describe network channel capacity, the rate at which bits may be 

transmitted through the system. Advances in networking technologies are ushering in a new 

era of bandwidth abundance based on terabytes per sec (Tbps) optical backbones that provide 

routine access to end-to-end paths of 10Gbps or more - an improvement of over four orders-

of- magnitude. For example, in SC2005, a bandwidth record of 131 Gbps was achieved by 

Caltech and CERN teams [88]. This is critical for effective data integration and data intensive 

scheduling, since technologies are now beginning to allow distributed communities, or virtual 

organizations, to access and share data, networks, and other resources in a controlled manner. 

Therefore bandwidth is an important phenomenon and it can influence data intensive 

scheduling if it is included as a resource in scheduling decisions. 

2.3.2 Monitoring and Migration 

A Grid is inherently a dynamic system where environmental conditions are subjected to 

unpredictable changes such as system or network failures, system performance degradation, 

the addition of new machines and variations in the cost of resources, etc. In such a context, 

job migration is the only efficient way to guarantee that the submitted jobs are completed and 

that user constraints are met. The major tasks involved in migration are job monitoring, re-

scheduling, and checkpointing. Most of the systems dealing with job migration address the 

migration problem from the point of view of performance as described by Allen from Max-

Planck-Institute et al. [27] and Huedo [28]. The main migration policies considered in these 

systems include, amongst others, performance slowdown, target system failure, job 

cancellation, detection of a better resource, etc. However, there are few systems that manage 

job migration under economic conditions like the one presented by Vadhiyar from the 

University of Tennessee et al. [29]. In this context, new job migration policies must be 

contemplated, such as the discovery of a new cheaper resource, or variations in the resource 

prices during the job execution. There are a broad variety of reasons that could lead resources 

to dynamically modify their prices, for example, prices can change according to demand. 

Prices can change according to the time or the day. For example, the use of a resource can be 
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cheaper during the night or during the weekend. GridSAM [177] is a job submission and 

monitoring web service for submitting and monitoring jobs managed by a variety of 

distributed resource managers. However GridSAM does not provide network aware 

scheduling and it depends on other scheduling tools to make a scheduling decision. It does 

not provide data intensive scheduling algorithms and there is no provision for the policy 

based scheduling. 

2.4      Scheduling Optimization  

In this section descriptions of the projects that study the meta-scheduling frameworks and 

their association with underlying resource optimization issues are discussed. This section 

gives the current position and overview of the research in this area in terms of what has 

already been done or is currently being studied to optimize the scheduling process. 

Technically this is very rich area in research and a broad range of activities are being carried 

out in this domain. We are interested in those research projects which are dealing with data-

intensive and network related issues of the scheduling and resource management and hence 

we list and give details of such selected projects and papers. One important stage of resource 

brokering which needs to be optimized is job scheduling, i.e., the mapping of pending jobs to 

specific physical resources, in an attempt to minimize some cost function specified by the 

user.  

Rafael Moreno describes that schedulers can be classified into two major categories: 

performance-guided schedulers and economy-guided schedulers [95]. Most of the Grid 

systems in the literature fall in the first category, since they try to find a job-to-resource 

mapping that minimize the overall execution time (i.e. one which optimizes performance). 

One of the simplest performance-guided scheduling algorithms is the greedy or opportunistic 

approach, which iteratively allocates each job to the machine that is likely to produce the best 

performance, without considering the remainder of the pending jobs. This approach normally 

leads to sub-optimal solutions, since scheduling decisions are based only on local job 

information. Other more complex scheduling algorithms, which explore the solution space 

and try to overcome local optimal solutions, are based on genetic algorithms, simulated 

annealing [23], tabu search [24],  branch and bound methods [25] or budget constraint (cost 

of resources) as  in the Nimrod/G broker [26].  In the most general case, scheduling 

algorithms have to adapt to the different optimization criteria for each particular job [95]. 
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Some of the most frequent optimization criteria that are important for a user are optimizing 

performance without regard to cost, optimizing cost without regard to performance, 

optimizing performance within a specific cost constraint, optimizing cost within a specific 

time constraint, optimizing performance within a specific cost and time constraint and 

optimizing cost within a specific cost and time constraint.  

Although these algorithms do address a variety of scheduling issues they do not take care of 

data intensive scheduling based on network principles. Therefore we require adaptive 

algorithms which can dynamically adapt to the Grid network conditions and can optimize the 

scheduling process, an important consideration in the work presented in this thesis. 

2.4.1  Scheduling Optimization across Heterogeneous Systems 

A Meta Scheduler coordinates communications between multiple heterogeneous schedulers 

that operate at the local or cluster level. Grid level scheduling policies are managed by the 

Meta Scheduler whereas local control and ownership of resources comes under the 

jurisdiction of the local schedulers. The community scheduling project from Platform 

Computing [43] has created a meta-scheduler framework which provides a consistent 

interface for users into the Grid scheduling system. This framework is intended to provide 

communications between multiple heterogeneous schedulers whether they operate at the local 

or cluster level.  

Lauret et al. from the Brookhaven National Laboratory discuss the STAR scheduler [44]. The 

STAR is a Meta-Scheduler which allows users to submit a job on several input files by 

dividing the job into different processes that are dispatched to different machines. It acts as a 

wrapper on the current STAR infrastructure to interface it with Grid middleware and takes 

into account preliminary network information when taking decisions. WP1 in the Data Grid 

Project (now EGEE) created a resource broker (which was interfaced to ROS as described in 

[31]) under the EDG workload management system which is an extended and derived version 

of Condor and is subject to the same issues and problems as Condor. Although the problem 

of bulk scheduling has begun to be addressed in the most recent version of gLite (through the 

idea of so-called shared “sandboxes”) the approach taken does not address data intensive 

scheduling.  SPHINX [46] is a framework for workflow management and execution on 

heterogeneous platforms and is a data-intensive scheduling engine. Initially it is being used 
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for scheduling data-intensive applications on Grid but it is very immature, under 

development and does not support bulk scheduling.   

2.4.2      Application Level Scheduling 

Fast networks have made it possible to coordinate distributed CPU, memory, and storage 

resources to provide the potential for application performance superior to that achievable 

from any single system. Each Grid application is scheduled by its own AppLes (Application 

Level scheduling) in the AppLes project [47] and the key to this approach is that everything 

in the system is evaluated in terms of its impact on the application. There is a difference 

between a job and an application. A job is the work being accomplished within a single unit 

of work whereas the application is the collective work among all the jobs that comprise the 

application. Applications features and the Grid status have a strong impact on the system 

performance and on the accuracy with which the user forecasts. It is not designed to be used 

for data intensive and network aware applications and mostly takes cycle consumption as a 

decision criterion. Elmroth and Peterg [48] describe a Grid wide fair share scheduling system 

for local and global policies. They feature quota based scheduling and multilevel queues, 

although they do not consider reprioritisation and it was not P2P oriented. The GridWay 

Scheduler [70] provides dynamic scheduling and opportunistic migration but its information 

collection and propagation mechanism is not robust and in addition it has not as yet been 

exposed to bulk scheduling of jobs. Jin et al. [49] describe an adaptive Meta-Scheduler that 

considers availability of the computational, storage and network resources in the scheduling 

decisions. Although our approach is closer to this one, we focus on job execution on multiple 

sites as well as consider dynamic network characteristics as prime decision criteria.  

2.4.3      Economy Aware Scheduling 

The geographic distribution of resources owned by different organizations with different 

usage policies, cost models and varying load and availability patterns can be problematic. 

The producers (resource owners) and consumers (resource users) have different goals, 

objectives, strategies, and requirements. To address these resource management challenges, 

Buyya et al. has created a distributed computational economy-based framework Nimrod-G 

which uses Grid economies to implement its scheduling policies. It is good for economy-

aware applications but not for bulk scheduling and network-aware applications.   
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2.5 Batch Scheduling and Execution Systems 

In this section selected batch scheduling systems are discussed which have made notable 

advances in the domain of this thesis research. Batch systems are the early entrant in the 

scheduling arena and due to their maturity and wide scale usage most of these systems 

(except Condor) have been launched commercially. Some companies have started marketing 

their products whereas others are still in development. Most of these were started as research 

projects but due to their popularity, later became part of the commercial domain under the 

umbrella of their off-shoot companies.  

Basney and Livny from the University of Wisconsin describe the advances made in the 

Condor project. Condor is a high-throughput computing environment and can manage a large 

collection of computers such as PCs, workstations, and clusters that are owned by different 

individuals. It offers powerful and flexible resource management services for sequential and 

parallel applications. The Condor system has been enhanced to support the creation of 

personal Condor pools and a data scheduler for data-intensive scheduling. However its data 

and compute services do not work coherently and seldom employ network characteristics to 

make scheduling decisions.  

Gribble et al. describe the LSF project from Platform computing [60]. LSF is software for 

managing and accelerating batch workload processing for compute and data-intensive 

applications. With Platform LSF, one can intelligently schedule and guarantee completion of 

batch jobs and can organize individual jobs into a group for greater control and management. 

It can also provide Meta-scheduling capability in association with the Community Scheduler 

Framework (CSF) [43] and the Platform Globus Toolkit. LSF is a local resource management 

system and CSF does not consider network traffic in queue management and Meta 

scheduling decisions. Moreover, Meta scheduling is strongly coupled with Globus and has all 

the inherent problems which Globus is facing.  Moab Grid Suite has developed Silver [90]. 

The Silver project is designed to be an enterprise level Grid scheduler and takes advantage of 

the capabilities found within the Maui Scheduler to provide load balancing, co-allocation, 

data scheduling and quality of service guarantees at the Grid level.  

Chapin et al. from University of Virginia describe the Legion [62] project. Legion is an 

object-based Grid operating system which provides the software infrastructure so that a 
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system of heterogeneous, geographically distributed, high performance machines can 

seamlessly interact. It provides resource reservation capability and the ability for application 

level schedulers to perform periodic or batch scheduling. The Grid Engine project from Sun 

Microsystems is a Distributed Resource Management (DRM) system to aggregate compute 

power and delivers it as a network service. Both Legion and the Sun Grid Engine provide a 

local execution and local scheduling environment and have no mechanism for meta 

scheduling, a fundamental requirement for DIANA scheduling. 

2.6 Meta Scheduling Algorithms 

Efficient scheduling across Grid nodes is necessary to maximize application performance, 

regardless of the efficiency of the scheduling algorithms. The important aspect of scheduling 

is policy enforcement and resource optimization and this is achieved through selection of the 

best resources to run the jobs. The brain of any Grid scheduling system is the underlying 

algorithm which is being employed to select the resources for efficient job execution. 

Different algorithms use different scheduling approaches. Given below is a detailed survey 

and critical analysis of the related scheduling algorithms.  

2.6.1      Traditional Scheduling Algorithms 

Greedy algorithms always take the best immediate, or local, solution to finding an answer. 

Greedy algorithms find the overall, or globally, optimal solution for some optimization 

problems, but may find less-than-optimal solutions for some instances of other problems. If 

there is no greedy algorithm that always finds the optimal solution for a problem, one may 

have to search (exponentially) many possible solutions to find the optimum. Greedy 

algorithms are usually quicker, since they don't consider the details of possible alternatives 

but may not be suitable for bulk scheduling when large number of jobs are in the queue.  

Altinbuken et al. state that the fair-share scheduling [98] is a scheduling strategy for 

computer operating systems in which the CPU usage is equally distributed among system 

users or groups, as opposed to equal distribution among processes. Although it provides good 

Quality of Service (QoS) features it is insufficient in functionality if we want to include other 

than compute resources. UNIX is fundamentally a time-share operating system that employs 

a round-robin scheduling algorithm. Each process is placed in a run-queue and allocated a 
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service quantum of time. Round-robin favours short process demands. The difference 

between the round-robin and FIFO (First In First Out) [99] scheduling algorithms is simple. 

FIFO will allow a process to run indefinitely which can create starvation for some Grid jobs. 

Round-robin will force a process to yield and allow another process of equal or higher 

priority to run if it is able. Both FIFO and round-robin are not suitable for DIANA 

scheduling; we require an adaptive scheduling mechanism which can make dynamic 

scheduling decisions based on the data locations, network conditions and site loads. 

2.6.2      Scheduling Optimization Algorithms 

Greedy algorithms try to schedule jobs in real time and often ignore optimization preferences. 

On the other hand, scheduling optimization algorithms focus on the scheduling efficiency and 

optimal job execution. Backfill [64] is one such scheduling optimization that is based on 

earliest-job-start information. Feasible backfill jobs are filtered selecting those that actually 

fit the current backfill window and the job with the best fit is started and the backfill window 

size is adjusted accordingly. Priority queues, as explained by Hubertus Franke et al. [65], are 

a fundamental class of data structures being used in the design of scheduling algorithms for a 

long time. It is an abstract data type to efficiently find the item with the highest priority 

across a series of options. Their uses range from the application level scheduling to the 

lowest levels of the operating system kernel.   

Yarkhan and Dongarra describe the Tabu Search [86] algorithm for scheduling 

optimization. In a Tabu Search, some historical information related to the evolution of the 

search is retained (basically the itinerary through the solutions visited) to improve the 

efficiency of the exploration and scheduling process, Such information will be used to 

guide the movement from one solution to the next one thereby avoiding cycling. 

Takefusa et al. propose Bricks [66] which is a performance evaluation system for 

scheduling algorithms on the Grid and investigates and compares the performance of 

different data Grid models. Bricks can simulate various behaviours of global computing 

systems, especially the behaviour of networks and resource scheduling algorithms. But 

this is only a performance evaluation environment which can facilitate to test our own 

algorithms and does not provide a meta scheduling solution.  
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2.6.3      Global Cooperative Scheduling Algorithms 

In large scale distributed systems, jobs will compete for the scarce resources and this is likely 

to distribute the load disproportionately among the Grid nodes. Therefore such scheduling 

algorithms are required  which allocate the best available resources to a job but only after 

checking the state of all the jobs and resources in the Grid so that the throughput of the whole 

Grid is maximized rather than improved throughput for few users or jobs. 

Lewis and Paechter discuss simulated annealing (SA) [67] as a scheduling optimization 

approach. It is a generic probabilistic meta-algorithm for the global optimization problem, 

namely locating a good approximation to the global optimum of a given function in a large 

search space. Simulated annealing is a generalization of the Monte Carlo method used for 

optimization of multi-variable problems. Possible solutions are generated randomly and then 

accepted or discarded based on the difference in their benefit in comparison to a currently 

selected solution. Patrick and Piotr discuss the scheduling applications of Game Theory [68]. 

Grid scheduling can also be modelled using game theory, a technique commonly used to 

solve economic problems. In game theory each of a number of players attempts to optimize 

their own payoff by selecting one of many strategies. Vincenzo et al. state that the continuing 

price/performance improvements of computational systems have made the Genetic 

algorithms [91] attractive for some types of optimization. They are less susceptible to getting 

'stuck' at local optima than gradient search methods. But they tend to be computationally 

expensive. Aida et al. discuss the Branch-and-Bound Algorithms [92]. These are the 

counterpart of the backtracking search algorithm and the algorithm traverses a spanning tree 

of the solution space using the breadth-first approach. A queue is used, and the nodes are 

processed in first-in-first-out order. If a cost criteria is available, the node to be expanded 

next (i.e., the branch) is the one with the best cost within the queue. This is useful only when 

there are limited numbers of jobs to be scheduled but for a higher number of jobs only the 

least cost jobs will be placed, which is not a very optimal approach. 

2.6.4      Priority Based Scheduling Algorithms 

A common type of scheduling algorithm which can meet the different Quality of Service 

(QoS) requirements is priority-based scheduling. The idea is to rank processes based on their 

priority and their need for processor time. Processes with a higher priority will run before 
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those with a lower priority, while processes with the same priority are scheduled round-robin 

(one after the next, repeating). Noriyuki et al. discuss the Suffrage-C [69] algorithm. It is a 

revised version of Suffrage [100] so as to make it easier to implement. Suffrage-C gives each 

task its priority according to its suffrage value. For each task, its suffrage value is defined as 

the difference between its best completion time and its second best completion time. The 

suffrage value of each task varies over time because of the change of processor speed in a 

Grid. The idea behind Suffrage-C is that a processor is assigned to a task that would suffer 

the most if that processor would not be assigned that task. Min-min and Max-min [93] are 

based on static algorithms. Min-min gives the highest priority to the task which can be 

completed earliest. The ties are broken arbitrarily. The idea behind Min-min is assigning 

tasks to processors that will be executed fastest. Max-min gives the highest priority to the 

task with the maximum earliest completion time.  Graham et al. describe WQ (Work Queue) 

algorithm [94]. It is a classic algorithm that was originally developed for homogeneous 

parallel machines. WQ arbitrarily gives priorities to tasks and arbitrarily breaks the ties. The 

idea behind WQ is that faster processors will be allocated more tasks than slower processors.   

2.7 Meta Scheduling and Grid Standards 

Grid components in general and scheduling in particular need to possess a high degree of 

interoperability and facilitate robust communication to adjust to ever-changing needs and 

requirements. For this to happen, we need standards for designing a complete Grid 

architecture as well as for scheduling and resource management so that common 

interfaces and common solution to various problems can be found. This is the task of the 

Global Grid Forum (GGF) and GGF scheduling effort was discussed in section 1. Other 

organizations which are important to GGF are: IETF for Internet standards [71], DMTF 

for distributed management standards [72] OASIS for e-business standards [73], WS-I for 

Web services interoperability, and W3C for interoperability for the Web [74].  These 

standard bodies are not only working for common interfaces, they are also proposing very 

powerful solutions to some challenging problems. Presented below are brief descriptions 

of only those standards in Grid scheduling which are relevant to the current area of 

research. There is no single scheduling standard that can adequately address the DIANA 

scheduling requirements. 
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2.7.1      Scheduling Architecture  

Grids will provide a large variety of compute and data intensive services. The interactions of 

those services require extensible and integrated resource management. Such a coordinated 

scheduling of services is currently not available. However, such Grid scheduling is essential 

for most applications. The GGF Grid scheduling Architecture defines a scheduling 

architecture that supports cooperation between different scheduling instances for arbitrary 

Grid resources. Grid scheduling optimization techniques and Grid Economic brokering are 

the core activities being pursued by the group nowadays. The complexity of resource 

management and scheduling tasks increases as the number and types of resources requiring 

management increases, and is further complicated when those resources are distributed as on 

the Grid. This issue is being addressed through the development of manageability standards 

in the Open Grid Services Architecture.  WSRF [76] is a collection of specifications to 

support Grid services or other stateful resources. Normally, Grid services are assumed to 

represent some resources that have a state. WSRF suggests how to manage the context in the 

case of a stateful resource. These stateful services are indeed a very powerful feature and can 

increase QOS in scheduling and resource management and therefore can be useful in the 

DIANA scheduling approach. 

2.7.2      Scheduling and Resource Management 

Scheduling and Management are interrelated in the Grid and scheduling is in essence the 

optimized management of Grid resources and execution services. The Scheduler is a 

component of the Grid resource management system and takes care of all the scheduling 

policies. The Distributed Management Task [72] Force (DMTF) and its Utility Computing 

Working Group (WG) is working to “Unify the computer industry on a common 

manageability model and profiles for utility computing” under Web Services Distributed 

Management [85]. Scheduling is also offered as a service and this standard can optimize the 

scheduling process effectively. The GGF Distributed Resource Management describes the 

Distributed Resource Management Application [77] API (DRMAA) and its scope is limited 

to job submission, job monitoring and control, and retrieval of the finished job status. This 

standard can optimize the Meta scheduling process since all local schedulers can interact with 

each other using this standard. Web-Based Enterprise Management (WBEM) [78] is a set of 
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management and Internet standard technologies developed to unify the management of 

enterprise computing environments. UPnP [79] can be used to be manage services and 

resources at lower level where as WBEM can facilitate Grid scheduling in enterprise systems.  

The GGF CDDLM (Configuration Description, Deployment, and Lifecycle Management) 

[80] Group has created specifications to describe the configuration of services to deploy them 

on the Grid and to manage their deployment lifecycle (instantiate, initiate, start, stop, restart, 

etc.). Efficient configuration and lifecycle management of the services can have direct impact 

on the service availability, access and execution and this can add a good amount of 

performance in the scheduling decisions. A reservation is a promise from the system that an 

application will receive a certain level of service from a resource and this is managed by the 

GGF Standard on Advance Reservation [81]. It allows users to make reservations in advance 

of when the resource is needed and is capable of making and manipulating a reservation 

regardless of the type of the underlying resource. Reservations are expensive operations from 

the resource management point of view and we will not follow this mechanism in the 

DIANA scheduling to provide the QOS, rather priority driven approaches are more optimal 

in global cooperative scheduling. 

2.7.3 Scheduling and Monitoring 

System and network monitoring have gained key importance in modern day distributed 

systems and are used to collaborate and cooperate in performing a wide range of information 

gathering and processing tasks which are the backbone for efficient scheduling decisions. 

Network monitoring systems can analyze and process the information, in a distributed way, 

to provide optimized scheduling decisions in large scale distributed applications. The Grid 

Monitoring Architecture standard describes the major components of a Grid monitoring 

architecture [82] and their essential interactions. The Simple Network Management Protocol 

(SNMP) [83] can be used to monitor network-attached devices for any conditions that 

warrant administrative attention. The Grid High-Performance Network (GHPN) standard [84] 

deals with congestion control, large network optimization, and network managed services 

which are crucial to optimized scheduling.  
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2.8 Conclusions 

This chapter described the background of this thesis’s research agenda and what is the state-

of-the-art in the Data Intensive and Network Aware scheduling domain. Related research was 

presented and an analysis of the current and previous efforts was discussed. Research papers, 

standards and projects which have a direct contribution or can help to diagnose the problem 

and find solutions or that can become an alternative approach have also been discussed. In 

conclusion, there are three major resources in this type of scheduling commonly known as 

data, network and computation, and scheduling optimization is not possible until all these 

resources are managed in the scheduling system. Furthermore, bulk scheduling has not been 

addressed in the existing literature and there are no adequate solutions in handling the 

number of jobs submitted in bulk scheduling and the associated issues with the quality of 

service which arise in such scheduling. Consequently this chapter has established the state-

of-the-art in the domain of this thesis’s research problem defined in chapter 1. 

This chapter has helped to identify the issues and possible approaches which are being 

followed by others and what is missing and needs to be provided to address this core issue of 

Data Intensive and Network Aware scheduling. The following chapter identifies the 

requirements for a Data Intensive and Network Aware scheduling problem. The requirements 

identified in chapter 3 elicit and illustrate the hypothesis and research questions described in 

chapter 1. The hypothesis, research questions and the emerging requirements will become the 

heart of this thesis and subsequent chapters will address these requirements. 
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Chapter 3 

 

Data Intensive and Network Aware (DIANA) Grid Scheduling 

Requirements 

 

The previous chapter provided an in depth overview of the state of the art about DIANA 

scheduling in the Grid environment. Accomplishments which have been achieved in current 

and previous research were discussed in detail. A critical analysis of the existing literature 

was provided to help identify the missing points where further research is required. It was 

ascertained that DIANA scheduling is not adequately served by the existing research and that 

no existing scheduler and scheduling algorithm can co-relate huge amounts of data and their 

location(s) with computation and network capabilities during the scheduling decisions.  It 

was pointed out that no current scheduling system takes scheduling decisions by taking all 

three parameters into account. In chapter 3, a detailed report of the research questions as 

presented in chapter 1 is provided in the form of a requirement analysis for the DIANA Grid 

scheduling. These research questions are divided into small problems and presented as 

requirements in this chapter. 

In this chapter, justification is given for selecting the Use Case Model as a requirement 

analysis tool and its salient features are highlighted very briefly in section 3.2. Next the 

DIANA scheduling requirements have been extracted from the High Energy Physics (HEP) 

use case as they appear and are described in the requirements section 3.3. In Section 3.4, an 

analysis of these requirements is presented and all major requirements are classified as 

compute, data and network related requirements which will be followed in the later chapters 

of thesis. By compiling the use cases and requirements, this chapter attempts to illustrate all 

the relevant usage scenarios in a succinct way. This chapter is concluded with a concrete set 

of requirements which will be incorporated in the proposed DIANA scheduling approach. 

3.1 Introduction 

This thesis follows an experiment driven and prototyping approach. In this model we build 

something and then that artefact is used as the basis for a more generic class of solutions. 
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There are many reasons why such an approach, however, can be unsatisfactory for research. 

The main objection is that it carries considerable risk. For example, the artefact may fail long 

before we learn anything about the conclusion that we are seeking to support. Indeed, it is 

often the case that this approach ignores the formation of any clear hypothesis or conclusion 

until after the artefact is built. This may lead the artefact to become more important to the 

researcher than the ideas that it is intended to establish. This “proof by demonstration” 

approach has much in common with current rapid prototyping practice. Iterative refinement 

can be used to move a prototype gradually towards some desired solution; the evidence 

elicited during early prototypes can be used to better define the goal of the research as the 

work progresses. This approach has however two main limitations. Firstly if the system fails 

then one may have gained few insights into the basic research question [101]. The failure 

may be more due to the limitations of the implementation than to the idea itself or due to 

insufficient requirements. Secondly it can be difficult to generalize from a specific system to 

generic solutions.  

While the second reason for failure can be avoided by suitably crafting the research problem, 

the former issue can have serious consequences if a remedy is not found at the outset of the 

research. In order to address this potential problem a Use Case Modelling approach is 

followed for the requirement engineering phase of DIANA scheduling to ensures that the 

correct assumptions have been made in the initial project phases. Waterfall models [102] 

[103] of system implementation have been demonstrated to be less successful in satisfying 

user requirements by adopting designs which may not necessarily address all the aspects of 

user involvement at the early stages of system analysis and design [104]. The Use Case 

approach is a very flexible technique due to its iterative and controlled nature. It aims not to 

“fight change” but rather to embrace change as a core systems implementation driver.  

Grid Computing and consequently Grid scheduling follows the Service Oriented Architecture 

(SOA) paradigm [105]. Each component behaves as a service, performs autonomously and 

has a self-contained behaviour. These characteristics demand an approach which is iterative, 

adaptive and descriptive so that each component or service can be modelled in a self-

contained and autonomous manner, but at the same time all services should work cohesively 

and homogeneously in its entirety. By requirement engineering, we are in fact eliciting and 

explaining the research questions. We do not know the solutions to these research questions 
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or requirements until we investigate them, but by dividing the research questions into smaller 

approachable problems and iterating through the requirements process, we can approach the 

research problems in a better and organized manner. In the following sections different 

aspects of the system are illustrated from a requirements point of view and various features of 

this approach are applied to capture requirements. 

3.2 Requirements Engineering Process for DIANA Grid Scheduling 

Requirements’ gathering is the first phase within the research and development of a software 

system. The various subsequent project phases are based on the information gathered and 

documented within requirements engineering, therefore the output of the requirements 

engineering phase (the requirements model and the specification document) are crucial to 

project success. The specification document is the basis for communication and reporting and 

all future aspects of the developed system and its functionality have to be clarified using this 

document. Unfortunately even then there may still be serious problems that arise in research 

and development of software systems. According to an ESPITI survey [119], many software 

projects fail, are far over time schedule or cost significantly more than expected. The roots of 

the problem often originate in the requirements engineering activities. There may be serious 

problems in the research and development phases due to the poor, misunderstood or even 

missing requirements.  

In order to avoid these problems, a multi-prong strategy has been adopted to collect the 

requirements for the Data Intensive and Network Aware (DIANA) Grid scheduling. We 

surveyed the literature thoroughly as detailed in Chapter 2 to explore the state of the art 

related to data intensive scheduling. Consideration was given so that no “wheel re-invention” 

was encountered and where possible re-use of existing documented requirements from all the 

major projects such as EGEE and Open Science Grid etc was followed and related material 

was refined according to the research problem needs. A set of requirements emerged out of 

these studies which were cross examined to eliminate shortcomings. 

A Use Case Model was adopted to elicit and capture requirements since this was an easy way 

to get comments from experts and to illustrate the requirements in an easy-to-understand 

manner. The Use Case Model is a powerful tool for controlling scope throughout a project’s 

life cycle. Since a simplified Use Case Model can be understood by all project participants, it 
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can also serve as a framework for ongoing collaboration as well as a visual map of all agreed-

upon functionality. It is, therefore, a precious reference during later negotiations that might 

affect the project’s scope.  A key point of our strategy in requirement engineering is that we 

should be concerned about “What” and not about  “How” , since requirements specify "what" 

shall be provided and not "how" -- the how is a design aspect rather than a requirement.  

Documenting the rationale for each requirement (i.e. why it is required) is a good technique 

to reduce the number of requirements [120]. This gives the flexibility of implementing the 

system by harnessing the available resources and leaving the rest of the detail to others 

without influencing their choice of technology and the implementation details that may later 

follow. This approach can also vary from team to team keeping in mind the diversity of the 

expertise in a particular domain and the background of the team or researcher. Following this 

philosophy also endorses the iterative approach which we will be following during the 

complete research process presented in this thesis. Hence each component and module is self 

contained, has specific deliverables and requirements are tailored to fit in this principle. This 

increased fault tolerance and communication will reduce tight coupling in case more than one 

team works in parallel when the research prototype moves into a production phase.  

3.3 Requirements Extraction from the Use Case Model 

A High Energy Physics (HEP) use case is discussed to provide an overall view of the system 

and provide details of the various components and how they are likely to interact with the 

system. The research problem that is tackled in this thesis is explained through this use case 

and divided into small realisable requirements. Based on the use case, the following sections 

summarize the requirements. These requirements will be better understood if the context and 

the target environment are presented under which these requirements emerge. It is important 

to mention here that DIANA scheduling has most of its applications in the data intensive 

analysis domain such as HEP analysis and therefore, we illustrate here a comprehensive Grid 

analysis scenario and its use case for the HEP environment in order to capture the 

requirements as they appear. As the use case is being discussed, at each step in the use case 

we identify a number of features which are required to carry out such an analysis and these 

are presented as specific requirements. 
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Large-scale data-intensive problems, such as those that arise in the HEP experiments 

currently being developed at CERN, can generate petabytes of scientific data. Several 

hundred end-users can run analysis jobs at the same time, processing large amounts of this 

data (up to several hundred TB) replicated over several tens of Grid sites. Used in this way, 

the Grid will become a highly dynamic, large-scale environment with unpredictable access 

patterns as described by Rang Nathan et al. [17]. The data-intensive jobs will need to take 

data location into account when scheduling the jobs on the Grid resources. The replication of 

data can help improve the scheduling and execution optimization by reducing the frequency 

of remote data access. Moreover, large numbers of jobs and resources can make the 

centralized algorithms ineffective. Both replica management and computational job 

placement need to be optimized to make best use of all their resources. Initially the cost for 

transferring a file between two services should be sufficient, and this cost should be the 

predicted time it takes for that file to be transferred. Furthermore, network services should 

provide a useful cost that can be used to optimize their use. Normal network use should also 

be given a cost for optimization purposes. 

Requirement#1: Data Location should be taken into account when making scheduling 

decisions. Delay and bandwidth of a site are the factors that influence the choice of data 

location. 

Requirement#2: The best replica of a dataset should be considered while scheduling Data 

Intensive Jobs. This can reduce data transfer time. 

Requirement#3:  Decentralized systems should be employed for bulk scheduling of jobs. 

The current client-server model of Grid scheduling systems is not scalable and cannot cope 

with the job frequency of bulk scheduling. 

Requirement#4: Those sites should be given priority in replica selections which have better 

and stable networks. (Stable here implies a reliable network which does provide a 

comparatively better quality of service). 
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Figure 3.1: The CMS online and offline systems and their environment. 

For example, in the CMS experiment at CERN, CMS Production and CMS Data Analysis are 

two very data and computation intensive processes [139]. CMS Production [109] covers three 

areas: the generation and simulation of data (cmsim), the Hit Formatting, and the Digitization 

and pileup. As shown in the Figure 3.1, CMS Data Analysis [110] deals with the issues of so-

called event reconstruction, the selection of the physics events and the visualization of the 

data through a visualization tool such as ROOT, IGUANA, JAS, WIRED etc. In both cases, 

physicists submit, individually and collectively, millions of jobs and this is known as bulk 

submission in which each job accesses some subset of that data in the Grid.  

Requirement#5: Scheduler should have a special mechanism to manage bulk scheduling and 

execution. 

The resource access patterns used in physics analysis (see Figure 3.2) tend to be less 

predictable [112]. This comes from the fact that jobs are initiated from almost any HEP site 

in the world and data is not uniformly distributed across the Grid. Some sites have the 

required datasets replicated to them whereas others sites do not have access to the datasets. 

The replication and availability of the datasets influences the job submission and execution 

patterns. As shown in Figure 3.2, a physicist runs analysis jobs. He may either execute an 

inclusive analysis, using all the collected data, or select interesting events using Tags. A set 

of events containing similar physics is sometime called a “channel”. Channels of interest are 

analysed starting from Analysis Object Data (AOD), accessing parts of the Event Summary 

Data (ESD), or even of the raw data, if necessary. The need to access different portions of the 

data increases sparseness. The generated data may be private to the physicists, possibly with 

links to full events or other objects located in the official datasets. These data can be stored 

on private storage or they can be registered on the Grid in a private area accessible to the 

owner. Systematic effects are studied by looking at the ESD for small event samples. Access 
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to complete individual events (~100) may be required and these are studied in detail e.g. with 

an event display. A typical job will perform some calculation on a specified input dataset and 

will produce some output. It can be interactive or batch and is part of the dataflow explained 

above. There are two main cases of HEP jobs: organized jobs and chaotic jobs. 

Organized jobs are planned in advance and perform a homogenous set of tasks. The input is a 

pre-determined set of events accessed sequentially, processed and then written out, in a 

different format, suitable for calculations to be performed in a subsequent phase. A 

production team manages the data processing; simultaneous requests to the same input 

dataset are minimised by a proper organisation of the production. Each job needs to have a 

cost based on the amount of resources used (CPU, memory, storage, bandwidth) and on the 

priority with which these resources are used. Furthermore the Scheduler must be able to 

calculate the job cost on the basis of the information provided by the user and that it should 

use this information to schedule and optimize the job execution. Users need to know the cost 

to access a physical copy of a dataset on a specific Storage Element (SE) across the Grid 

environment (including the cost of putting the copy there if one is not already available 

there). That dataset should be selected which has the least data transfer cost. In choosing the 

best access to the dataset, it is required for the scheduling system to have considered the cost 

options (respecting any possible protocol constraints). 

Requirement#6: Jobs should be assigned to resources that possess the required data set 

provided it is cost effective. 

Requirement#7:  Data and Jobs should be moved to a third location if feasible for 

scheduling and execution efficiency. 

Requirement#8: The cost of computation, data transfer and network should be taken into 

account before making a job or data movement decision. This requirement clearly relates to 

the research hypothesis of this thesis as do the other requirements. Any requirement that 

emerges from the use case but is not related to the hypothesis will not be addressed in the 

coming chapters. 



 

 48

A O D

A n a l y s i s  T a g s  

P h y s i c s  A n a l y s i s

P r i v a t e  D a t a  ( e . g .  N t u p l e )

A n a l y s i s  W o r k s t a t i o n

P h y s i c s  r e s u l t s

G e n e r a t o r  D a t a

F o r  M o n t e  C a r l o  
e v e n t s  

E S D  S a m p l e

R A W  S a m p l e

 

Figure 3.2: User analysis 

Chaotic jobs are submitted by many users acting more or less independently, and encompass 

a wide variety of tasks. The input is typically a selection/analysis algorithm to be applied to a 

very large dataset. Users can submit jobs of this kind at any time, simultaneously asking for 

the common input datasets.  A user may want a shorter time for a solution for a given job 

than the default one. This can translate in a higher placement of the job in the batch queue of 

the Computing Element (CE), so that it enters execution more rapidly, and a higher execution 

priority on the Worker Node(WN), so that it gets a larger share of the WN CPU. Such a 

system will also need associated controls on priorities. For example, the system might deduct 

a larger amount from a user’s resource usage quota for a high-priority job than it would for 

the same job submitted with normal priority. Another possibility is to limit high-priority jobs 

to a special class of users. The system also will need to deal with priorities that differ from 

site to site. There must be the ability to request for a scheduled reservation of resources, i.e. 

with both the beginning and termination of the resource’s reservation and thus availability in 

a future timescale. Although reservation is one of the requirements in supporting data 

analysis, there is little provision in the Grid middleware to support network reservation. 

Efforts are underway in major Grid projects such as EGEE to address the resource 

reservation issue. 
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It is common for applications to know in advance about a future need for transmission of a 

certain amount of data. In those cases where it is crucial that network resources are available 

at the time when the data is ready for transmission, it is also essential to have reserved the 

network resources beforehand so as to ensure timely delivery of the data at the destination. 

The Scheduler can also be asked to execute a job and produce a dataset (DS) within a 

predefined time (see Figure 3.3 [111]). Only high priority jobs can be given the privilege to 

run on dedicated or reserved resources to complete the job in a limited amount of time. This 

option should be used only in case of extreme circumstances and suitable scheduling policies 

are required to accommodate such jobs.   

Requirement#9: There should be a mechanism to prioritize the jobs for providing quality of 

service to certain high priority jobs.  

Requirement#10: Resource Reservation should be provided if we know in advance when the 

users plan to submit high priority Jobs. This requirement has little relevance with the thesis 

hypothesis and will be excluded in the analysis of requirements in the following sections. 

Requirement#11: A Scheduler should support time constrained mechanism to execute the 

jobs within the user specified time limit. Time constrained and deadline scheduling is not real 

time scheduling which is used in the multimedia applications. 

Since analysis jobs are not the same as production jobs, the same scheduling model cannot 

necessarily be applied to each. The fundamental difference is in the input data. It is very 

unlikely that in the case of the analysis jobs all bulk submission will be using the same input 

data. On the other hand this can be true in the case of computation intensive production jobs 

since the nature of all the jobs is similar and jobs are not dependent upon any input data 

transfer, rather they produce only output data. If bulk submission is taking different datasets 

then it is likely to overload the site as well as the network. This also discourages data transfer 

and forces job submission to a site where the data resides, which is not a very efficient 

scheduling approach.  This scenario occurs if certain datasets are used for a whole group of 

researchers. For instance, in high-energy physics several very large data sets are used by a 

large research community. The transmission of such data to a specific resource in order to 

start a single job is often not efficient as it would require a large amount of storage and a long 

time for the network transfer. Instead, jobs may be assigned to resources that possess the 
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required data set. Nevertheless, it may be justified to replicate the data to a specific site if 

enough jobs would benefit from that resource.  

 
Figure 3.3: Creation and processing of CMS data Grid jobs 

Users need to access remote portions of a dataset. In HEP, for example, datasets contain one 

or more so-called “events”. Some jobs will read only a few events per file.  The data of each 

event is stored as a set of ‘data products’. The term data product is used for a small self-

contained unit of data. In CMS terminology, data products are usually called ‘objects’. Data 

product values are always stored in files and normally there are many related data product 

values in a single file. The related files are stored in a single dataset and in the CMS 

environment only datasets are replicated and used by the jobs. If the fraction of data is small 

enough (30GB), jobs could execute more quickly if they could access single events rather 

than accessing entire datasets or making local replicas. If the middleware can provide this 

service, it may need a hint to indicate that a given dataset may be opened remotely. The 

trade-off is between complexities of programming (providing single-event access) vs. typical 

event sizes and typical bandwidth. Given sufficient bandwidth and small single events, it 

might not be worth retrieving a portion of a dataset and in this case, this is no different than 

DS access. When the middleware has to schedule a job and transfer a large amount of data, it 

may have several alternatives from where it could retrieve the data or to where it could send 

the data. Predicted available bandwidth would allow the middleware to make the best choice 
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concerning the network resource to use (the path to use). The prediction of available 

bandwidth would also be useful to answer the job request which requires transferring some 

data within a time window. 

Requirement#12: All jobs should be scheduled to a site which has the required dataset and 

being accessed by the jobs. 

Requirement#13: It may be required for a job to retrieve the portions of data from a remote 

dataset.  

Requirement#14: Scheduler should find a best network path based on the latest site-site 

calculations between storage and computing element. 

Requirements#15:  Parameterized or specialized schedulers are required to optimize the 

scheduling process. These schedulers should be tuned for specific type of applications and for 

certain parameters which are of special interest for the applications. 

Bulk submission is derived from a batch type of execution in which a batch of jobs is 

submitted and users must wait until the final result is produced. However, analysis jobs are 

more interactive in nature and each job has different user priorities. Consequently, users 

should not be forced to make their jobs part of the bulk submission until it is cost effective. A 

more feasible approach is that a Meta-Scheduler could calculate the cost (i.e. the 

computation, data transfer and network cost) of each job at a global level and then the job 

could be submitted to a site which has the least cost. This will reduce queue time, processing 

time and will help to organize the Grid.  The Scheduler needs to monitor job progress and 

access the output of the running job. It will help to perform management or control functions 

on a job. The Scheduler should send jobs to specific sites for optimal utilization of the 

resources. This step is needed to provide dynamic and adaptive resource management due to 

the volatile nature of the Grid environment. This is a step forward to making Grid a real time 

system and to make intelligent decisions strategically in a consistent way, taking into account 

the changing state of the system. 

Requirement#16:  Scheduler should have the capability to steer and move the jobs to the 

sites having better resources. 
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Requirement#17: If Job is moved to a remote site, scheduler should ensure that requirements 

software is available for the job execution. 

Requirement#18: The scheduling system should calculate and incorporate the network 

measurements before planning a job submission. 

3.4 Analysis of the Requirements  

While explaining the HEP analysis use case in section 3.3, requirements were captured as 

they appeared. Now we present here the brief analysis of the major requirements for the 

DIANA scheduling process. Indeed, this section expands and explains the particular 

requirements related to DIANA scheduling which were discussed in the above mentioned 

HEP use case. There are at least three major requirements areas for the Grid Meta-scheduling 

System that have a direct bearing on the performance needs of applications and these are 

described here as compute-related, data-related, and network-related requirements.  

3.4.1 Compute-Related Requirements 

Compute-intensive applications drive the need for scheduling and resource management 

services that can quickly and optimally locate high-performance computational resources 

given the particular requirements of those applications as well as those of the end-users. In 

locating and scheduling jobs on those resources, resource management services need to take 

into account not only the compute related needs of an application [113] such as load, 

available computing capacity, data location etc. (see requirement #1) but also key factors [17] 

such as the time at which the application is required to run, the cost and availability of the 

resource (see requirement #8), and the efficiency of application on that particular resource. 

There are many other factors that may also be taken into account, such as the consistency of 

the resource like machine failure rate (see requirement #16), the network characteristics for 

transferring results to mass storage (as described in section 3.4.2) or the user quota and 

privileges on the intended resource as well as any firewall security policies that could prevent 

the use of remote resources. Since users can submit any number of jobs at any time, there 

should be a mechanism to prioritize the jobs for providing quality of service to certain high 

priority of jobs (see requirement #9). The scheduler should self-organize themselves by 

exporting jobs to the least loaded sites in case of job loads as may be the case in bulk 
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scheduling and scheduler failures (See requirement #19). This will not only save the jobs 

from starvation but will also help the scheduling optimization. Scheduler should have the 

capability to steer and move the jobs to the sites having better resources (see requirement 

#16). 

Grids present a challenge for applications in that they manage and share heterogeneous 

resources, so may consist of many different types of computing platforms and operating 

systems (and versions of operating systems). Resources also have varying software 

installations and execution environments, such as shells, compilers and libraries. A given 

application may be compatible with only a limited set of computing architectures and 

software. Even when an application is portable across many platforms its particular 

characteristics may dictate that it will run more efficiently on a given architecture. Jobs 

should not be submitted to sites which do not have required execution libraries or software 

available since this may result in job failures. These needs must not only be taken into 

account by the scheduling services, but also dictate the need for applications to be able to 

sufficiently describe their requirements. 

Requirement#19: The scheduler should be scaleable and self-organizing to cope with bulk 

Job scheduling. Here self-organizing behaviour implies the capability to export jobs to least 

loaded resources or to import jobs from over-utilized sites. 

Requirement#20:  Scheduler should schedule jobs to only those resources where required 

execution software (particular application specific libraries) is available. 

Requirement#21: Scheduler should also take into account the software and heterogeneity 

into account when scheduling jobs to remote sites. 

3.4.2 Data-Related Requirements 

Most applications have at least some basic file management and data placement needs [17] 

that place constraints on how the computational resources are scheduled in a Grid 

environment. Applications operate on a set of input datasets and produce output datasets to 

be analyzed or processed by a second application to visualize the resulting data. The size of 

the input and output datasets and the amount of overall storage space allotted to a user 
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necessarily has some bearing on the scheduling of such applications [123]. If the input 

datasets must be retrieved from a remote location, then the time required to transfer the 

datasets must be taken into consideration when scheduling compute resources for the given 

application (see requirement #13).  

There are a number of methodological issues that impact on scheduling performance. One 

such approach is data-aware scheduling, the process of scheduling the tasks closer to the data 

that they require [115] [19] (see requirement#6). Firstly, considerable performance 

improvements can be gained by taking into account the amount (and speed) of data transfer 

that is required during a task execution [117].  Secondly, it must be possible to access the 

contents of files efficiently according to the data model since datasets may be distributed 

among several database management systems.  Thirdly, there should be provision in the 

scheduler to move the data towards the computation site if considerable performance gains 

are guaranteed by this data transfer and placement and this is becoming a reality due to the 

high available bandwidth in modern optical networks (see requirement#7).  This is discussed 

further in section 3.4.3. Location of the data is a key to the Data Intensive scheduling and 

scheduling optimization is not possible without knowing the location and then selecting a 

best place to fetch data (see requirement#1). Data Size, location and possible decision to 

replicate the particular dataset can have significant impact on the scheduling optimization 

(see requirement #2). Similarly, Data transfer and access costs are other important data 

related parameters which should be incorporated in the Data Intensive scheduling process. 

Some times this process also involves replication and the jobs then use this new dataset when 

it is scheduled on that particular site to improve the scheduling optimization. Further all the 

jobs in a job burst can be scheduled on a single site if it is cost effective in terms of execution 

and queue times (see requirement#5).   

Data Intensive jobs read and store their data on some tertiary storage system [118]. Access 

latencies of such tertiary systems can be of the order of seconds up to hours [119] in case the 

data resides on a tape that is not mounted yet.  With the recent trends in the network 

performance like Bandwidth challenge of 131 Gbs and even more in years to come, it might 

be more cost effective for the data intensive jobs to access and transfer the data over the 

internet from the remote locations than accessing the tertiary storage in the local environment 
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(see requirement#12). We should also consider the tape access and associated latencies when 

scheduling the data intensive jobs since they can be much larger than the network cost. 

Requirement#22: It should be possible to access the contents of files efficiently according to 

the data model since datasets may be distributed among several database management 

systems. 

3.4.3 Network-Related Requirements 

In Grid environments the communication requirements of an application are subject to 

numerous network constraints. These considerations have a direct bearing on the 

performance of the application, and hence on how resources need to be scheduled for it. As in 

the HEP scenario described above, it is typical for an application to require access to 

significant amounts of input data from remote locations. Applications may also need to write 

data to a remote file. Distributed applications, including tightly coupled simulations, may 

need to regularly exchange data between distant machines. All of the above scenarios are 

basically network dependant operations and without an efficient and reliable network Grid 

applications may well under perform. Therefore, scheduling decisions should also consider 

the underlying network characteristics while placing jobs on the remote nodes (see 

requirement #19). 

When selecting a dataset replica for Data Intensive scheduling, the underlying network 

between submission and execution sites as well as the link of the site storing the data plays an 

important role in scheduling optimization. Therefore the Scheduler should find a best 

network path between storage and computing elements (see requirement#14). Those sites 

should be given priority in replica selection which has better and stable networks (see 

requirement#4). The network is a key element in the Data Intensive scheduling and 

scheduling system should always calculate and incorporate the network measurements while 

planning job submission. This inclusion can lead us to Network Aware services and Network 

Aware scheduling decisions. Therefore the cost of computation, data transfer and network 

should be taken into account before making a job scheduling decision. 

While communication-intensive applications may require high-speed networks for 

transferring large amounts of data, some applications simply require dependable networks. At 
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minimum, it must be possible to discover and monitor the conditions of networks on which 

applications are to be run. This prescribes the need for network monitoring and prediction 

services that can provide applications, resource management services, and users alike with 

the ability to query the characteristics of networks associated with the target computing 

resources (see requirement#16 and 18). For an end user, such characteristics may include 

bandwidth, RTT (latencies), packet loss and Jitter (reliability of the network). These 

parameters illustrate the state and quality of the network which are vital for the data intensive 

scheduling decisions. Such parameters may also provide details to applications about how to 

best use the network, for example the alternative route and location for sending or retrieving 

data in a smaller amount of time. Some applications require certain minimum guarantees on 

the network bandwidth or network speed of communication links between network nodes. 

They rely on some type of Quality-of-Service within the scheduling System providing 

guaranteed reservation of network capacity along with computational resources (see 

requirement#10). 

Requirement#23: Network aware services are required for the data intensive scheduling 

decisions.  

3.5 The Impact of the Use-Case Approach and Requirement Recommendations  

The use case approach proved an efficient and effective technique for collecting essential 

requirements from a group of users and helped to focus on their real needs. It helped to arrive 

at a common, shared vision about how the DIANA Grid Scheduler will really behave when it 

interacts with large amounts of data, computation and high performance networks. It also 

helped to avoid unnecessary and superfluous requirements. Some confusion may arise when 

people start thinking in terms of a real life use case. Proposed use case may actually be list of 

features, or desired behaviours or attributes [121]. However, we tried to map each of these 

requirements to the High Energy Physics use case and tried to avoid unnecessary features and 

behaviours. Use case methodology constituted a powerful, user-centric tool for the DIANA 

scheduling requirements specification process and are equally applicable whether the 

intended system is constructed using object-oriented techniques or in a more traditional 

environment. 
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Given below are the summarized requirements which will be followed and referred back to in 

the later sections of the thesis. All relevant requirements from sections 3.3 and 3.4 are 

grouped (G-1 to G-5) and will become the basis for future chapters. These requirements are 

aligned and complement the hypothesis and the research questions described in section 1.3 of 

chapter 1. Specific requirements recommendations which can be revealed from the 

requirement process for DIANA scheduling are given as follows:   

• G-1 Data Intensive Scheduling: Data location should be given consideration for 

the scheduling decisions. Data should also be moved towards the jobs if required for 

scheduling efficiency. Data and jobs should be moved to a third location if feasible 

for scheduling and execution efficiency. See requirements # 1, 7, 12, 13. 

• G-2 Network Aware Scheduling: The best network path from computing and 

storage elements should be decided and included in the scheduling decisions. The 

network is a key element and scheduling system should calculate and incorporate the 

network measurements in planning the job submission. Those sites should be given 

priority in replica selections which have better and stable networks. See requirements 

#2, 4, 14, 18, 23. 

• G-3 Scheduling Priority: The priority of the job placement is vital while dealing 

with the very great frequency of data intensive jobs in bulk scheduling. There should 

be a mechanism to prioritize the jobs for providing quality of service to certain high 

priority jobs. See requirements# 5, 9, 10, 11. 

• G-4 Scheduling Cost: Optimized scheduling decisions are not possible unless 

compute, data and network characteristics are brought under a single scheduling 

algorithm. See requirements# 6, 8. 

• G-5 Scheduling Hierarchies: Decentralized and self organizing schedulers are 

required for bulk job scheduling. Scheduler should have the capability to steer and 

move the jobs to the sites having better resources. See requirements # 3, 16, 19. 

These summarized requirements require detailed study, mathematical modelling, 

experimental and simulation tests and exploration. Problems like bulk job scheduling and 

data intensive scheduling in a Grid environment have not been adequately considered before. 

Storing, replicating and locating the petabytes of data and then scheduling millions of jobs to 
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access subset(s) of this data on thousands of compute resources worldwide is far from being a 

trivial challenge and is the subject of what will be explored concerning bulk scheduling in 

this thesis. Similarly, network aware services and network aware scheduling is a novel area 

and due to the nature of next generation applications, this is very innovative and timely as a 

domain of research. Moreover, self organizing and scalable schedulers are a state of the art 

research area and need due attention to enhance quality of service in application execution. 

These research requirements explain and elaborate the issues defined in the hypothesis (see 

section 1.3 chapter 1): 

Data intensive bulk scheduling can be significantly improved by taking into consideration a 

combination of network, data and compute costs, as well as by implementing effective queue 

management and priority control. 

Some of the requirements outlined in the requirement section are outside the scope of the 

research and as such constitute the future directions of this research work. Requirement# 15 

is about parameterized schedulers which is again a major research issue in its entirety and 

therefore will not be covered in this thesis. Software heterogeneity and data model 

requirements#20, 21 and 22 are not the issues of immediate concern to DIANA scheduling 

and therefore will not be considered in this thesis. Requirement# 23 is more about inter-

process communication which is not very relevant to DIANA scheduling. 

3.6  Conclusions   

In Grid Computing, each component behaves as a service, performs autonomously and has a 

self-contained behaviour. These characteristics demand an approach which is iterative, 

adaptive and descriptive and this has led us to follow Use Case Modelling within the 

requirement engineering process. Waterfall models of system implementation have been 

demonstrated to be less successful in satisfying user requirements since it is not possible to 

address all the aspects of user involvement at the early stages of a research prototype. Use-

case modelling technique has been adopted to identify and specify the user requirements for 

the Data Intensive and Network Aware Grid scheduling and to iteratively evolve the system. 

A set of requirements is captured and the system has been modelled using the use case 

methodology. Requirements have been extracted from a HEP use case as they appear and a 

set of requirements is recommended for the DIANA scheduling. It is revealed that data 
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location, network characteristics, overall cost of the job placement and a universal algorithm 

to manage computation, data and networks are the key requirements which should be 

incorporated in such a scheduling approach.  

In the remainder of this thesis the requirements for a DIANA Scheduler are pursued. As a 

first step a set of algorithms is devised to address these requirements and their mathematical 

and theoretical description is given in chapter 4. These are crafted to optimize the scheduling 

process and take into account various greedy as well as economic approaches for the 

scheduling optimization. These algorithms in essence implement and incorporate the 

requirements which were short listed in the section 3.5. 
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Chapter 4 

Scheduling Optimization Approaches 
 

Chapter 3 provided an overview of the DIANA scheduling requirements and listed the salient 

features of such a system. Amongst those features it was established that data location is 

central to the working of an optimized Grid and hence it should be part of all scheduling 

decisions. It was also established that the ‘best’ or most optimal network path to computing 

and storage elements should be identified and that the scheduling system should calculate and 

incorporate network measurements while planning job submission. Chapter 3 explained that 

the network, computation and data transfer costs and the priority of job placement are vital 

when dealing with a large frequency of data intensive jobs and for optimizing scheduling 

decisions. In chapter 4 a description of the DIANA scheduling algorithm and its constituting 

key scheduling parameters is provided and how they influence the scheduling optimization is 

demonstrated. The scheduling problem is divided into different scheduling costs. These 

scheduling costs, namely the data transfer cost, the compute cost and the network cost, are 

derived through suitable mathematical formulae and are explained with the aid of an 

example. The queue management algorithm and related issues are described in section 4.5. 

After this, bulk scheduling is introduced and its association with priority and queues is 

established. The DIANA scheduling algorithm is extended to handle the Grid bulk job 

scheduling process. 

4.1 Introduction   

There are three main phases of scheduling on a Grid:  

• Phase one is that of resource discovery, which generates a list of potential resources. 

• Phase two involves gathering information about those resources and choosing the 

best set to match the application requirements (the so-called “matchmaking” phase). 

This is where this thesis makes its main contribution. 

• Phase three is the job execution phase including file staging and cleanup.  

In this chapter, the research issues and approaches to optimize the matchmaking phases are 

described. In this second phase, the best match between jobs and resources is central. Many 
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heuristics have been proposed to obtain the optimal match as discussed in [124] but for the 

data intensive scheduling, the network characteristics need to be included in the scheduling 

decision as compared to the existing matchmaking process that does not take network 

parameters into consideration. Thus we need to embed the network information into the 

scheduling algorithm to improve the efficiency and the utilization of a Grid system. The 

overall goal is to minimize the computing time for applications which involve large-scale 

data.  

There are two different goals for task scheduling: high performance computing and high 

throughput computing. The former aims at minimizing the execution time of each application 

and is generally used for parallel processing, whereas the latter aims at scheduling a set of 

independent tasks to increase the processing capacity of a system over a long period of time. 

We describe here a high throughput computing scheduling approach since most of the data 

intensive applications are very time consuming in execution and in data transfer operations. 

4.2 Input Parameters and Objectives 

The following parameters will be used for the scheduling optimization related decisions. The 

reasons to include each of these parameters are discussed in section 4.3. The measurement 

and experimental process is explained in the later chapters of this thesis. These parameters 

have direct significance for Data Intensive and Network Aware Scheduling optimization and 

will be discussed later in this section: 

• Bandwidths and latencies (RTT) of the network links. 

• Packet loss and jitter 

• Computing cycles available 

• Site loads and respective job queues 

• Job Priorities  

• Size of the application executables 

• Size of data files (input as well output) 

• Location of the data files 
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A few characteristics are described which can help in creating an optimized scheduling 

algorithm. Utilization is the first performance criterion - we want to keep the CPU as busy as 

possible since, if the CPU is busy in exchanging processes, then work is being carried out. 

Another measure of work is the number of jobs completed per unit time and this is called the 

throughout. The interval from the time of submission to completion is termed the turnaround 

time and has a significant bearing on performance indicators. Turnaround time is the sum of 

the periods spent waiting to access memory, waiting in the ready queue, executing the CPU 

and doing input/output. The waiting time is the sum of the periods spent waiting in the ready 

queue. In an interactive system, turnaround time may not be the best criterion. Another 

measure is the time from the submission of a request until the first response has been 

provided. This measure, called the response time, is the time it takes to start responding but 

not the time that it takes to output that response. In the proposed scheduling algorithm, we 

want to maximize CPU utilization and throughput and minimize turnaround time, waiting 

and response time. A scheduling algorithm is created based on the measured parameters 

above which forms an important element of the matchmaking process in the Grid Scheduler. 

The following are the targeted metrics within the scheduling process by which the success 

and optimization level of the scheduling system needs to be gauged: 

• Queue and waiting time  

• Processing and execution  time 

• Input data transfer time  

• Executable transfer time  

• Results transfer time  

The total time to execute a job in a Grid environment will be the sum of all of these times.  

4.3 Cost Estimators 

There are three major cost estimates which need to be calculated for the scheduling 

algorithm: the network, computation and data transfer costs and scheduling optimization will 

be based on these three estimates. These estimates further depend on the parameters 

discussed in the following sections. These are explained in the following sections. The 

importance of each cost function can be adjusted by allocating weights to these parameters. 
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These weights are dynamically assigned and their allocation procedure is discussed in section 

4.3.5. 

4.3.1 Network Cost   

By far the most important factor affecting scheduling process is that of network cost. The 

load, capacity and availability of network links used during data transfers may heavily affect 

the Grid application performance. Consequently, a fully functional Grid is critically 

dependent on the nature and quality of the underlying network, with connectivity, 

performance and security being key factors, as described by Primet et al. [125].  The high-

bandwidth demand created by very large datasets necessitates the deployment of network 

infrastructures with efficient data transport capabilities. Consequently the new challenges 

posed by Grid applications lead to new research directions in network infrastructures, 

services, and data transport. Grid has given birth to distributed systems applications that are 

deployed on a wider scale (in some cases across continents). They need large data transfers 

for longer durations of time to fetch the data (even from one continent to another), 

computations run for long intervals of time to do the analysis on large datasets, resources are 

dynamic and may come and go at any time, (for example due to network or other failures), 

but at the same time the whole system works as a single entity to achieve some computation 

goal. This was not the case with existing distributed applications which were restricted in 

scale and requirements. These new applications, coupled with Grid toolkits, represent a 

paradigm shift in how applications interact with the network and with Grid middleware. 

Application usage of the network often requires a near-real-time (or even a real-time) 

information feedback loop on the available resources together with intelligent decisions on 

how best to take advantage of these resources. In order to provide the right quality of service 

(QoS) to Grid applications and hence scheduling, it is important to first understand how the 

network is performing and to determine the level of quality of service that currently exists in 

the network. This is measured using four variables, namely latency, dropped packets, 

throughput and jitter. The reasons to adopt these parameters are discussed in the following 

paragraphs of this section. These network parameters influence the data transfer and indicate 

the health of a network. For example, a network having less packet loss is better than the one 

having a higher packet loss. Since we are interested in the data transfer capability of the 

network, the term which is used to determine this capability is the TCP throughput. TCP 
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throughput can be obtained by combining the losses and the Round Trip Times (RTTs) using 

Mathis’s formula [126] for deriving the maximum TCP throughput. Given the historical 

measurements of the packet loss and the RTT, we can calculate the maximum TCP 

bandwidth for a certain amount of time for various groups of sites. Mathis’s formula 

describes a short and useful formula for the upper bound on the transfer rate:  

Rate <  )()( 1
lossRTT

MSS
×  

 
Equation 1:  TCP throughput calculation 

Where:  Rate is the TCP transfer rate, MSS is the maximum segment size (fixed for each 

Internet path, typically 1460 bytes), RTT is the round trip time (as measured by TCP) and 

loss is the probability of packet loss. It is clear from the above equation that RTT, TCP 

throughput or bandwidth and packet loss (including out of order packets and duplicate 

packets) should be made part of the scheduling algorithm since it has to deal with large data 

transfers when scheduling data intensive jobs. One way of measuring the QoS is to measure 

the number of packets being dropped. Since IP is by nature unreliable due to its stateless 

nature, it can drop packets as the network becomes congested. A higher packet drop rate 

indicates a congested network, leading to a poor QoS. The packet loss is a good measure of 

the quality of the link for many TCP-based applications. Packet loss can occur for a variety 

of reasons including link failure, high levels of congestion leading to buffer overflow in 

routers, Random Early Detection (RED, a congestion avoidance algorithm which monitors 

the average queue size and drops packets based on statistical probabilities. RED makes 

Quality of Service differentiation impossible.), Ethernet problems like the frame errors, and 

the occasional misrouted packet. The main observable effect of packet loss is poor data 

throughput performance which is a prime concern in data intensive scheduling.  

However, packet loss is not the only cause of poor performance, so care is needed in 

diagnosing whether genuine packet loss is being experienced. The response time or RTT is 

the second parameter that can give an idea of the ‘ping’ data rate (KB/s). Response time is 

the time it takes for data to travel from source to destination without any load. The RTT is 

related to the distance between the sites (since a long distance will lead to a greater number 

of hops along the path and this can increase the delays) plus the delay at each hop along the 
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path between the sites. RTT is usually used to measure latency. The RTT as measured says 

something about how quickly a small packet can be transferred from a backbone to a server 

site and back, but says nothing about how much information a server site can send in a given 

period.  Moreover, for better QoS and network predictability, we also need to include the 

jitter in the scheduling algorithm. Jitter is an unpredictable variable delay in data reaching a 

destination from a source under certain loading conditions. It is unpredictable since it 

depends upon how congested the network is. Jitter becomes of critical importance in a 

converged network where voice, video, and data are being passed over the same link. Jitter is 

more important for streamed multimedia data compared to a Grid network which is being 

used for massive data transfer, for example, data transfer for physics analysis. However, jitter 

can be equally used to describe the reliability of a network being used for all types of 

applications since a higher jitter indicates congestion in the network or some other bottleneck 

or network anomaly, Therefore, as the network utilization increases, the number of dropped 

packets and the amount of jitter increase. Consequently, network cost is the combination of 

all of the above parameters. We assign weights to each value depending upon the importance 

of the parameters to calculate an aggregate value of the network cost: 

WJitterWlossRTTLosses
where

Bandwidth
LossestNetworkCos

××××=

∝

2
 

 
Equation 2: Calculation of the Network Cost 

Where W is the weight assigned to each parameter depending upon the importance of the 

particular parameter. On the Internet, the network partitions a message into parts with a 

certain size in bytes. These are called the packets. A typical packet contains perhaps 1,000 or 

1,500 bytes. Therefore loss is measured in bytes per second, RTT is measured in milliseconds 

and jitter is a number. Bandwidth is measured in bits per second and therefore network cost is 

in seconds. It can be in minutes and in extreme circumstances in hours if the network is 

performing poorly. All weights are assigned subject to a cost. A higher cost will lead to a 

higher weight and in some cases we can manipulate these weights to prioritize certain 

parameters in the algorithm. For example, if network cost is negligible, we assign bigger 

weights to this cost to influence the data intensive scheduling. But for compute intensive jobs 



 

 66

we do not change the values of the weights in the network cost rather we can manipulate the 

compute cost weights on the same rule as is described for data intensive jobs. A higher RTT 

indicates that a computation site is distant from the storage site where the data resides and 

therefore the cost to fetch the data would increase. We can increase the significance of this 

parameter, if required, by assigning a higher value to the associated weight. 

Higher bandwidth reduces the cost of data transfer and hence the job execution. We can 

accommodate this behaviour by assigning a smaller value to its Wi. Furthermore, jitter is of 

less importance for data intensive applications with no significant cost involved as a result of 

higher or lower jitter. We can assign a minimal weight to this parameter but cannot ignore it 

completely since, if this parameter has a value higher than an acceptable figure, then this 

reflects a network bottleneck which is not ideal for data intensive transfers. In these 

circumstances, a higher value is required for this parameter to reflect this behaviour in the 

scheduling algorithm. The same is true for the packet loss: higher packet loss predicts a less 

reliable network, and we should give less importance to such a site when making scheduling 

decisions.  

4.3.2 Computation Cost 

The second important cost which needs to be part of the scheduling algorithm is the 

computation cost. Jin et al. describe a mathematical formula [49] to compute the processing 

time of a job: 

Computation Cost= 765 WSiteLoadW
P
QW

P
Q

ii

i ×+×+×  

Equation 3: Formula for the Computation Cost 

Where Q is the total number of waiting jobs on all the sites, Qi is the length of the waiting 

queue on site i, Pi is the computing capability of the site i (the total number of processors at 

site i) and SiteLoad is the current load on that site. SiteLoad is calculated by dividing the 

number of jobs running by the processing power of that site. The Qi/Pi ratio computes the 

processing time of the job. The Qi/Pi ratio of the two sites cannot be the same since the 

number of jobs submitted to the sites will always be different due to differing SiteLoads and 

other appropriate parameters such as the data transfer cost of the sites. The unit of the 

computation cost is time (minutes or hours). Again W5, W6 and W7 are the weights which 
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can be assigned depending upon the importance of the queuing and the processing capability. 

A higher weight means that a particular parameter is more significant for the scheduling 

decision. For example, a larger queue makes a site less attractive for job placement so we 

assign it a bigger weight to make the cost higher. Similarly, site load reflects the current load 

on a site, so again we assign a higher weight if the load on that site is higher. Higher 

computing capability is a desired feature for job scheduling on a site and this means the cost 

will be minimized if the computation is higher and we can assign a smaller weight to make 

this site favoured for job scheduling. 

4.3.3 Data Transfer Cost   

The third most important cost aspect in data intensive scheduling is the Data Transfer Cost 

(DTC) which includes input data, output data and executables. Park and Kim describe a 

mathematical technique [42] to calculate the aggregate data transfer time which includes all 

three parameters. Here we do not use bandwidth only to calculate the data transfer cost, 

rather we use the Network Cost (NC), as calculated in Section 4.3.1. We take the case of 

remote data and different (remote) execution sites so that the Meta-Scheduler can consider a 

worse-case scenario in scheduling. Network cost will be higher if the bandwidth of the WAN 

link between the two sites is small and vice versa. A higher network cost will lead to a longer 

data transfer time and therefore a higher data transfer cost. Similarly a larger data size will 

take more time to transfer and therefore the cost required to transfer this data will be higher. 

From this discussion, we can deduce that these two parameters (i.e. network cost and data 

transfer cost) are proportional to each other and therefore: 

   NCDTC α ……………… (I) 

Since data transfer cost will increase with the data size, we can also write equation I as  

  NCDataDTC ×α  ……. (II) 

From I and II, we can deduce that  

                             DTC = NCDataW ××8        ………(III)         

We can further expand the equation III into the following expression: 
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Data Transfer Cost (DTC) = Input Data Transfer Cost + Output Data transfer cost + 

Executables transfer cost  

DTC = )( NCInputData×  + )( NCOuputData×  + )( NCexecutable×  

Equation 4: Data Transfer Cost 

In this equation, we consider three elements for data transfer. All data transfer costs are 

basically the time consumed in transferring the data, therefore the units balance on both sides 

of the equation. Input data transfer cost is the most significant one since analysis is performed 

on the input data and it can be hundreds of terabytes. This huge data transfer and replication 

process strongly depends on the network cost. A higher network cost will increase the data 

transfer cost and we can use the associated weight to adjust this value according to its 

importance. For example, higher bandwidth will minimize the network cost which will 

reduce the input data transfer cost. The same is the case for the output data since output data 

needs to be transferred to the location from where the job is submitted. So output data 

transfer cost should also be calculated when making scheduling decisions and in some cases 

this data is even higher than the input data.  

Executables mentioned in the data transfer cost are application data and user code which will 

be submitted for execution. This data is much smaller than the input and output data and 

therefore its associated transfer cost is lower compared to the input and output data transfer 

costs. In some cases it is necessary to calculate the additional cost due to the application data 

cost. Large executables have a significant transfer cost when remote execution sites are less 

reliable, for example due to poor WAN connectivity. This is also true for compute intensive 

jobs where computation nodes are not located at the same site. We can reduce the response 

time by moving input data from one site to an alternative that has a larger number of 

processors, since computational capabilities of a remote site without replicated data can be 

superior to the capabilities of other sites with replicated data. This is explained with the help 

of an example in section 4.4.2. In this scenario, the input data located in site i is transferred to 

site j which has sufficient computational capabilities. Also application codes should be 

transferred from the local site to site j. Then the processing is performed at site j and the 

resulting data will be transferred back to the local site i.  If the data is available on tape, 

access latency can be higher and it can no longer remain feasible to move the data towards 
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the jobs. But this problem will remain equally valid if the job is scheduled to a local site since 

access latencies will remain the same. Therefore tape latencies should also get a weight to 

consider before the job is scheduled on a site. Some time it can be more feasible to fetch data 

from a remote site due to stable networks than to get the data from a tape which is available 

locally or on a close site. 

4.3.4 Total Cost 

Once we have calculated the cost of each stake holder, the total cost is simply a combination 

of these individual costs as calculated in Sections 4.3.1, 4.3.2 and 4.3.3 thus: 

Total Cost C = Network Cost + Computation Cost + Data transfer Cost 

The main optimization problem that we want to solve is to calculate the cost of data transfers 

betweens sites (DTC), to minimize the network traffic cost between the sites (NTC) and also 

to minimize the computation cost of a job within a site. So for any particular job we calculate 

the data transfer costs across all sites and choose the one with the minimum network, data 

transfer and compute cost rather than minimizing these costs through changing the 

parameters. To simplify the optimisation problem we assume that any given site can have: 

• One or many storage resources (Storage Elements, SEs)  

• One or many computing resources (Computing Elements, CEs). 

Therefore, we are mainly interested in the wide-area network performance rather than 

specifying all network details within a site. We assume that the local network latency is more 

or less homogeneous for all nodes (storage or computing) within a site.  

4.3.5  Allocation of Weights 

Depending on the nature of the scheduling problem, it may be appropriate to give some of the 

cases greater weights than others in computing frequency distributions and statistics. The 

way we do this is to specify that a certain variable contains the relative weights for each case 

and should be considered as a weight variable. The goal of any weight is to prioritize or 

characterize different variables according to the chosen measure of contribution or influence. 

Since the objective in using weight allocations is to gauge relative weights rather than actual 
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weight values, arbitrary weighting schemes as discussed in the following paragraphs can 

attach incorrect weights to the component variable if care is not taken in assigning the 

weights. For example, network cost is given a higher weight for data intensive jobs and a 

lower weight in compute intensive jobs since compute intensive jobs do not require large 

datasets. However, if the network cost is not assigned a weight based on the job nature 

(compute or data intensive), it can lead to performance degradation for the Grid. Based on the 

assigned weights, the scheduler can assign a job to a site which may not be ideal for 

executing this kind of job. 

Let us explain the philosophy of weight allocations through a worked example. Numbers are 

taken arbitrarily to explain the weight allocation in figure 4.1 but they are sufficiently 

representative of the actual Grid system and are closer to the real values. This will also 

demonstrate what are suitable weights for data intensive applications and how we can set the 

weight in case of high throughput applications. It is to be noted that the network compute, 

and data transfer costs mentioned in figures 4.1 and 4.2 are calculated using the equations 

discussed in sections 4.3.1, 4.3.2 and 4.3.3 respectively. Let us suppose we have a 100 GB of 

data located at a site in Japan and that we have jobs that need to access the data for 

processing and analysis. We also assume that we have only this single copy of the data across 

the Grid and that every job wherever submitted will use this data. Via an information service 

we have determined that a site in Switzerland has the greatest number of computing cycles 

available for the analysis since it is the least loaded available site and has fewest jobs in its 

queue. Moreover, there are 8 CPUs available in Japan and 50 in Switzerland, and the 

bandwidth between these sites is 100 MB/s. The queue size for the site in Japan is 20 whereas 

that in Switzerland is 2 jobs only. We also assume that the total jobs in the Grid are 1000 at 

this point in time.  

We calculate the site load by dividing the jobs in the queue by the number of CPUs 

(assuming CPUs on all the sites have equal processing power). Now there are two options for 

data analysis: either we should submit the job to the site in Japan where the required data is 

available or we should transfer the data to the site in Switzerland where the computing 

capacity is available. The scheduler must decide where this job should be placed so that it has 

the least overall execution time. We check the compute cost and data transfer cost to enable 

the decision. The job is data intensive therefore data transfer should get a higher weight 
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relative to others. The scheduler assigns an equal weight to the compute cost on each site. 

The network cost should be ignored for the time being since we assume that it will remain 

constant between the two sites. Since we are making a pre-processing decision, we will take 

input transfer only. We can ignore the executable transfer cost since this data is minimal as 

compared to input data. RTT and Loss can be ignored since the network seems to be pretty 

stable. Normally a weight assigned to one variable will be the same for all sites otherwise we 

cannot compare the strengths or weaknesses of a site. Weights are arbitrarily assigned in the 

range 1 to 20 where 20 represents a very significant factor and 1 a very insignificant factor.  

In this example, the site load is a very important factor since it decides how long a job will 

wait until a job gets a CPU so we have allocated it a maximum value of 20. Further work is 

required to simulate the exact behaviour when we vary the weights for different variables and 

check the outcome on the scheduling optimization. Since, in this worked example, the data 

transfer cost for Japan is zero, we have assigned a minimal weight of 10 to the same variable 

for Switzerland site as otherwise it can bias the whole comparison. 

 

Figure 4.1: Weight Allocation and Cost 

From the above calculation in Figure 4.1, it is clear that the cost for job placement in 

Switzerland is much higher than the one in Japan and we should send the job towards the 

data even if better computing cycles (CPU’s) are available at the site in the Switzerland. We 

see that it is the data placement cost which has reduced the chances of selection for the site in 

Switzerland. Before actually placing the job on a site in Japan, we have to check if there is 

any other site where the cost combination is less. We have realized that although there is no 

better site than the one in Switzerland in terms of computation power, the Scheduler has 

found a site in UK where the bandwidth is much higher (10 Gbps) than the Japan-

Switzerland link, and we should calculate the cost of job placement for this site. The site in 
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the UK has 30 CPU’s available and there are 10 jobs in the queue. So we need to calculate 

the cost of job placement in the site in the UK. 

We can see in this example that the better network link has enabled the scheduler to select a 

site other than those in Switzerland and Japan (cf. Figure 4.2) and the favoured solution is to 

move the data and the job towards this site in the UK. Although this site does not have the 

data and is not as powerful in compute resources as was the case in Switzerland, its job 

placement cost is still much lower than the other sites and clearly job placement on this site 

will reduce the overall execution time significantly. 

 

Figure 4.2: Cost Calculation for best sites 

4.4 Scheduling Algorithm 

In this section, the DIANA Scheduling algorithm is described which takes into account all 

the three costs which were discussed in the previous sections. The scheduling algorithm also 

takes into consideration the priorities but their role and functionality will be discussed in the 

sections 4.5 and 4.7. Following this a scheduling matrix is discussed to illustrate the DIANA 

scheduling process by incorporating the costs and making the site selection decisions. After 

this an example case study is described which further highlights the functionality of the 

Scheduling algorithm through a worked example. 

4.4.1 Pseudo Code of the Algorithm 

There are two scheduling schemes that the proposed algorithm will use: a Normal Scheduling 

Scheme and Job Migration (see section 4.7). It is to be mentioned here that job migration and 

job export will be used interchangeably in this thesis. The Normal Scheduling Scheme deals 
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with those jobs which are being submitted to a site by the scheduler for the first time and 

have not, as yet, been migrated whereas migration based scheduling scheme deals with those 

jobs which are scheduled to a site as a result of some job migration process. Here, the meta-

scheduler consults its peers, collects information about the peers (including network, 

computation and data transfer) and selects the site having minimum cost. It selects whichever 

site is the best site for its execution based on this cost estimation scheme. The meta-scheduler 

deals with both computational jobs and data intensive jobs using the DIANA meta-

scheduling algorithm. As discussed in chapters 1 and 3, jobs under consideration are either 

simulation based or analysis jobs. Simulation jobs are compute intensive and analysis jobs 

are data intensive. In the job description file, the type of job is described which helps to 

differentiate between compute and data intensive jobs. 

In the case of computational jobs (i.e. where the job requires mainly CPU time), the meta-

scheduler should schedule a job to the site where the computational cost is a minimum. At 

the same time, we have to transfer the job’s files so that the job can be transferred as quickly 

as possible. The job might also require some input data which suggests selecting a site which 

has better network capacity (i.e. highest response time and lowest latency). Therefore, the 

meta-scheduler will select the site with minimum computational cost but also takes into 

account the data transfer cost.  

In the case of data intensive jobs, our preferences will change. In this case our job has more 

data and fewer computation requirements, and we need to identify the site where data can be 

transferred quickly and where computational cost is also low.  In this case, data location will 

play an important role since the data transfer cost will be the key element in such a 

scheduling decision. In most cases jobs are at the same time both compute as well as data 

intensive and will most likely follow the third category of the algorithm. In the third category 

the algorithm considers compute cost, network cost, data location and data transfer costs, and 

the site having minimum aggregate cost is selected for job execution.  
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                                Figure 4.2-a: State diagram of the DIANA scheduling approach 

The state diagram of the DIANA scheduling approach is shown in the figure 4.2-a and the 

algorithm works in the following manner: 

   If the job is compute intensive then 
   computationCost[] = getAllSitesComputationCost(); 
   arrangeSites[] = SortSites(computationCost);   //it will sort array in ascending order 
   for i=1 to arrangeSite.length 
       site = arrangeSite[i] 
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        if ( site is Alive) send the job to this site 
    end loop 
end if 
Else if the job is data intensive then 
   dataTransferCost[] = getAllSitesDataTransferCost(); 
   arrangeSites[] = SortSites ( dataTransferCost );  //it will sort array in ascending order 
   for i=1 to arrangeSite.length 
        site = arrangeSite[i] 
        if ( site is Alive) send the job to this site 
   end loop 
end else-if 
Else if (job is data intensive and compute intensive) 
   computationCost[] = getAllSitesComputationCost() 
   dataTransferCost[] = getAllSitesDataTransferCost() 
  NetworkCost[]= getAllSitesNetworkCost() 
// since length of computationCost and dataTransferCost array is same. So we can use any 

of them 
    siteTotalCost [] = new Array[computationCost.length] 
    for i = 1 to computationCost.length 
         siteTotalCost [i] = computationCost[i] + dataTransferCost[i] + NetworkCost[i] 
     end loop  
    sites [] = SortSites(siteTotalCost)//ascending order 
    for j = 1 to sites.length 
        site = sites[i] 
       if ( site is alive) schedule the job to this site 
     end loop 
end else-if 

 

4.4.2 Scheduling Matrix  

We can now calculate the cost of the job placement on each site with respect to the 

submission site. This will be a relative cost since it will always be measured with reference to 

the user’s location on the Grid which is in fact the submission site. This scheduling matrix is 

constantly updated at each site and passed between the site meta-schedulers to determine the 

Grid weather at each site and to exchange the load and other related information between the 

sites.  Next, we can populate a cost matrix with cost values against each site. In detail we 

look at the number of possible sites and calculate the total cost for each pair (site i – site j) 

and put that into our cost matrix. 

If there is a local scheduler at a given site, the cost matrix will be a 1xN matrix, whereas in 

the case of a Meta-Scheduler, it will be an NxN matrix. Since our intended target is the 

global or Meta-Scheduler, we shall consider the latter case. We do not take into consideration 
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all the computation and storage sites in this cost matrix since that would require significant 

effort in calculating the cost of each site against all others in the Grid and the matrix 

optimization itself requires further research. Instead, we rank the sites on the basis of storage 

and computations cost and select the best sites (five in this example), which are then used to 

populate the matrix. It is ensured that these “best” sites have the least cost of all sites in the 

Grid since this can promise a reduced time for the overall job execution and ultimately will 

lead towards an optimized scheduling and an optimized Grid.  

Figure 4.3 shows the cost matrix giving the overall cost of job submission from one site to all 

others in the Grid. Cij is the cost of a particular site i from any other one j in the Grid and the 

matrix therefore shows the total cost as calculated above for each site in the Grid. We assume 

that a user can submit a job from one location to any other one in the Grid. Each site has 

almost zero data transfer and network cost with reference to itself and this is shown by blank 

blocks in the matrix. This is the case when data is available locally; it will of course still have 

a computation cost. If this computation cost is high as compared to the total cost at any other 

site, then the job will be submitted to the one having the lowest cost. Whether a single job is 

being submitted to the scheduler or bulk job submission is being managed by the Meta-

Scheduler (as will be discussed in the later sections of this chapter) the cost matrix is equally 

valid since the cost mechanism will describe the time and cost of each job in the global 

perspective.  

  

Figure 4.3: Cost Matrix for the Meta-Scheduler 
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There are certain cases where jobs are submitted in bulk, but bulk job submission does not 

imply that all the jobs will be scheduled on a single site since each job group will have 

different computation and data requirements and hence their associated cost will also be 

different. If the bulk jobs are not resource intensive, it may not be a problem to schedule all 

the bulk jobs on a single site, otherwise it may be chaotic to submit such jobs on a single site 

as this will generate long queues and could result in an overloaded site and a sub-optimal 

scheduling strategy. A long queue will not be a problem if there is a large CE with many 

CPUs where long queues can be served quickly. A long queue and a fast machine is much 

better than a short queue on very slow machines since all the jobs in the queue will be 

quickly consumed by the faster CPU’s. The cost model takes this aspect into account when 

we talk about computing capability and this can be adjusted by assigning suitable weights to 

each cost factor. In the case of bulk jobs, where many jobs are simultaneously submitted for 

scheduling, if the bulk submission shares common input data, then these can be scheduled on 

a single site. If the cost of the data transfer is more than the cost of the computation, the bulk 

submission of the jobs will be cost effective for scheduling on one particular site. A detailed 

algorithm on bulk scheduling is discussed in section 4.6. 

The cost matrix is equally valid for other types of jobs as well. For example, computation 

intensive jobs can also profit from this matrix and we can populate the matrix with the 

computation cost of that particular site as detailed in Section 4.3.  In this case, although the 

data transfer and network cost is minimal, queue and computation costs can be helpful for 

making optimal scheduling decisions where a suitable combination of queue length, site load 

and computation cost can yield higher throughput. However, the most important use of the 

scheduling algorithm based on this cost matrix is for data intensive jobs. From the preceding 

discussion it is evident that this cost matrix can be helpful in finding the cost of job 

submission on a particular node from one point to any other point on the Grid. The cost 

calculation is relative since each cost element is between any two sites, which is the function 

of the different parameters including network, data and computation cycles available. 

Once the cost matrix is populated, we can find the minimum cost of a particular site from all 

others sites by searching the cost matrix. This will indicate the site having the least cost. 

Thus:  

i = Site Number 
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C[i][j] represents an nxn matrix containing costs of site i with site j 

minimumWeight = C[i][1] 

siteIndex = 1 

for j := 2 to n   # n represents total number of sites 

if( C[i][j] < minimumWeight) 

siteIndex = j 

minimumWeight = C[i][j] 

Once the site with the least cost has been selected, the resource broker (i.e. the submission 

and execution service) will submit the job on that site. The cost matrix is the core of the 

DIANA Scheduler in selecting the optimal site for job execution. This cost matrix integrates 

all the costs which are calculated using the parameters such as queue and waiting time and 

the data transfer time etc. as discussed in section 4.2 and is used by the sites to exchange 

information (compute, network and data transfer costs etc) between the sites. Each site can be 

evaluated for the job scheduling using its cost matrix values with respect to other sites. The 

network cost calculated in the algorithm is used to select the best replica of a dataset and this 

cost will be used as input to the scheduler. Once the broker gets the best replica and its 

location, it is asked to bind one of them with a suitable computing element for the specified 

job. For this, computation and data transfer costs are used to find a best combination of 

computing and storage element. Finally, the submission service submits the job to the 

particular site which is selected by this algorithm. This is explained with the help of an 

example in the following section. 

4.4.3 An Example Scheduling Matrix   

In the example diagram shown in the Figure 4.4, we have selected the five best sites in the 

example Grid environment in terms of their costs which are located in Italy, Austria, 

Switzerland, UK and Japan. We further suppose that these sites are ranked best on the basis 

of their network, storage and computation costs. Now we populate the matrix by taking the 

cost of each site from the rest of the sites. We also assume that local sites are not always the 

best for job execution since in some cases the data is not available locally (therefore, we do 

not include these values in the cost matrix). The rows are the sites where the jobs are 

executed and the columns are the sites from where we have to submit the jobs. Now, we have 

populated the cost matrix for these best sites in the Grid and filled the blocks with the test 
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values of the costs from each node to all others. Ideally, network and data transfer costs 

remain the same from one node to another measured from any of the two locations and we 

have used this assumption while populating the matrix. However, computation cost will not 

be the same since each site has a different computing capability and as a result, the cost from 

Italy to UK and vice-versa will not necessarily be the same. Once the matrix is populated, we 

have a fair idea of the cost of job submission and execution. Now we can easily decide which 

site is the best for job submission. From the matrix, it is evident that if a job is submitted 

from the site in Switzerland to the site in the UK, it will be the most efficient case of job 

execution (Figure 4.5). Similarly, we can decide on which site will be optimal to execute a 

job from any other one in the matrix. The weights assigned are dynamic and can change with 

time. For a static set of the results, these weights will remain constant. Since monitoring tools 

can measure the cost parameters quite frequently, we will also update these weights 

accordingly. 

 

 

Figure-4.4: An example scheduling scenario 
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Figure 4.5: Example Scheduling Matrix 

4.5 Queue Management in DIANA  

4.5.1  Multilevel Queue Scheduling 

In Grid, users submit a number of jobs which in most cases cannot be executed in real time. 

They are most likely to have to wait before an execution slot becomes available. Scheduling 

queues are the mechanism where these jobs wait and in most cases, such as the LCG and 

OSG project, job queue times can be larger than the execution times. It is important to have a 

mechanism for managing the scheduler queues so that users not only get an acceptable level 

of quality of service but overall wait times are also reduced. Moreover, there should be a 

mechanism so that all users should get an execution slot for their jobs instead of allowing the 

jobs to spend considerable time (days in some cases) in queues. This should also discourage 

the monopolistic use of the resources by restricting the users to submit bursts of jobs.  To 

address these concerns, the meta-scheduler supports multilevel queue scheduling and its 

scheduling algorithm schedules the jobs following the queue management policies. For this, a 

queue management module is created which will be discussed in the following sections of 

this chapter. Moreover, as a result of the different quality of service requirements from users, 

jobs can be classified into different queues. For example, a common division is made 

between interactive jobs and batch jobs. These two types of jobs have different response-time 

requirements, and so might have different scheduling needs. In addition, interactive jobs may 
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have priority over batch jobs. A multilevel queue-scheduling algorithm partitions the ready 

queue into multiple separate queues as shown in Figure 4.6. 

 
 

Figure 4.6:   Multi level queue scheduling 

The jobs are assigned to a queue, based on some property of the process, such as memory 

size, process priority or process type. Each queue has absolute priority over lower-priority 

queues. No job in the long running jobs queue for example, can run unless the queues for 

interactive jobs and batch jobs are all empty. In general, a multilevel feedback queue 

scheduler is defined by: 

• The number of queues 

• The nature of the jobs 

• The scheduling algorithm for each queue 

• The method used to determine when to upgrade a process to a higher-priority queue 

• The method used to determine when to demote a process to a lower-priority queue 

• The method used to determine which queue a process will enter when that process 

needs service. 



 

 82

 

                                       Figure 4.7:   Multi-level feedback queues 

In a multilevel queue-scheduling algorithm, jobs are permanently assigned to a queue on 

entry to the system. The Scheduler assigns priorities to jobs upon submission and the jobs 

join one of the queues based on the priority. The priority is assigned using a queue 

management algorithm as discussed in section 4.5.2. We have employed multilevel feedback 

queue scheduling as shown in Figure 4.7 since it allows a job to move between queues. The 

idea is to separate processes with different requirements and priorities. If a job uses less CPU 

time, as determined by the CPU requirements of jobs specified in the job description file or is 

very data intensive, it will be moved to a higher-priority queue. Similarly, a job that waits too 

long in a lower-priority queue may be moved to a higher-priority queue.  

4.5.2  Queue Management Algorithm 

As discussed in the previous section, queue management is required to provide better 

management of the user jobs. Elmroth and Peterg [48] describe a Grid wide fair share 

scheduling system for local and global policies. They feature quota based scheduling and 

multilevel queues, although they do not consider reprioritisation and further, their solution 

was not P2P oriented. The GridWay Scheduler [70] provides dynamic scheduling and 

opportunistic migration but its information collection and propagation mechanism is not 
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robust and in addition it has not as yet been exposed to bulk scheduling of jobs. In DIANA 

we propose a multi-queue, feedback-oriented queue management approach for bulk job 

scheduling. Users may send jobs in a burst, and the meta-scheduler has to place all these jobs 

in queues after assigning priorities. We must ensure that the priority of the jobs decreases as 

the number of jobs in the queues from a particular user increases. This is important otherwise 

a single user may send thousands of jobs in a burst and thereby improve the priorities for all 

his jobs. Each queue will contain jobs having priorities falling in its specified priority range. 

According to our priority calculation algorithm, the priority of all the jobs will be in the 

interval {-1, 1} where -1 indicates the lowest priority and 1 indicates the highest priority. 

This range comes from the mathematical derivations in the following paragraphs and 

according to these equations, the priority will always be in the interval {-1, 1}. Therefore, the 

priority ranges for the all the queues, (suppose four queues Q1, Q2, Q3, and Q4) is proposed 

to be: 

 15.0:1 <≤ priorityQ  
 5.00:2 <≤ priorityQ  
 05.0:3 <≤− priorityQ  
 5.01:4 −<≤− priorityQ  

In the process of selecting the job’s position in the queue, we place the jobs in the descending 

order of their priorities i.e. the job with the highest priority will be placed first in the queue 

and a priority order is followed for the remainder of jobs. Finally we determine all those jobs 

having the same priority, and arrange them on a FCFS basis.  

Job migration between queues is an essential feature of DIANA Queue Management. Jobs 

are dynamically assigned to the queues based on the assigned priorities. Further there is 

migration of jobs from lower priority to higher priority queues (and vice versa) and between 

the meta-scheduler queues at various sites which is an unique feature of the DIANA 

scheduler. Once jobs have been assigned by the meta-scheduler to a local scheduler, these 

jobs then cannot be migrated since these are beyond the control of a meta-scheduler. 

Moreover, a time threshold and a job threshold which dictate the priority control of jobs from 

a user lead to a suitable quality of service since each user can get a time slot and no user can 

be monopolistic in executing the jobs. On the arrival of each new job, all the jobs already 

present in the queues are re-prioritized. The re-prioritization algorithm may result in the 

migration of jobs from low priority to high priority queues or from high priority to low 
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priority queues. The reprioritization technique militates against aging since the jobs are 

assigned new priorities on the arrival of each new job and each job gets its appropriate place 

in the queues according to the new circumstances. In the case of congestion in the queues, the 

Queue Management algorithm will migrate the jobs to any other remote site where there are 

fewer jobs waiting in the queues. However, only low priority jobs are migrated to remote 

sites because low priority jobs (e.g. for a job falling in Q4) will have to wait for a long time 

in the case of congestion. Knowing the arrival rate and the service rate of the jobs, we can 

decide whether to migrate the job to some other site or not. The formula to decide whether 

there is congestion in the queues or not is: 

 (Arrival Rate – Service Rate ) / Arrival Rate  >  Thrs     

Where Thrs is the threshold value configurable by the administrator. If we increase Thrs, then 

this means that the arrival rate may exceed the service rate and we must allow more jobs in 

the queues and there is less migration. In any case this value lies between {0, 1} interval. 

Taking this, we can now explain the queue management algorithm. 

Suppose ‘n’ is the total number of jobs of the user in all job queues. Let the new job require 

‘t’ processors for computation and ‘T’ be the total number of processors required by all the 

jobs present in all job queues. We denote the quota of the user, submitting the new job, by ‘q’ 

and the sum of the quotas of all the users, currently having their jobs in the job queues 

including ‘q’, by ‘Q’. So if the new user has already some jobs in the job queues, ‘q’ will 

appear just once in the ‘Q’. Let ‘L’ be the sum of lengths of all job queues i.e. the total 

number of jobs present in all job queues including the new job. So if there are already, say, 

1500 jobs in the job queues when 100 new jobs arrive, then L = 1600. To assign a new job a 

place in the job queue, we associate a number to it. This number is called the “Priority” of the 

job and has its value in the interval {-1, 1}. The rule is that “the larger the priority, the better 

the place will be”. Obviously if its priority is in the range {0,1}, it will be considered as a 

good candidate. To attain a good priority we must meet the following two constraints: 

T
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Combining these two inequalities IV and V, we get 
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×
×  by ‘N’ 

Equation 5: Queue Management Equation 

‘N’ represents the threshold and obviously, it is dynamic. For each job, its value will be 

different. If a user’s number of jobs in the queue crosses this threshold then the priority of the 

jobs crossing the threshold ‘N’ must be lowered .To calculate the priority of the new job, we 

use the following algorithm: 

 If ( n <= N ) 

  Pr(n) = (N – n) / N  

 Else 

  Pr(n) = (N – n) / n  

Where Pr (n) denotes the priority of the new job. Also note that the priority will always lie in 

the interval {-1, 1}. 

                                 Figure 4.8: Priority Scenarios for a Single Job 

On the arrival of each job, the priorities of all the other jobs will be recalculated. This 

technique is known as reprioritization. The reason for doing this is that we want to make sure 

that the jobs encounter minimum average wait time and the most “deserving” job in terms of 

quota and time is given the highest priority. Moreover, by using this strategy we need not 
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worry about the starvation problem and there is no aging since jobs are reprioritized on the 

arrival of each new job. The algorithm to reprioritize the jobs is the same as that mentioned 

above. The value of q for a particular user’s jobs remains the same, Q and T remain the same 

for all the jobs, however, t is job specific and it may vary with each job. Therefore, the value 

of ‘N’ differs for each job. By using the above mentioned formula, we can calculate the 

priority for all the jobs and place them in their respective queues. Of course, if more than one 

job shares the same priority then the timestamp associated with each job is compared and the 

older job, which has spent more time in the queue, is placed before the new job. Also note 

that when a job is taken out of service the rest of the jobs need not be reprioritized. 

Let us consider a scenario through the following worked example where a new job is 

submitted by user A and it requires one processor i.e., t = 1. Experimentation details of this 

will be given in chapter 8 through actual deployment and simulations. We assume that the 

quota q for user A is 1900 and currently there is no job in the queue therefore, L =1, n = 1, Q 

= 1900 and T = 1 and N = (1900 * 2) / (1900 * 2). If we put these values in the algorithm and 

the test ‘if’ condition is true, then this job is placed in Q2. This scenario is shown in Figure 

4.8.  We assume that the first job has not as yet been serviced and meanwhile, user A submits 

his second job demanding 5 processors i.e. t = 5, then L=2, n = 2, T = 1 + 5 = 6, q = 1900, Q 

= 1900 and N = (1900 * 5) / (1900 * 3). 

Figure 4.9: Priority Scenario 2 

Again putting these values in the algorithm, we find that the ‘if’ condition becomes false and 

Pr (n) = -0.4 and therefore the job is placed in Q3. Reprioritization then starts and the priority 

of the job(s) already present in the queue is/are recalculated. This time the priority is set to 

0.666666 and this job is migrated from Q2 to Q1 i.e., the highest priority queue as shown in 
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the Figure 4.9. This is of interest because user A has submitted only two jobs and the 

threshold has not been exceeded on the second job. The algorithm equally handles all the 

users and jobs and the priorities decrease as the number of jobs by a user increases and it 

does not matter that the second job exceeds the threshold. Now suppose that another user B 

submits his first job which requires one processor i.e. t=1 having user quota of 1700, q=1700. 

Assuming that the two jobs by user A are still in the queues, L=3, n=1, T= 1+5+1= 7, and Q 

= 1900+1700 = 3600. The ‘if’ condition holds true and Pr (n) = 0.6974 and therefore the job 

is placed in Q1. Reprioritization starts and as the result, the priorities of the previous jobs 

change and the first job by user A is migrated from Q1 to Q2 and the second job by user  A is 

migrated from Q3 to Q4. This is illustrated in Figure 4.10. 

 

Figure 4.10:  Priority calculation for jobs from different users 

It is notable that the first job by both user A and B demands 1 processor and the quota of user 

A is greater than user B, even if the priority of user B’s job is greater than the user A job. 

This is because user A has submitted more jobs than user B and the algorithm handles this 

while calculating priorities. In this way the algorithm manages and updates the queues on the 

arrival of each new job. 

4.6 Bulk Scheduling  

Scientific analysis tasks can involve thousands of compute, data, and network resources. 

Individual user analysis tasks, so-called bulk jobs, are generally characterized by the jobs 

consuming large amounts of these resources running for relatively short times, i.e. minutes to 
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a few hours. These jobs may involve an iterative process with the result of one analysis pass 

being used to adjust conditions for the next. For this reason turnaround is in general 

important. Such jobs can be either I/O intensive or can be CPU-intensive. In either case, such 

jobs tend to subject the computing system to very ‘spiky’ loads in CPU utilization and/or I/O. 

Since the datasets used in bulk jobs are of modest scale and are generally accessed multiple 

times, moving the data and caching it at the wide-area location of the available CEs is a 

useful strategy. In the following sections, a detailed analysis of the bulk scheduling process is 

provided and various approaches are discussed to optimize the bulk scheduling.  

4.6.1 Bulk Scheduling with DIANA 

Given the large number of jobs that can result from the job-splitting in the bulk scheduling, it 

should be possible to submit the job clusters to the scheduler as a unique entity, with 

subsequent optimization in the handling of the input data. Jobs may compete for scarce 

resources and this can distribute the load disproportionately among the Grid nodes. The 

scheduling approaches which were discussed in the previous sections of this chapter are 

based on ‘greedy’ algorithms in which a job is submitted to a best resource without assessing 

the global cost of this action. However, this may lead to a skewed distribution of resources 

resulting in large queues and performance and/or throughput degradation for the remainder of 

the jobs. We present a scheduling approach which not only allocates best available resources 

to a job but also checks the global state of jobs and resources so that the strategic output of 

the Grid is maximized and no single job can undergo starvation. In the following sections of 

this chapter, the DIANA Scheduling approach is extended for scheduling optimization of 

bulk jobs and an algorithm is explained for scheduling the bulk jobs. It is shown that a 

priority driven multi-queue feedback based approach is the most feasible to tackle the issue 

of bulk scheduling.  

4.6.2 Priority and Bulk Scheduling 

The proposed scheduling algorithm described later is termed a priority algorithm. A priority 

is associated with each process and the CPU is allocated to the process with the highest 

priority. Equal priority processes are scheduled on a First Come First served (FCFS) basis. 

Scheduling can be discussed in terms of high priority and low priority. Priorities can be 

defined either internally or externally. Internally defined priorities use some measurable 
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quantity or quantities to compute the priority of a process.  For example, time limits, memory 

requirements, the number of open files and the ratio of I/O to CPU time can be used in 

computing priorities. External priorities are set by criteria that are external to the scheduling 

system such as the importance of the process. Priority scheduling can be either pre-emptive 

or non pre-emptive. The bulk scheduling algorithm described here is not a pre-emptive one. It 

simply places the new job at the head of the ready queue and does not abort the running job.  

4.6.3 Bulk Scheduling Algorithm Characteristics 

By following all of the above points, a multilevel feedback queue and priority-driven 

scheduling algorithm for bulk scheduling is proposed in the following sections. The salient 

features of this bulk scheduling algorithm are now briefly discussed. The pseudo code of this 

algorithm is given in Appendix-1. 

•  Job priority is important while scheduling the bulk jobs. High priority jobs are 

executed first. The priority of jobs starts decreasing if the number of jobs from a 

user/site increases beyond a certain point. It becomes less than all the jobs in the 

queue if job frequency (no of jobs per unit time) is very high.  

• A priority scheduling algorithm may leave some low priority processes waiting 

indefinitely for the CPU (so-called “starvation”). We use an aging technique to 

overcome this problem. Starvation of the resources is controlled by controlling the 

priority of the jobs. This is shown in Figure 4.11. If no other job is available in the 

queue then all jobs from the user/site will be executed as high priority jobs. We give 

less preference to quota and accounting since this restricts the users to a particular 

limit. Instead we prefer priority to schedule bulk jobs and to control the jobs 

frequency as well as the queue. Similarly we do not follow the budget and deadline 

method of economy-based scheduling since the Grid is dynamic and volatile and a 

deadline is feasible only for static types of environment. 

• It is assumed that all of the bulk jobs in a single burst will be submitted at a single 

site. The reasons behind this approach are obvious. Bulk jobs have almost similar 

execution and input requirements and work on the same set of datasets. Scheduling 

them on a single site will reduce the data transfer time and consequently will improve 

the overall execution time. If data and computing capacity is available at more than 
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one site job splitting and partitioning can be used. Queue length, data location, load 

and network characteristics are key parameters for making scheduling decisions for a 

site. The priority of the burst or bulk jobs from a single user is always the same since 

each such collection of jobs has the same execution requirements.  

• We have implemented non pre-emptive scheduling [132] at the user level, since at the 

user level we cannot interrupt a running process and block it in order to allow a new 

process to run. Upon receiving a request, the policy decides whether to process the 

request immediately, or to postpone the execution. Another reason for not using a 

pre-emptive scheduling approach is the interactive nature of most of the jobs. Since 

most jobs are data intensive, this makes it increasingly important to consider the non 

pre-emptive mode as a primary approach due to the nature of long running data 

transfer operations as low profile processes. A ‘Round Robin’ approach inside queues 

is not feasible in this case since most of the analysis jobs are interactive and the user 

is eagerly awaiting the output. Any delay in the output may lead to an unsatisfied user 

and this requires us to provide additional resources to this job for quick processing. 

This also leads to the conclusion that the pre-emptive approach is not feasible for 

interactive jobs but can be considered for batch jobs. In this algorithm we consider 

only the interactive jobs used for a Grid-enabled analysis.  

 

Figure-4.11: Multi-level Priority Queues and Aging on each site 



 

 91

• Job movement between priority queues is a key point of the algorithm. Jobs can move 

between low priority to high priority queues depending upon the number of jobs from 

each user and the time passed in a particular low priority queue. Although migration 

of the jobs between queues is supported, within a single queue we use the FCFS 

algorithm. Before jobs are placed inside the queue for execution, the algorithm 

arranges the jobs using the Shortest Job First (SJF) algorithm.  

• The numbers of jobs in a bulk job submission are specified in the job description 

language. Fewer processors required means the job execution time is shorter and its 

priority should be set higher. All shorter jobs are executed before longer jobs; this 

reduces the average execution time of all jobs. 

• Priorities can be of three types: user, quota and system centric. We employ a system 

centric policy (embedded inside the scheduler) since otherwise users can manipulate 

the scheduling process. In this way a uniform approach will be set by the scheduler 

for all users and a similar priority will be applied to all stake holders. Furthermore, 

priorities can be static or dynamic. Static priorities are assigned at the time of 

creation, while dynamic priorities are based on the processes' behaviour while in the 

system. For example, the scheduler may favour I/O-intensive tasks so that expensive 

requests can be issued as early as possible. If data fetching is a long operation then 

the high priority job can be put on hold until the required data is available to that site. 

During this data taking time interval, other jobs get the choice of execution. As soon 

as the required data becomes available, the job on hold is the first one to get the 

execution chance. 

• Knowing the job arrival rates and execution capacity, we can compute utilization, 

average queue length, average wait time and so on. As an example, let N be the 

average queue length (excluding the jobs being serviced), let W be the average 

waiting time in the queue, and let R be the average arrival rate for new jobs in the 

queue. Then, we expect that during the time W that a job waits, R*W new jobs will 

arrive in the queue. If the system is in a steady state, then the number of jobs leaving 

the queue must be equal to the number of jobs that arrive.  

     N= R*W 

Equation 6: Little’s Formula 
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• This equation, known as Little’s Formula [129], is valid for any scheduling algorithm 

and arrival distribution. We can use it to compute any one of the three variables, if we 

know the other two. If the arrival rate of the jobs is more than the capacity of the site 

to compute, then we export jobs to some other site which is less loaded and we can 

compute the results within less time than the current site. The exportation involves 

DIANA calculating the best site. This in fact keeps the whole Grid in a balanced form 

and no site is overloaded or underutilized. 

• When a site is assigned too many jobs, it can try to send some of these to other sites 

[106] [107], which have more free resources or are processing fewer jobs than the 

local site, at that point in time. In this case, the jobs move from one site to another 

based on the cost criteria described in earlier sections of this chapter. The scheduler 

queries all the sites for their average load at that time and calculates the associated 

costs. The one with the minimum cost will be selected. Once a job has been 

submitted on a remote site, the site at which it arrives will not attempt to schedule it 

again on some other remote site (thus avoiding the situation in which a job cycles 

from one site to another). To each site we submit a number of jobs and a job reads an 

amount of data from a local database server, and then processes the data. If a site 

becomes loaded and jobs need to be scheduled on a remote site, the cost of their 

execution increases as the database server is no longer at the same site. If the amount 

of data to be transferred is too large or the speed of the network connections is too 

low, it might be better not to schedule jobs to remote sites but to schedule them for 

local execution.  

• In bulk scheduling there is a time threshold and a job threshold. If the number of jobs 

submitted from a particular user increases beyond the job threshold then the priority 

of the jobs submitted above the threshold number is decreased and the jobs are 

migrated to a lower priority queue. In other words, with an increasing number of jobs, 

the priority of jobs from a particular user starts to decrease. Moreover, a time 

threshold is included to reduce the aging affect. With the passage of time, the priority 

of jobs in the lower priority queues is increased so that it can also have a chance of 

getting executed after a certain wait time.  In other words, the more time a job has to 

wait the more its priority continues to increase. This is illustrated in Figure 4.12.   
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• While migrating the jobs, only low priority jobs are migrated to other sites since high 

priority jobs will get the chance to be executed on the current site. If low priority jobs 

are sent to other sites, there is the possibility that these jobs will again get a very low 

priority on the destination sites. To avoid such a situation a two pronged strategy has 

been adopted. Firstly, it is ensured that the target site has fewer jobs than the current 

execution site, otherwise jobs are not exported to the target site. Secondly, it is also 

checked that there are fewer high priority jobs in the target site as compared to jobs 

on the current execution site. This is checked from the queue management module of 

the jobs on each site and is not included in the cost calculation mechanism discussed 

earlier in this chapter. To further compensate the migrating job, the priority of the 

exported job is increased a step further so that it is compensated for the time it spent 

in the migration process and for fetching its associated data. The job migration 

algorithm is explained in section 4.7. 

 
Figure 4.12:   Priority with Time and Job Frequency 

• If data is transferred to a site then it is permanently stored there, if storage space on 

that particular site permits this operation. This is not a big issue for the scheduling 

algorithm but could be a big issue for the overall performance of the system. The data 

stored on the target site is used for future jobs and this increases the overall efficiency 

of the system. But this results in the limitation that there should not be too many 

copies of the data around the world since an excess of storage copies will consume all 

of the spare storage space and this may restrict the future Grid operations. In 

conclusion, only the strategic placement and storage of duplicate data should be 
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allowed and only if a large number of arriving jobs may wish to use this data. 

Eventually this will enhance the efficiency of the system and, in addition, that of the 

algorithm as well. 

• If the system obeys some quota and accounting based priority then a higher priority is 

assigned to jobs for a user having a larger quota and a lower priority for a small quota 

user. Again it is ensured that low priority jobs get the opportunity to execute and the 

priority of the jobs from the small quota user is increased after a threshold time limit.  

Similarly, the priority of jobs from the higher quota users should be reduced after the 

job threshold so that no such user can create starvation. 

• Checkpointing [131] and process migration are important considerations if a pre-

emptive scheduling policy is selected [130]. Due to the reasons stated earlier in this 

section, only non pre-emptive mode of scheduling is considered and hence 

checkpointing is not required in this case.  Once a job has been assigned to a 

processor, the meta-scheduler can not pre-empt it until the job completes its 

execution. A job cannot start executing on a site as long as its required data does not 

become available and it must keep on waiting while its data is being transferred. This 

is one of the reasons for supporting non pre-emptive scheduling since data transfer 

costs can be very high in the case of data intensive jobs and check-pointing can be an 

expensive operation. 

4.6.4 Bulk Scheduling Algorithm 

The Bulk Scheduling algorithm works as follows. We take each bulk submission of jobs from 

a user as a single group. Each group is taken as a single job by the Meta-Scheduler which is 

scheduled by the DIANA algorithm, as discussed in section 4.4. If this group is too large to 

be handled by a site, it is divided into subgroups, each having a sizeable number of jobs 

which can be handled by any number of the sites in the Virtual Organization (VO).  The VO 

administrator sets the size of the subgroups which are created if the size of the group is very 

large and cannot be accommodated by any single site. This size can differ from one VO to 

another. We assume that jobs are divided into equal but relatively smaller subgroups. The 

size of the subgroup is again set by the VO administrator. The size of the group is specified 
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in the job description language file since the user knows the number of jobs he enclosed in 

this bulk/group for his desired number of events/results. 

First the scheduler checks whether the size of the group can be handled by a single site or 

not. Even if there is a site which can handle the whole group, it still checks whether it is cost 

effective to place this group on this particular site or whether it is more cost effective to 

divide the group into subgroups and submit the resulting subgroups to different sites. The 

group division factor mentioned in the algorithm below is a number used to divide the jobs 

into subgroups (see figure 4.13). The division factor varies according to the number of the 

jobs created from the splitting procedure and the capacity of the sites to execute these jobs. 

Smaller groups mean greater optimization since they can be fitted into a greater number of 

sites. Moreover, shorter jobs get higher priorities as discussed under DIANA Scheduling and 

therefore there are greater chances of their earlier execution and this improves the scheduling 

process. This also gives the advantage of including smaller sites into the execution process 

which otherwise will remain underutilized.  While placing the group or its subgroups, the 

DIANA scheduling algorithm and the bulk scheduling routine discussed in Appendix ‘A’ are 

used and each group/subgroup is treated as a single job for the Meta-Scheduler. If the whole 

group is scheduled to a single site then the whole result is returned to the location which was 

specified by the user. In the case of subgroups, all the data from the subgroup execution sites 

is aggregated to a user specified location. No two groups from a single user or from different 

users can become part of a single group during the scheduling. Each group from each user 

maintains its identity and is treated independently by the scheduler. The pseudo code of the 

algorithm is given as follows: 

Set the size of group in the jdl.  
Set the group division factor// division factor is equal to the number of subgroups as 
discussed above 
Submit the bulk Job in groups 
Get list of sites 
Check the queue size and computing capacity of each site 
Check the data location and data requirements of the group 
Match the site capacity against the bulk job group 
Use the DIANA scheduling approach to select a site 
 
If whole group can be accommodated by the site// site can execute the whole group 
   Submit the group to that site 
   Aggregate the output of all jobs in the group 
   return the results to the user's specified location  
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else 
Divide the group into subgroups using the  division factor 

   Find the matching sites for the subgroups 
Submit each subgroup to different site using DIANA 
scheduling technique 

   Aggregate the out put of all the subgroups  
return the results to the user's specified location. 
  

All these values are specified in the job description language (jdl). jdl is being standardized 

by the GGF/OGF under Job Submission and Description Language (JSDL) but we will be 

using jdl (non-standard version) since EGEE and the CERN experiments are using it as a 

default submission and description language. However, use of  JSDL is being considered for 

future developments. An example will be described in chapter 5 to explain the usage of jdl in 

the DIANA meta-scheduler. To prove the effectiveness of the algorithm, an example is given 

below. For example, the user submits 10,000 jobs in a bulk job. Let us suppose, there are four 

sites A, B, C and D having 100, 200, 400 and 600 CPU’s respectively. We assume that the 

network and data conditions of all three sites are the same.  Since these are bulk jobs, they 

have similar characteristics and we assume that each job in the group takes one hour to get 

processed. Using the algorithm stated above, we can have three possibilities: either to submit 

all the jobs on a single site, to divide the jobs into two best sites (here C and D) or to divide 

the jobs into four sites. Figure 4.13 gives the times taken in each execution process. 

 

Jobs Group 

division 

factor 

A (100) B (200) C (400) D (600) Total execution 

Time (hours) 

10,000 1    10,000 16.6  

10,000 2   4000 6000 10 

10,000 10 1000 2000 3000 4000 8.5  

Fig 4.13:  Job groups and execution improvements 

From the table in Figure 4.13 we can see that by dividing the jobs into a number of groups 

the scheduler has clearly optimized the executions times. There can also be the possibility of 

a job execution limit on a site in which a user cannot execute more than a fixed number of 
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jobs. This concept of small groups will clearly help to optimize the scheduling process in this 

case. This allows a number of user jobs (bulk) to be grouped together as a single group job. If 

it is too large to be handled by any site then the scheduler divides it into sub groups and 

farms these out to all possible sites. But if it can be efficiently executed on a local site as 

against any other available site, DIANA meta-scheduler will schedule this group (or 

subgroups) to a local site. Furthermore there are certain large sites where, at a single point in 

time, all the processors might not be available (due, for example, to some prior executing 

jobs) and all the remaining available computing capability can be utilized by making small 

groups.  This will reduce the queue as well as the load on large sites. This will also provide 

room for the high priority jobs to be executed since this will not starve a single site by 

allowing all the jobs in a group to be executed on a single site. However it does not mean that 

only computing power is taken into account as a submission criterion. Each group of jobs is 

submitted using the DIANA scheduling algorithm which ensures that only that site is selected 

for a group or a single job which has the least overall cost for its execution. We also 

described in the DIANA Scheduler algorithm that shortest job first execution reduces the 

execution times of  all the jobs. This principle is also applicable here. In case of larger 

groups, the waiting times for the jobs will be more and hence it will affect the overall 

execution time. Small groups will spend less time in the queue by getting higher priorities 

and therefore overall execution time will be further reduced. 

4.7 Job Migration Algorithm 

Consider a scenario in which a user submits a job to a meta-scheduler which places the job in 

a queue. If the queue management algorithm (see section 4.5) of the meta-scheduler decides 

that this job should remain in the queue, it may have to wait some time before it gets 

scheduled or before migration to another site. The Queue Management Module of the meta-

scheduler will ask the Scheduling Module to migrate this job.  One important point to be 

noted here is that we want to locate the site where this job can be executed earliest. 

Consequently, our peer selection criterion is based on two things: a minimum queue length 

and a minimum cost to execute this job on the remote site. The meta-scheduler will 

communicate with its peers and will ask about their current queue length and the number of 

jobs ahead of this job. The site with the minimum queue length and minimum total cost is 
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considered as the best site to where the job can be migrated. The algorithm will work as 

follows: 

Sites[] = GetPeerList( ) 
int count = Sites.length // total no of sites 
int queueLength [ ] = Sites.length 
int job_priority = getCurrentJobPriority(job); int jobsAhead[]= new int[ count ] 
for ( i=1 to count ) 
        jobsAhead [i] = getJobsAhead( Sites[i] , job_priority ) 
end for 
int minJobs = jobsAhead[1]; 
String peer=""; 
//find the peer with minimum jobsAhead 
for( j=1 to count ) 
  if(minJobs > jobsAhead[j]) 
       minJobs = jobsAhead[j]; 
       peer = Sites[j]; 
end for 
if ( peer’s jobsAhead < localsite’s jobsAhead) then 
     increase the job’s priority 
     migrate the job to that site 
else 
     keep the job on local site 

This algorithm works in the following manner. Firstly, the algorithm will get the information 

about the available peers from the discovery service. Then it will communicate with each 

peer and collect the peer’s queue length, the total cost and number of jobs ahead in terms of 

job priority. It should be noted that the DIANA meta-scheduler follows the same queue 

management policies and characteristics across all the sites since the same meta-scheduler is 

installed at each site to interact with the local scheduler. The architectural details are 

discussed in chapter 5.  Then it will determine the site with the minimum queue length and 

the minimum jobs ahead. If the number of jobs and the total cost of the remote site is higher 

than the local cost, then this job is scheduled to the local site (i.e. it will not be migrated). If 

other sites are congested then there is no benefit in migrating the job, and that job will remain 

in the local queue and will eventually be served on the local site.  Otherwise, the job is 

moved to the remote site, subject to a cost mechanism. Note that the DIANA meta-scheduler 

does not consider each job for the export process, rather a group of jobs is exported to a 

remote site thereby significantly saving execution time on the remote site. It will not be cost 

effective to poll the remote peers and collect the queue and cost information for each job. 

This process is only carried out for bulk jobs or groups of jobs which are likely to take more 
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time on their local sites. Furthermore, this will reduce communication traffic between the 

peers since all peers are polled only after some intervals when jobs at the sites need to be 

exported. Otherwise if all peers are polled for each job, this would significantly increase the 

communication traffic between peers.   

4.8 Conclusion 

In this chapter, a theoretical as well as a mathematical description of the DIANA meta 

scheduling algorithm and bulk job scheduling has been outlined. It was shown, with the help 

of mathematical equations, that a matrix of different scheduling costs can significantly 

improve the scheduling process if each job is submitted and executed after taking into 

consideration certain associated costs. Queue time and site load, processing time, data 

transfer time, executable transfer time and results transfer time are the key elements for 

improving the scheduling (and execution) and these elements were represented in the DIANA 

scheduling algorithm. The three key costs which need to be calculated were identified as data 

transfer cost, compute cost and network cost and were expressed in the form of mathematical 

equations. It was established that if queue, priority and job migration was included in the 

DIANA scheduling algorithm, the same algorithm could be used for scheduling of bulk jobs. 

As a result, a multi-queue, priority-driven feedback based bulk scheduling and job migration 

algorithms which extend the DIANA scheduling algorithm were proposed and illustrated.  

In the next chapter, the design and architecture details of the DIANA Scheduling system are 

discussed. The proposed system will implement the DIANA scheduling algorithms and will 

also help us to test the system through carefully created simulations. Design and architecture 

of the DIANA scheduling system and various associated scheduling hierarchies are 

discussed. Some aspects of the fault tolerance and the decentralized functioning of the 

schedulers are also outlined through a peer to peer approach.  
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Chapter 5  

  Scheduling Hierarchies and DIANA Architecture 

Chapter 4 presented an overview of the DIANA scheduling system and the DIANA 

scheduling algorithms and discussed the details of the bulk scheduling process. Various 

scheduling approaches were elaborated for optimizing the data intensive scheduling process 

and a discussion of the issues related to bulk scheduling was made. Various scheduling costs 

were calculated and an analysis of the proposed scheduling algorithms was provided. In 

addition issues related to queue management, priority aware scheduling, starvation and aging 

were discussed. 

Chapter 5 discusses the architecture of the Grid schedulers and related issues that optimize 

the scheduling and execution process. The issues which influence the scheduling hierarchies 

are elaborated in section 5.2 of the chapter. A comparison of different available scheduling 

architectures is presented in section 5.3. DIANA follows a P2P scheduling hierarchy and the 

reasons behind the adoption of this approach are stated in section 5.4. The DIANA 

scheduling architecture and scheduling API are presented in the section 5.5.   

5.1 Introduction 

The Grid concept was created to facilitate the use of available distributed resources 

effectively and efficiently. The first step needed before one can utilize the Grid for running 

jobs is to locate and use (the best) resources available to serve those jobs that is the process of 

resource scheduling. This chapter addresses the architectural and theoretical foundations of 

question 5 (described in chapter 1) which stresses that centralized algorithms and 

environments are less effective than their decentralized counterparts when scheduling data 

intensive bulk jobs. This chapter will also evaluate that applying the concept of P2P systems 

to resource scheduling can lead to efficient resource utilization.  

A meta-scheduler coordinates the communication between multiple heterogeneous local 

schedulers that typically manage clusters in a LAN environment. In addition to providing a 

common entry point, a meta-scheduler also enables global access and coordination, whilst 

maintaining local control and ownership of resources through the local schedulers. The 

fundamental difference between a meta-scheduler and local schedulers is that a meta-
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scheduler does not own the resources and has no autonomy in its decisions. Therefore, the 

meta-scheduler does not have total control over the resources.  Furthermore, a meta-scheduler 

does not have control over the set of jobs already scheduled to a local scheduler (also referred 

to as the local resource management system). These local and meta-schedulers form a 

hierarchy and individual schedulers sit at different levels in the hierarchy as discussed by 

Mausolf in [141]. Each local scheduler can cooperate and communicate with its siblings 

through a meta-scheduler, however, each meta-scheduler cannot communicate with other 

meta-schedulers of other sites or Grids. Communication is only possible between local 

schedulers and the meta-scheduler. Existing scheduling systems are often based on the client-

server architecture with one or several meta-schedulers on top of independent local 

schedulers such as LSF, PBS etc. Each local scheduler can collect information and can 

schedule the jobs within its own managed site. Typically, these local schedulers cannot 

schedule jobs to some other available site. Peer-to-Peer (P2P) scheduling systems on the 

other hand can provide environments where each peer can communicate with all other peers 

to make “global” decisions at each site, can propagate their information to other peers, and 

can control their behaviour through this information. In the P2P approach, a meta-scheduler 

and a local-scheduler make a hierarchy at each site where global decisions are managed by 

the meta-scheduler whereas local control and allocations are made by the local scheduler. 

The meta-scheduler on each site has access to global information and all meta-scheduler 

instances communicate with each other to share the cost and load information. Our intention 

is to incorporate a P2P approach so that schedulers do not take global decisions at a single 

central point, but rather many sites participate in the scheduling decisions through sharing the 

information in their cost matrices. Each site should have information on load, queue size etc., 

should monitor its processing nodes and then propagate this information to other peers. Local 

and certain global policies could be managed at the site level instead of a central hierarchical 

management. As a result, the P2P behaviour can become an important architectural model for 

fault tolerant, self-discoverable and autonomous global resource scheduling. This feature 

should make scheduling decisions more efficient. It is to be noted that MonALISA is the core 

provider of the peer-to-peer (P2P) behaviour and it inherits parts of the functionality from 

JINI. We selected MonALISA since it is the only monitoring tool which can provide the 

desired P2P features for DIANA. We use SOAP as well as XML-RPC for the 

communication. Further implementation details will be provided in chapters 6 and 7. In 

contrast to this approach, centralized scheduler management can be problematic in several 
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ways since load balancing, queue management, job allocation, policies etc. are central and 

are typically managed by a (single) central meta-scheduler and might not be fault tolerant. 

Note that by client server architecture, we do not mean here a tier system which uses various 

tiers, which are clients of each other, to scale up the client server behaviour. Each tier is not 

scaleable if treated in isolation. 

Schedulers may be subject to failure or may not perform efficient scheduling when they are 

exposed to millions of jobs having different quality of service needs and different scheduling 

requirements. They may not be able to re-organize or export scheduled jobs which could 

result in large job queues and long execution delays. For example in High Energy Physics 

(HEP) analysis a user may submit a large number of jobs simultaneously (the so-called bulk 

job scheduling), and the scheduling requirements of bulk jobs may well be different to those 

of singly queued jobs. In bulk job submission by a single or multiple users at a particular site 

it might become impossible for a local scheduler to serve all the jobs without using some job 

export mechanism. In the absence of this mechanism, it is possible that some of the jobs 

might be lost by the scheduler due to timeouts before they get an execution slot, insufficient 

space in the queue to hold the jobs or the fact that the frequency of submission cannot be 

handled by the central scheduling site. What is required is a decentralized scheduling system 

which not only automatically exports jobs to its peers under potentially severe load 

conditions (such as with bulk jobs), but at the same time it manages its own scheduling 

policies, whilst queuing jobs and monitoring network conditions such as bandwidth, 

throughput and latency. The queuing mechanism that is needed at each scheduling peer 

should follow the same queue management scheme across all the sites in order to enforce 

uniform scheduling policies across the Grid sites. This will enable sites to interact and export 

jobs to other sites without any policy conflicts since all sites are following a similar 

scheduling approach. It should associate priorities to each job inside the queue, depending on 

the user profile and the job requirements with the scheduler servicing high priority jobs 

preferentially to optimise Grid service standards. In this chapter, we explain the functionality 

of a P2P meta-scheduler and present its scheduling and queue management mechanism and 

demonstrate the advantages and drawbacks of such a system implementation.  
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5.2 Considerations for Scheduling Hierarchies  

The following sections describe the considerations for selecting an appropriate meta 

scheduler hierarchy. The choice of a particular scheduling paradigm is dictated by certain 

criteria which are listed below. Whether a centralized, hierarchical or a distributed scheduling 

hierarchy is selected, each approach has drawbacks and certain advantages over the other 

approaches. We explain the issues associated with the selection of the scheduling paradigm 

and then provide details of various scheduling hierarchies in the next section on the basis of 

these criteria. 

5.2.1 Performance 

When selecting a job scheduler and associated resources for the execution of the job, the Grid 

throughout and the performance requirements of the application must be considered. In most 

cases, an increase in Grid throughput will lead to a better performance of the applications and 

vice versa. The service requester is interested in a quality of service (QOS) that includes an 

acceptable turnaround time. While building a Grid and exposing one or more applications as 

a service over this Grid, the service provider would like to maximize the utilization of the 

resources and the throughput of the systems within the Grid to get a better return on the 

investment and to provide a better quality of service. Therefore a performant Grid is equally 

important for both the service requesters and the service providers. It becomes necessary for 

the scheduler to better decide the sites which can guarantee better performance. Hasher et al. 

[133] state that the order and hierarchy of the schedulers is critical for the selection of the 

better performing sites.  

5.2.2 Reliability 

Availability of resources is a prime decision criterion for selecting a suitable scheduling 

hierarchy and it may have an influence on the scheduling optimization. The hierarchy should 

support the cases where the particular site or a scheduler becomes unavailable or where a 

scheduler might decide to migrate or to checkpoint a job. Resource availability is not only 

concerned with the choice of the sites and schedulers but it also deals with the execution 

software and environmental requirements for the jobs and the programs. When deciding the 

scheduling hierarchies, reliability should be the prime consideration so that the hierarchies 



 

 104

can deal with the host and network interruptions as well as being able to optimize the 

scheduling decisions. There are many approaches [134] that can be considered to make the 

schedulers and applications reliable, for example, using check point-restart mechanisms, 

having persistent storage to hold queue states in the scheduler and providing robust systems 

management solutions to maximize the availability of the Grid. 

5.2.3 Scalability 

Modern day applications are not only compute and data intensive but also demand a high 

level of scalability. A system should be easily scaled to accommodate changes in the number 

of users, resources and computing entities affected by it. Scalability can be measured in three 

different dimensions: load scalability, geographic scalability and administrative scalability. A 

Grid system should support load scalability by making it easy for the users to expand and 

contract its resource pool to accommodate heavier or lighter loads. A geographically scalable 

system is one that maintains its usefulness and usability, regardless of how far apart its users 

or resources are. In administrative scalability, no matter how many different organizations 

need to share a single distributed system, it should still be easy to use and manage. Some loss 

of performance may occur in a system that allows itself to scale in one or more of these 

dimensions. There is a limit up to which we can scale/add processors to the system, and 

above which the performance of the system degrades. This feature should be considered in 

the scheduling system and the scheduling hierarchies should sense the network, load and 

other characteristics to make the scheduling decisions as described by Adami et al. [135]. 

Therefore before designing or enabling a Grid application, one should anticipate the 

scalability of the system.  

5.2.4  Scheduling Policies 

A scheduling policy is a criterion which dictates the way the jobs are allocated to resources 

for execution. This is followed in order to allow certain users and processes to grant priority 

to others at certain points in time. The need for scheduling policies arises from the 

requirement to support different execution scenarios. For example, there is a scheduling 

policy that a job might not be started immediately and it might be interrupted or pre-empted 

during execution; for example it might be scheduled to run overnight. Another scheduling 

policy might be to allow only 50 percent resources for a particular VO with the remaining 
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resources being reserved for the local use. A job can be asked to run or to support a limited 

set of job categories or support a middleware which is installed on particular fire-walled 

hardware and this might be intended for scheduling and execution optimization [140]. 

Consequently scheduling policies can have a profound effect on the scheduling hierarchies in 

determining the QoS [136] and scheduling decisions for sending and retrieving jobs to and 

from Grid sites clearly depend on the scheduling policy for that site. The choice of the job 

policies and priorities is central to scheduling optimization; open execution of the jobs 

without any scheduling policy will deprive certain users from a sustained QoS and 

accordingly will alter the preferences in selecting a scheduler [138].  

5.3  Scheduling Architectures  

Almost every job scheduling hierarchy has some benefits as well as limitations and these 

hierarchies are widely recognized with minimal variations. When submitting jobs for 

execution and scheduling and enabling applications for a Grid environment, the scheduling 

system needs to be aware of how the load-balancing mechanism (whether manual, push, pull, 

or some hybrid combination) will affect the application, specifically its performance and 

turnaround time. In this section we list major scheduling hierarchies and compare the pros 

and cons of each approach. This section will help explain the reasons which led us to select 

the P2P scheduling model. 

5.3.1 Master/Agent Architecture 

This is a centralized architecture for job schedulers and is suitable for the local or clustered 

scheduling. The Job Scheduling software is installed on a Master node while on the 

production machines only a very small component is installed (Agent) that awaits commands 

from the Master, executes them, and returns the results back to the Master. Condor [142], 

Sun Grid Engine [143], PBS [144] and others are based on this scheduling architecture. This 

is also known as centralized scheduling as shown in the Figure 5.1. In a centralized 

scheduling hierarchy all production machines are scheduled and managed by a central Master 

instance. Information on the state of all available systems is also collected by the Master 

node. The problem with this approach is that a centralized scheduling hierarchy cannot scale 

well with increasing size of the computational Grid. The central scheduler may prove to be a 

bottleneck in some situations e.g. if a network error cuts off the scheduler from its resources, 
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system availability and performance will be affected. As an advantage, the scheduler is 

conceptually able to produce very efficient schedules, because the central instance has all 

necessary information on the available resources. 

 

Figure 5.1: Centralized Scheduling Model     

5.3.2 Push and Pull Model 

When a job is submitted to a Grid scheduler, its workload can be distributed in a push model, 

pull model, or combined model. For example, the gLite workload management system 

implements both push and pull scheduling policies. A round-robin scheduler basically 

implements the push model of the scheduling. However, the push model does not consider 

the job queue lengths as discussed in [145] and forms a hierarchical architecture as shown in 

figure 5.2. In the pull model, synchronization and serialization of the job queue will be 

necessary to coordinate the pulling of jobs by multiple Grid resources [146]. Local and global 

job queues are also managed in the pull model.  Failover conditions need to be considered in 

both of these scheduling models [147]. Therefore, the monitoring system should detect the 

non-operational Grid resources and no new work should be sent to failed resources in the 

push model. In addition, all the submitted jobs that did not complete their execution need to 

be taken care of in both the push and pull models. All the uncompleted jobs in the failed host 

need to be either redistributed or taken over by other operational hosts in the virtual 

organization.   
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Figure 5.2: Push and Pull Scheduling Model   

5.3.3 A Peer-to-Peer (P2P)-based Cooperative Scheduling Architecture 

In a P2P scheduling model, each machine is capable of helping with the scheduling process 

and can offload locally scheduled jobs to other cooperating machines. In decentralized 

systems, distributed schedulers interact with each other and commit jobs to remote systems 

and no central instance is responsible for the job scheduling. Therefore, information about the 

state of all systems is not collected at a single point. Thus, the communication bottleneck of 

centralized scheduling is prevented which makes the system more scalable [148]. Also, the 

failure of a single component will not affect the whole scheduling system as is shown in 

Figure 5.3. This provides better fault-tolerance and reliability than is available for centralized 

systems without fall-back or high-availability solutions. But the lack of a global scheduler, 

which knows about all jobs and system information at every time instant, could lead to sub-

optimal schedules. Nevertheless, different scheduling policies on the local sites are still 

possible. Furthermore, site-autonomy for scheduling can be achieved easily since the local 

schedulers can be focussed on the needs of the resource provider or the resource itself.  

5.4  Hierarchies of Schedulers 

In this section the DIANA peer to peer scheduling mechanism is discussed and its queue 

management process is elaborated upon. The peer to peer process to communicate and share 

the information between the meta-schedulers is illustrated and how they manage the jobs at a 

local and global level is highlighted. 
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Figure 5.3: Decentralized Scheduling Model   

A user submits a job to a meta-scheduler (local to the user, typically at the same site) which 

in turn contacts a local scheduler. A particular meta-scheduler considers only its own 

managed sites to schedule the job and does not look around for other sites managed by other 

schedulers to distribute load and to get the best available resources. The jobs are scheduled 

centrally irrespective of the fact that this may lead to a poor QoS due to potentially long 

queues and scheduling delays. Hence, the architecture with non-communicating meta-

schedulers (see figure 5.4) can lead to inefficient usage of Grid resources. Furthermore, in 

this architecture the meta-scheduler schedules the job on its site, and it cannot communicate 

with the sibling meta-schedulers and hence does not consider the underlying network and 

data transfer costs between the sites. This is one of the reasons that almost all Grid 

deployments have at most only a few meta-schedulers and that any two cannot communicate 

and interoperate with each other.  

 

Figure 5.4: No Communication between Schedulers 
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Peer-to-Peer (P2P) systems, on the other hand, provide environments where each peer can 

communicate with all other peers to make the global decisions at a site level, can propagate 

its information to other peers, and can self-organize and control themselves using this 

information. This feature can make scheduling decisions and resource utilization more 

efficient [137]. Our intention is to incorporate a P2P approach for performing the scheduling 

process. Schedulers should not take global scheduling decisions at a single central point, 

rather all sites should participate in the scheduling decisions. Each scheduler at a site should 

monitor its resources and then propagate this information to other peers in the Grid. Each site 

should broadcast its load and queue size to other peers; local and global policies should be 

managed at the same level instead of a hierarchical management. As a result, this P2P 

behaviour can become a foundation stone for a self-managing, self-organizing and self-

healing resource management and scheduling system. For DIANA a P2P decentralized and 

self-organizing scheduling system is required which cannot only automatically export jobs to 

its peers under severe load conditions, but it can also manage its own scheduling policies, 

hierarchy, queue and network conditions. Each peer should follow some queue management 

scheme which can associate priorities with each job inside the queue and can ensure Grid 

service standards. 

5.4.1 Meta-Scheduling with DIANA 

It is important in Grid systems to have a distributed meta-scheduler, which implements the 

features discussed in the previous sections, and that site meta-scheduler instances should 

interoperate and communicate with each other, should be fault tolerant and self-organizing 

and should make network aware data intensive decisions (including network characteristics 

in the scheduling decisions). In addition to being network-aware, the meta-scheduler should 

avoid making centralized decisions. It should communicate and share the information with all 

other meta-schedulers so that Grid resources are well evaluated and utilized.  

DIANA is a Data Intensive and Network Aware meta-scheduler which performs global meta-

scheduling in a local environment, typically in a LAN. In DIANA, we do not use independent 

meta-schedulers instead we use a set of meta-schedulers that work in a P2P manner. Each site 

has a meta-scheduler that can communicate with all other meta-schedulers on other sites as 

shown in Figure 5.5. The scheduler is able to discover other schedulers with the help of a P2P 



 

 110

discovery mechanism. We do not replace the local schedulers in this architecture rather we 

have added a layer over each local scheduler so that site meta-schedulers can talk directly to 

each other instead of getting directions from a central global meta-scheduler. 

 

Figure 5.5: P2P Communication between Schedulers 

A meta-scheduler can therefore obtain information from any other site and can make global 

decisions. Local information includes processing power, memory, site load, queue length and 

network capability. The meta-scheduler will make scheduling decisions based on three 

essential factors: the network cost, the computation cost and the data transfer cost. It can 

communicate with other meta-schedulers and may transfer jobs to other sites. It may transfer 

a job along with its required data to a remote site, consequently it should also consider the 

estimated transfer time of the job and data to that particular remote peer. Before making the 

scheduling decision, it should also consider the estimated computing capabilities of remote 

peers. Hence, the job will be submitted to the site with the least total cost. 

In DIANA, the P2P behaviour is complemented by a discovery service (see chapter 6 for 

further details). This discovery service maintains a list of available/alive peers in different 

ways. One way is that whenever a peer meta-scheduler is introduced to the network, it will 

inform the discovery service about its availability and when a peer is properly shutdown, it 

will update the discovery service about its new status. This leads to the question: what would 
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happen if a peer suddenly went down without informing the discovery service? In order to 

cope with this issue, the discovery service uses an echo request/reply communication with the 

peers currently available in the list. The peer which does not reply is simply removed from 

the list. Each meta-scheduler site periodically contacts a discovery service to collect the 

updated information about the available peers. After getting this information, the peers start 

communicating with other meta-scheduling peers and update their local repositories with this 

information.  

This approach is not simply an ‘all-to-all’ communication (or multicast in the network 

terminology) between the machines involved in the Grid system. The nodes are managed by 

local schedulers which report to the site meta-schedulers. The site to site communication is in 

essence a P2P communication between meta-schedulers. Each meta-scheduler maintains a 

table of entries about the status of the local schedulers, the queue length, jobs in execution 

mode, and the nodes managed by them which is updated in real time when a node joins or 

leaves the system. When a user submits a job, the site meta-scheduler communicates within 

the local scheduler to find the suitable resources. If the required resources are not available 

within the site, it contacts the meta-schedulers of other sites in the virtual organisation (VO) 

which have suitable resources. This approach is thus not just all-to-all communication and 

involves a reduced set of message passing between the meta-schedulers. In other words 

resources of each site are grouped under the site meta-scheduler and an overall system 

behaves like a group-to-group communication between the meta-schedulers. If each machine 

is allowed to communicate with other machines in the Grid, it can generate too much traffic, 

thus making the system less efficient. This approach not only provides a decentralized meta-

scheduling environment but at the same time avoids network traffic issues. It also facilitates 

the overall Grid management by grouping the site resources under the respective meta-

schedulers.  Furthermore, communication between the meta-schedulers is not very frequent, 

meta-schedulers communicate only after fixed intervals to update the status of their resources 

to each other. A meta-scheduler might also require to communicate if a group of jobs at a site 

needs to be exported to a site having better resources. Therefore, this meta-scheduler 

communicates with other meta-schedulers for load evaluation and cost determination for job 

submission to that remote site. 
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5.4.2  Global Queue Management 

In conventional client-server scheduling architectures, local schedulers handle their queues at 

the site level whereas a meta-scheduler has a global queue at some central location. However, 

in the DIANA architecture, there is one DIANA meta-scheduler at each site, i.e. the DIANA 

P2P meta-scheduler layer sits on top of one or many local schedulers at each site. In client-

server architecture such as the one used by the gLite meta-scheduler, there is only one large 

queue at the meta-scheduler with local queues at each site. However, in the proposed P2P 

architecture each site meta-scheduler has knowledge about the local queue(s) plus a global 

queue which is managed by the DIANA layer. This leads to a scalable and self-organizing 

meta-scheduling behaviour which was previously missing in some of the conventional client-

server scheduling architectures. Each meta-scheduler has a queue management mechanism 

where it can queue the incoming jobs in a Scheduler Queue as shown in Figure 5.6, and the 

meta-scheduler assigns priorities to the incoming jobs. In Grid scheduling we have “user 

quotas” (user quota is the number of jobs a user can submit within a definite period of time), 

network characteristics, data locations and securely granted user privileges and therefore, 

each meta-scheduler needs to maintain its queue according to these criteria.  

 

Figure 5.6: Queue and the DIANA Scheduler Instances   

Queue management also facilitates load balancing and job migration. Before migrating a job, 

questions need to be answered such as: “What is the queue length on the target site?”  "Can 

the target site execute the job quicker than the current site?” “If the job is migrated to another 
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site, what will be the job priority on the remote site?” “How many jobs are ahead of this job 

in terms of priority?” These considerations can have a significant effect on Grid performance. 

Figure 5.7 illustrates this queue management issue in the DIANA meta-scheduler. At each 

site there are two queues. One is the meta-scheduler queue and the other is the queue of the 

local or site scheduler. The meta-scheduler queue deals with the global jobs and takes into 

account the Grid information whereas the local queue is site specific. Jobs cannot be 

migrated if the meta-scheduler has scheduled them to any local scheduler and they will have 

to wait in the local scheduler queue until they get the execution slot on that site. Only the jobs 

from the DIANA meta-scheduler queue are exported to other sites. In contrast, once a job is 

allocated to a local scheduler at a site, it is never exported and waits in the local queue until 

assigned to a processor. All the prioritization of jobs, policy enforcement, migration and job 

steering issues are handled at the DIANA P2P level whereas the local scheduler works 

exactly in the same fashion as before once the job has been allocated to it.  

 

Figure 5.7: Queue Management in DIANA P2P Scheduler 

5.5 DIANA Architecture   

In the following sections the DIANA job scheduling architecture is described, to indicate 

where the previously introduced optimization algorithm and hierarchies can be applied. The 

DIANA Scheduler is introduced and some related services are discussed that can be used by 

a Grid job submission service for selecting a suitable execution site for a job. 
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5.5.1  General Architecture 

The overall architecture of the DIANA meta-scheduler is shown in Figure 5.8. It includes 

a matchmaking layer which is responsible for selecting the best resources for the job’s 

execution. The matchmaker is a component of the meta-scheduler but it can also work 

with other meta-schedulers, for example the EGEE meta-scheduler.  The matchmaker 

uses the network characteristics provided by the network monitoring service, an 

optimized replica provided by the Data Location Service and other information services 

to make optimal scheduling decisions. The implementation details are given in chapters 6 

and 7 but here we clarify that the underlying protocol for communication between these 

services is SOAP.  The Data Location Service makes use of the Data Location Interface 

[149] to find the list of the dataset replicas and then uses network characteristics to find 

the “best” replica which is then chosen by the scheduler. The scheduler provides 

coordinated access to the underlying resources of a Virtual Organization (VO), regardless of 

their physical location or access mechanisms. When an application using a Grid makes use of 

more than one physical resource during its execution, the Scheduler maps the resource 

requirements to the multiple physical resources that are available to run that application. The 

meta-scheduler is the key to making the VO resources easily accessible to end-users, by 

automatically matching the requirements of a Grid application with the available resources 

while staying within the conditions that the VO has specified with the underlying resource 

managers. 

The meta-scheduler (see Figure 5.8) is used for job management and execution including 

allocating resources needed for any specific job, the partitioning of jobs to schedule parallel 

execution of tasks on local schedulers, data management and the service-level management 

capabilities. Several schedulers form a hierarchical structure, with meta-schedulers forming 

the root of the hierarchy. Other lower level schedulers (that are part of the Local Resource 

Management Systems) provide specific scheduling capabilities that form the leaves. These 

lower level schedulers are constructed with a local scheduler implementation approach for 

specific job execution, or another meta-scheduler or a cluster scheduler for parallel 

executions. There can even be a meta-scheduler at the local resource management level; this 

is the case when a site has a large number of resources which in turn are managed by 

different local resource management systems.  
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Figure 5.8:  A generic job submission architecture with the DIANA Scheduler and the Data 

Location Service that are used for scheduling data intensive jobs. 

The next important task is to select and match the appropriate resources for job execution: 

matchmaking. A particular matchmaker provides feedback to the users on the available 

resources. In general cases, the matchmaker may select a suitable scheduler for the resource 

execution task, and collaborate with that scheduler to execute the task(s). The pairing enables 

the selection of the best available resources from the service provider for the execution of a 

specific task. The matchmaker collects information (such as resource availability, usage 

models, capabilities, and pricing information) from the respective resources, and uses this 

information source in the pairing process. The matchmaker uses the cost matrix to select the 

appropriate resources for the job execution. A meta-scheduler serves each VO and end-users 

submit their Grid jobs to the meta-scheduler, which in turn matches the resource 

requirements of the jobs with the underlying physical resources through interaction with local 



 

 116

resource managers. The meta-scheduler uses the matchmaking engine, information services 

and monitoring information to decide the choice of a particular site. Data related information 

is provided by the Data Location Interface from various catalogues which is then optimized 

by the Data Location Service. 

Users specify the requirements in the form of a Job Description Language (JDL) which is 

parsed by the matchmaker and respective services are queried to find the information about 

the resources which match these requirements. The DIANA Scheduler service mediates 

between the providers and the requesters and uses the scheduling algorithm of chapter 4 to 

select the best resource. The first step is to discover the resources. A resource request, simply 

called a request, consists of a function to be evaluated in the context of a resource. For 

example, the request “processing power > 2 GHz” will be evaluated by determining if a 

resource has an attribute called processing power and if so whether the value of this attribute 

satisfies the condition “Value(processing power) > 2 GHz”. If the request can be fully 

satisfied, the matchmaking service responds with a list of ranked resources. After this, we use 

the scheduling optimization algorithm to select the best resource and subsequently a job is 

scheduled to be executed on this resource. 

Load-balancing is the distribution of workload among the resources in a Grid environment 

and this is managed by the scheduling system. This load-balancing also helps the meta-

scheduler to avoid processing delays and over commitment of resources. The DIANA 

Scheduler keeps track of the load on the sites through the P2P mechanism stated earlier and 

selects a best site using the criteria discussed in chapter 4. Network monitoring information is 

the central component of the system and all the information collected is stored in a database 

and is used to make scheduling decisions. It collects the network information after specified 

intervals to get idea of the system state for improved decision making and its explanation is 

given in chapter 6. The exact interval to collect the network information can be changed by 

the site administrator through changing the value in the configuration file but we are using a 

15 minute interval for our experiments. One can have longer intervals, for example 30 

minutes, but such old information might not be very useful for accurate scheduling decisions 

since Grid resources are dynamic and their status can change quickly. Using information 

which is 30 minutes old might not give accurate schedules. However, on the other hand, if 

there are too short intervals, for example one minute, this can generate too much traffic 
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especially when the information is being shared between all the peers. There is an execution 

service which submits the job to the site selected by the DIANA scheduler. This also gets the 

information of the job state during execution and reports the progress as well as providing job 

completion information and stores these parameters in the database for later access by the 

users. 

5.5.2 DIANA’s Scheduler Interface 

DIANA’s scheduling interface is an API through which an application program accesses 

DIANA’s matchmaking services. This scheduling API is defined at source code level and 

provides a level of abstraction between the applications and the DIANA scheduler. The job 

submission and job control services use this API to submit and execute jobs to one or more 

sites. The objective is to facilitate the direct interfacing of applications to the DIANA 

scheduler and provide a generalized API to facilitate integration of application programs. The 

scope of this API is limited to an appropriate CE and SE selection for the data intensive jobs. 

Job submission, job monitoring and control, and retrieval of the finished job status are 

managed by the special customized services and are not exposed through this API. An end 

user that interacts with a Grid job submission service uses the Job Description Language 

(JDL) [150] to specify certain requirements that need to be parsed and analyzed by the job 

submission service. The DIANA Scheduler provides a simple interface for this job 

submission service for selecting a suitable Computing Element (CE) for a given data 

intensive job.  The JDL also helps to define the requirements from where the data will be 

read (defined as inputData in the discussion below) and where output data needs to be stored. 

The name of the logical dataset, any programs required for execution and any computing and 

storage requirements are specified in the JDL which is then passed to the DIANA Scheduler 

since the meta-scheduler calls the DIANA Scheduler for the match-making process. These 

requirements are passed to appropriate services (such as the Data Location Service, described 

in chapter 7) for decision making. The following is a sample of JDL which will be used by 

the Meta-Scheduler and appropriate services of the DIANA Scheduler which will be called 

for decision making.  

VirtualOrganisation = "cms"; 

 Executable = "PhysicsApplication"; 

InputData = {"lfn:physicsFile1", "lfn:physicsFile2", "lfn:physicsFile3", "lfn:physicsFile4" }; 
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DataAccessProtocol = {"root", "Gridftp"}; 

output_file = output.root, output.txt, FrameworkJobReport.xml 

additional_input_files = mydata.dat, input.root, input.txt 

copy_data = 1 

storage_element = srm.cern.ch 

storage_path = /srm/managerv1?SFN=/castor/cern.ch/user/u/username/subdir               

 //output file specified by output_file will be placed gsiftp://storage_elementstorage_path/output_file_job#.ext  

 register_data = 1  

lfn_dir = myusername/subdir 

lcg_catalog_type = lfc 

   lfc_host = lfc-cms-test.cern.ch 

lfc_home = /grid/cms 

           

In the push based scheduling model which DIANA is following, the Grid scheduler sends the 

resource requirements of the job to its peers. Once the job has been submitted to the DIANA 

scheduler, the matchmaker needs to find a suitable site where the job can be executed. The 

matchmaker first needs to parse the JDL and find resources that match the job requirements 

defined in the JSDL. The available Computing Elements are obtained from the Discovery and 

Information System discussed in chapter 6. In case of data intensive jobs that require 

InputData, the matchmaker needs to contact the Data Location Service in order to retrieve 

Storage Elements where physical files are located. In detail, the physical file location is 

identified by an URL that contains the hostname of a Storage Element (SE). Once the 

matchmaker has retrieved the list of all SEs, a site (Computing Element) needs to be selected 

that is “close” to a given SE. The term “close” refers to closeness in terms of network 

connectivity, i.e. a CE is close to an SE if it is available in the same local area network or has 

the least network cost. If several CEs satisfy the job requirements, the scheduler selects the 

best of them and finally sends the job there.  

To sum up, resource selection of data intensive jobs is based on optimising compute and data 

transfer times, i.e. a job is sent to a Computing Element that in turn is close to a Storage 

Element which contains the necessary data or data is sent to a Computing Element which in 

turn selects the best Storage Element. Before a job begins to execute, it needs to wait in a site 

queue before the required data becomes available on that site. Network cost determines the 

approximate data transfer time from initial node to destination node. The scheduler decides 
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the destination system for the job which is selected based on the overall cost, which includes 

compute, network and data transfer costs. The job is then sent to the scheduler of the 

destination site according to the availability of resources and the requirements of the job.  

From the example JDL it is required that a program called PhysicsApplication is available. 

Next, the program requires a physical replica of a file on the CE where the job is going to be 

executed and this step may involve replication of the required data. Job run-time takes place 

on a Worker Node (WN) of a specific Computing Element (CE)/local resource management. 

Jobs arrive on the WN with an application configuration which is site-independent. The 

CE/WN is expected to be configured such that the job can determine the locations of 

necessary site-local services (local file replica catalogue, CMS software installation on the 

CE, access to CMS conditions, etc.). Input data requirements are specified by logical 

filenames which are used to return the physical replica. The protocol used to access the 

physical replica of the dataset has to be either root (the access protocol for the ROOT object 

storage system [151]) or Gridftp and this is specified in the DataAccessProtocol. If the job 

being specified through the JDL is a bulk job then after parsing the JDL, the job is sent to a 

splitting module. There are number of applications available which perform the splitting and 

combination procedure, for example the CRAB utility [165].  After splitting procedure, the 

jobs are sent to the DIANA queues which are then scheduled using the scheduling 

mechanism discussed before. In order to select a certain CE for a given job with its data 

requirements, the DIANA Scheduler utilizes two internal methods that work in the following 

manner: 

• A suitable CE is selected on the basis of computation, network and data transfer 

costs. The ultimate destination of the output data is also taken into account for 

selecting the best CE. This functionality is implemented in the DIANA scheduler part 

of the architecture. 

• For the given inputData and CE find the “best” Storage Element (SE), where best 

refers to the minimal data transfer and network costs. The actual implementation of 

this functionality is done by the Data Location Service (see chapter 7). 

In more detail, the two methods look like: 

• String GetBestComputingElement () 
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This method returns the best CE with respect to job requirements which are passed by the 

meta-scheduler or directly by some other client. This method takes into consideration the 

number of processors at a site, the load and queue size and the distance from the submission 

site or from the location where the output data is required. This method gets the information 

about the CEs and the load from the Information System. After ranking them it selects the CE 

that has lowest cost which is then passed to the GetBestStorageElement method below to find 

an optimal physical replica with respect to that CE. This method uses the network cost to 

decide the relative cost of the output data location and uses the computation cost to rank the 

CE. A combination of both of these costs helps to select a best CE. 

• String   GetBestStorageElement (String inputDataType , String inputData , String 

BestComputingElement) 

This is used to find the best replica of a dataset. The caller of the method provides the logical 

dataset name (inputData) and its type (inputDataType), and the best physical replica of that 

logical dataset name is returned. These replicas are ranked with respect to a CE which is 

selected in the GetBestComputingElement method. This CE is passed as a third parameter 

(BestComputingElement) to this method. Again, this method can be called either by the 

Meta-Scheduler or by any other client to find the best physical replica of a dataset with 

respect to a certain location. This method uses the network and data transfer costs as 

calculated in the scheduling optimization algorithm to find the best physical replica of a 

dataset which will be used as an input to the job. 

5.6  Conclusions 

In this chapter, we described the scheduling hierarchies and elaborated the factors which can 

influence the scheduling architectures. Various scheduling hierarchies were discussed and it 

was concluded that centralized scheduling models are not adequate for complex scheduling 

scenarios as in the case of bulk scheduling. We discussed how a P2P scheduling model is 

ideal for the DIANA Scheduling and presented its queue management mechanism. We then 

described the DIANA scheduling architecture, its load balancing mechanism and illustrated 

the DIANA scheduling API. 

Chapter 6 describes the process of extracting and analyzing the network values and their 

impact on scheduling decisions.  It also explains the role of Discovery and Information 
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Services in the Meta-scheduling and how this facilitates the P2P scheduling process. This 

chapter also discusses monitoring tools and information services for discovering the services, 

for measuring the network parameters and for collecting the required network data. 
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Chapter 6 

Network Aware Meta-Scheduling 

Chapter 5 explained the architecture of the DIANA scheduling and the merits of P2P over 

decentralized scheduling were detailed for job scheduling. The building blocks of the P2P 

scheduler were explained and the issues to tackle priorities and policies in the DIANA 

Scheduler were highlighted. Various scheduling topologies and hierarchies were illustrated 

and their association with DIANA meta-scheduling was discussed. Queue Management and 

scheduler interfaces for the DIANA scheduler were also covered. 

Chapter 6 describes the process of extracting and analyzing the network values and their 

impact on scheduling decisions. It also explains the role of improved network performance in 

meta-scheduling and how network managed services can influence data intensive scheduling 

decisions. This chapter also discusses monitoring tools and information utilities for 

discovering the services, for measuring the network parameters and for collecting the 

required network data. 

6.1 Introduction 

Grid applications are increasingly becoming dependent on efficient network support, but 

these applications often do not take full advantage of the new high-speed networks which are 

becoming pervasive. This is largely due to the fact that the applications use the default 

network characteristics which were not specifically designed for Grid use [152]. Grid 

applications cannot change their behaviour with a change in the network conditions as is the 

case with network aware applications that respond according to the network weather. On the 

other hand, Grid applications are massively distributed across the global Grid network; 

application instances are shared and they need to communicate across the geographical 

boundaries. They exchange large amounts of data and compute resources are shared between 

a single or multiple applications, resources are dynamic and may come and go at any time; 

some network links are stable while others are congested and unreliable. All these factors 

make Grid applications unique in the sense that they heavily depend on the underlying 

network and should be capable of responding to network needs and characteristics. The 

consequence of not adopting the network characteristics in the applications has been to 

sacrifice optimal Grid throughput in exchange for fair sharing of bandwidth and other 
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network resources on congested networks. This becomes further complex if data intensive 

applications are being scheduled and executed since such applications can consume and 

produce a lot of data. In order to overcome this limitation, Grid applications running over 

high-speed wide-area networks need to become “network-aware” [13][14], which means that 

they need to include the networking parameters in the scheduling decisions and adjust 

resource demands to the current network conditions. 

What is really required by these applications is the creation of a next generation network-

aware Grid middleware, which is able to effectively manage the network resource in terms of 

scheduling, access and use [155]. Conversely, the specific requirements of Grid applications 

provide drivers for research towards the development of Grid-aware networks. Cooperation 

between Grid middleware and network infrastructure is a key factor in effectively enabling 

the execution of network-intensive applications that require massive data transfers, very fast 

and low-latency connections and stable and guaranteed transmission rates. Large e-science 

projects, as well as industrial and engineering applications for data analysis, image 

processing, multimedia, or visualisation amongst others await efficient Grid network support. 

A network aware and network managed Grid middleware will enable end-to-end dynamic 

bandwidth allocation and low-latency access, inter-domain access control and network 

performance monitoring capabilities.  

Today’s data intensive sciences, such as High Energy Physics (HEP), need to share data at 

high speed. This in turn requires high-performance, reliable end-to-end paths between the 

major collaborating sites [156]. In addition end-users have long and short term expectations 

for network and application performance for planning and trouble-shooting. To enable this 

requires a network monitoring infrastructure which is able to provide measurements and 

analysis of network performance between the major sites. Therefore for Grid scheduling and 

execution decisions, a robust performance monitoring infrastructure is required which can 

collect and feed this information to the scheduler. Moreover, network performance 

monitoring is important to the operation of Grid networks of any significant size as an aid to 

fault detection and for determining expected performance and its inclusion in the scheduling 

decisions can prove to be an important factor for meta-scheduling optimization. The need for 

such monitoring is enhanced in the Grid scheduling [157] arena due to the following reasons: 
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• The Grid scheduler can optimize its performance by selecting the best resources for 

compute and data intensive jobs, and adapting to changing network conditions for 

execution performance gains. 

• The Grid scheduler relies on network efficiency, as an essential step in supporting 

data intensive applications, since simple over-provisioning of the network is not 

desirable for job scheduling on any particular site. Over-provisioning is commonly 

used to protect network performance against traffic variations, be they caused by 

failures or transient surges. However, the emergence of high-speed applications and 

access links, and the ever greater heterogeneity of user traffic profiles, e.g. machine-

to-machine mean that there is considerable uncertainty regarding whether such 

conservative over-provisioning factors [166] can even remain adequate as networks 

and the user population they serve continue to grow. 

• Network information can make the scheduler self-healing and help support adaptive 

decision making in the scheduling. This behaviour is particularly dependent on the 

network information. 

6.2 Network Measurements and Meta-Scheduling 

The meta-scheduler can enhance its performance by collecting and using information on the 

status and behaviour of the underlying infrastructure. Various network metrics can be made 

available to the scheduler so that a comprehensive and up-to-date picture of the Grid network 

status can be constructed. Network metrics can be used to optimize scheduling and for 

dynamic adaptation in a number of scenarios. The three terms used most often to refer to the 

overall performance of a network are speed, bandwidth, and throughput. These are related 

and often used interchangeably, but are not identical. The term speed is the most generic and 

often refers to the rated or nominal speed of a networking technology. Bandwidth can mean 

either a frequency band used by a technology or more generally to data capacity, where it is 

more of a theoretical measure.  

Throughput is a specific measure of how much data flows over a channel in a given period of 

time and is usually a practical measurement. One very important, but often overlooked term 

for job scheduling is the timing of data transfers on a communications channel or network. 

An important aspect of latency is how long it takes from the time a request for data is made 



 

 125

until the data starts to arrive. Another aspect is how much control a device has over the 

timing of the data that is sent, and whether the network can be arranged to allow for the 

consistent delivery of data over a period of time. Data Transfer time and location are thus two 

important parameters for meta-scheduling. 

In a Grid environment, network monitoring is vital in determining the source of performance 

problems or to tune the system for improved performance. Consequently, network 

performance data is crucial to Grid scheduling especially in the case of data intensive 

scheduling. Accurate and up-to-date network information can lead the scheduler to 

significantly optimize the job execution process. The following are the network related 

parameters [158] which were discussed in chapter 4 and which are important for data 

intensive scheduling decisions:  

• Delay: the time taken for data to reach its destination and back. This is also called the 

round trip time. 

• Network bandwidth: the amount of data it is possible to send between two sites per 

second. 

• The route taken by the data across the network domains.  

• Flow-monitoring: the ability to track the data traffic flows originating from a specific 

source. Both the route taken and traffic flow effects are sources of jitter and delay in a 

network. For example, flow-monitoring can help to check peering. Peering requires 

the exchange and updating of router information between the peered networks or 

ISPs, typically using the Border Gateway Protocol (BGP) which not only can reduce 

the delays but can also significantly influence the data transfer time. 

• Reliability and consistency of the network, which is measured through the packet 

loss. 
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Figure 6.1: Monitoring data propagation through MonALISA (adopted from 

http://MonALISA.cacr.caltech.edu) 

6.3 Monitoring Infrastructure for the DIANA Scheduling 

We selected two monitoring tools to collect the network data which we will be using in the 

DIANA Scheduling process. One is PingER [12], a monitoring tool developed at SLAC, and 

the other is a JClarens based information and discovery service [160] that uses a MonALISA 

repository to access the network information. JClarens [161] uses the global information 

system provided by MonALISA [11] for its discovery and monitoring services. The service 

oriented architecture of MonALISA enables others to integrate different kinds of monitoring 

tools like ganglia and SNMP which can collect information describing performance 

parameters such as network and application performance indicators. As shown in Figure 6.1, 

arbitrary monitoring data can be published to a MonALISA station server using Application 

Monitoring API (ApMon), a library that uses simple External Data Representation (XDR) 

encoded UDP packets. ApMon is a set of flexible APIs that can be used by any application to 

send monitoring information to MonALISA services. The monitoring data is sent as UDP 

datagrams to one or more hosts running MonALISA services. Applications can periodically 

report any type of information that the user wants to collect, monitor or use in the 

MonALISA framework to trigger alarms or activate decision agents.  JClarens uses the 

ApMon library to publish monitoring information to the MonALISA JINI network. The JINI 
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architecture [167] federates groups of devices and software components into a single, 

dynamic distributed system. JINI provides the notion of service lease time and enables 

services to find each other on a network and allows these services to participate and 

cooperate within certain types of operations, whilst interacting autonomously with clients or 

other services. This architecture simplifies the construction, operation and administration of 

complex systems: (1) by allowing registered services to interact in a dynamic and robust 

(multithreaded) way; (2) by allowing the system to adapt when devices or services are added 

or removed, with no user intervention and (3) by providing mechanisms for services to 

register and describe themselves, so that services can intercommunicate and use other 

services without prior knowledge of the services' detailed implementation. Each MonALISA 

service registers with a set of JINI Lookup Discovery Services (LUS) as part of a group, 

having a set of attributes [168]. The ApMon module enables the particular MonALISA server 

to receive monitoring information. Each discovery service contains a client that listens to 

these service publications on the MonALISA JINI network, and stores them in an in-memory 

cache. 

The main mechanism used in PingER is the Internet Control Message Protocol (ICMP) echo 

mechanism, also known as the Ping facility. This allows the sending of a packet of a user 

selected length to a remote node and to have it echoed back [164]. The server (i.e. the echo 

responder) runs at a high priority (e.g. in the kernel shell on UNIX) and is therefore more 

likely to provide a better measure of network performance [127] than a user application. It is 

very modest in its network bandwidth requirements (~ 100 bits per second per monitoring-

remote-host-pair). Ping is used to measure the response time (round trip time in milliseconds 

(ms)), the packet loss percentages, the variability of the response time both in the short term 

(time scale of seconds) and longer, and the lack of reachability i.e. no response after a 

succession of pings [12].  

Once we have collected the monitoring information, we can use it to calculate the values 

given in the algorithm described in chapter 4 and to populate the cost matrix. Two monitoring 

tools (PingER and MonALISA) were used because each, by themselves, do not provide the 

coverage of requirements needed in the scheduling process. MonALISA is an excellent tool 

for real-time discovery and propagation of service information but it does not give very 

detailed monitoring information such as that provided by the PingER tool. PingER is a very 
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useful tool for gauging the network performance behaviour and anomalies detection but, 

MonALISA is better suited for the decentralized services access which is not available in 

PingER. MonALISA is also better suited to the discovery service discussed in section 6.4 and 

the Data Location Service to be outlined in chapter 7. 

6.4 Network and Information Discovery  

Discovery Systems (DS) can be considered as an entry point for the Grid and therefore are 

vital to Grid scheduling decisions. The Discovery System enables the users to find the 

services and resources for scheduling and executing the jobs. This is the first step in the 

lifecycle in the execution of a job and therefore is an entry point for the Grid.  An efficient 

DS in essence increases the performance, reliability and decision making capability of the 

scheduling system, particularly if the complexity is large, as is the case with Grid systems. 

There can be many cases when information on a service is available within the discovery 

service but the service itself is either up or down and its availability is not published to other 

sites so they still have the old information regarding the status of this service. This dynamic 

behaviour of the services needs to be updated to other sites as quickly as possible. Otherwise 

these ‘stale’ entries can lead to a degradation of discovery performance and reliability. Thus 

the registration of services needs to be subject to a lifetime after which the registration 

expires. Service providers should thus periodically republish information to avoid deletion of 

previous published information. With the rapid increase in the scale of distributed 

applications, existing solutions for discovery systems are not particularly effective, for 

example, when handling the service lifetimes and providing up-to-date status information. 

They are poor at enabling dynamic service access and they also impose restrictions on 

interfaces (plug-ins) to widely available information repositories. We also need to provide 

support for multiple plug-ins to different information repositories, depending upon the 

requirements of the Grid users.  Providing a plug-in API supports flexibility in incorporating 

new components or in improving existing information services without affecting the overall 

functionality of the system.  

The main reason for opting for a multi plug-in approach is that there are multiple applications 

which exhibit the same or very similar (discovery) functionality but are used by different 

communities. UDDI, ebXML, relational databases and LDAP can all be used as registries for 

storing service information. Applications like MonALISA, RGMA, MDS4, GridICE etc. can 
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be used for replication of discovery information among the different discovery nodes. These 

applications are in use by different Grid communities. For example EGEE is using RGMA 

while OSG is using MonALISA. The pluggable approach enables us to broaden the usage of 

the discovery service across multiple communities and also to take advantage of different 

heterogeneous products, many of which exhibit complementary strengths and weaknesses. 

Here we present the essential design characteristics and an implementation for a DS capable 

of overcoming these deficiencies to improve scheduling performance. This DS gathers the 

network and resource information, performs service discovery and propagates this 

information to all sites. This DS discovers and performs near real-time (as soon as the service 

goes down and vice versa) discovery of the services and provides the desired fault tolerance 

and P2P functionality.  

The nature of the Grid resources which are being scheduled and allocated by the Meta-

Scheduler varies from highly stable to highly volatile. Services may appear or disappear; new 

services can become part of the Grid and older services can be withdrawn from the Grid. 

Moreover, the location of the services cannot be foreseen. Discovery or information services 

enable resources, users and applications to query for services and to retrieve up-to-date 

information on demand on their location and interfaces. An information service can also act 

as a facilitator for the interaction between other Grid components; it is impossible for a 

service to interact with another without knowledge of its location. A DS optimizes the 

scheduler in a way that an instance of a scheduler running on one site can interact with 

schedulers running on other sites to enable selection of the optimal execution site. Moreover, 

it can help the Data Location Service for choosing the best available copy of the required 

data.  

The main problems with current implementations of the DS which limit their use for the 

DIANA scheduler are: a lack of P2P discovery, suitable fault tolerance and an absence of a 

dynamic discovery capability for the renewal of service and multiple interfaces. We have 

created a DS which contains the features described above. This solution is available as part of 

the Clarens Web Services framework, a Grid portal to run Grid-based analysis applications 

and services.  
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6.4.1 Discovery Service and Scheduling 

The DS allows the service data that is published from any site to be retrieved from any where 

in the Grid network. This functionality makes it suitable to be used as a global information 

index for scheduling decisions. The DS can provide the network and resource information for 

static as well as dynamic scheduling. When a user submits a job, its scheduling is carried out 

based on a number of parameters. These might involve the site policy, particular hardware 

and software requirements or other considerations [75]. The DS is used to discover Grid 

resources and network parameters in order to facilitate the matchmaking process when the 

jobs need to be scheduled. It is to be noted that a push methodology to schedule the jobs is 

being followed and consequently jobs are scheduled as soon they are submitted to a 

scheduler. There is no particular interval or frequency for carrying out the matchmaking and 

scheduling process.  Each VO publishes information concerning the resources available at its 

disposal and the current status of their use. Each site can publish information regarding the 

computing power it has into the global index; this involves the number of CPUs, processing 

power available, the number of jobs being executed and the number of jobs in the queue. 

When a user submits jobs to a meta-scheduler, it does the matchmaking based on the 

information received from the information service. The matchmaker contacts the information 

service to find the values of the parameters which are being stored in the information service. 

These include the service location and status, network parameters (bandwidth, jitter, packet 

loss etc), the computing power of a site, the job queue size of the site, the number of jobs 

running and the availability of the execution libraries on a site. The details of the methods to 

store and retrieve this information are provided in section 6.6.  There are also other 

components that could be involved when scheduling a job such as maintaining user quota and 

carrying out accounting. 

6.4.2  Architectural and Design Characteristics 

The Design of the Discovery Service is based on the P2P paradigm. Since this discovery 

service is integrated with the DIANA scheduler which itself works in P2P fashion, it is quite 

natural and easy to follow this paradigm.  By allowing Peers to serve each other in the 

network, P2P technology overcomes many of the limitations in the traditional client-server 

paradigm in achieving user and bandwidth scalabilities. According to Qiu and Srikant [162], 
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the performance of a well-designed P2P system actually improves, rather than deteriorates, 

with the increase of population size (number of clients). Good design should provide better 

matchmaking and efficient resource utilization. Similarly, Foster and Iamnitchi describe that 

P2P technology is promising for large content distribution and the convergence of Grid and 

Peer to Peer (P2P) computing offers many advantages [163] over the traditional client server 

approaches.  

The architectural components (see Figure 6.2) of the DS can be divided into three main 

layers: the service interface, the wrapper and the repository. The top layer is the service 

interface which defines different attributes for describing a service and also methods for 

retrieving information from the service repository. The bottom layer (the repository) provides 

different variants for persistent storage of service related data. To provide an interface 

between different kinds of storage systems and the service interface, a middle layer called the 

wrapper is provided.  

 

Figure 6.2: Discovery Service Architecture 

Repositories provide a mechanism for the persistent storage of service related data. Different 

sets of repositories provide more or less flexibility for all storage back ends since each of the 
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repositories is suitable for different types of Grid environments. Relational databases are 

more suitable in a more stable environment with large numbers of services, where high 

availability is required. On the other hand if the Grid environment is dynamic with reduced 

service availability or in cases where a lower response time is desired, then in-memory 

caches are best suited as storage repositories. One severe limitation of in-memory caches is 

the need for large amounts of RAM. In-memory caches do not scale well to large Grid 

environments with large numbers of services. The problem with in-memory cache is 

overflow when the schedulers register a large number of services or data at a site or across 

sites. Although service retrieval is faster in this approach it can accommodate only a limited 

set of services and client requests. The detailed results are given in section 8.3.2 of this thesis. 

An alternative is to use UDDI (Universal Description Discovery and Integration) - a more 

standardized approach for service description and discovery. The wrapper layer is responsible 

for the seamless translation of requests from the interface of the DS to the underlying 

repository. Another important aspect of the discovery or information service is the ability to 

co-exist with other instances. This is achieved through the replication of service data over all 

other nodes of network. The support for global dissemination of service data in a P2P fashion 

was built by exploiting the capabilities of MonALISA. 

MonALISA is a scalable monitoring system and is being used in the DS to monitor the Grid 

network and services. The scalability of the system arises from the fact that it uses 

multithreaded station servers for hosting dynamic services. These station servers are 

interconnected with each other in a P2P fashion and are capable of discovering and tracking 

any change (transition) in the state of other station servers. The information from the 

MonALISA can be retrieved using either the “push” or “pull” models. PingER collects the 

monitoring information from each site and this information is propagated to other sites in the 

Grid by MonALISA. In the DS, support for multiple plug-ins is provided dependent on the 

requirements of the Grid users. Providing a plug-in API supports flexibility in incorporating 

new components or in improving existing ones without affecting the overall functionality of 

the scheduling system. The main reason for opting for a multi plug-in approach is that there 

are multiple applications which exhibit the same or very similar (discovery) functionality but 

which are used by different communities.  Another important design consideration is the 

service information lifetime. There can be many cases when information on a service is 

available within the discovery service but the service itself is unavailable. These “stale” 
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entries can lead to a degradation in discovery performance and reliability. Thus the 

registration of services needs to be subject to some lifetime, after which the registration 

expires. Service providers should periodically republish information to avoid deletion of 

previous published information.  

This step can significantly improve scheduling performance and reliability. Each 

independently running instance of an information service should keep aggregated data about 

all other instances. The benefit of this approach is that information can be retrieved by 

contacting any of the nodes, without bothering about the location from where the information 

regarding the service was published. It also allows fast retrieval of service data. Although this 

offers certain disadvantages in terms of loads on individual nodes the performance gains in 

term of access can overcome this cost. 

6.5 Peer-to-Peer (P2P) Topology-Aware Discovery 

In the DIANA scheduling model, each scheduling Peer gives preference to those Peers for 

communication and information dissemination which have a higher network throughput. A 

single Peer cannot handle or store the information about each site and node in the centralized 

Grid system. Therefore, we describe a P2P topology-aware discovery service in which the 

scheduling Peers will be aware of all the other Peers based on the available bandwidth from 

each others. This network and topology-aware resource discovery will help the scheduler to 

make the network aware scheduling decisions and will enable it to peruse the network 

infrastructure more optimally. In a Grid environment, sites have variable network 

connectivity and the peers/sites that are closest to each other are the ones which have a low 

round trip time (RTT) between them. Low RTT brings high bandwidth and hence a faster 

communication. The proposed topology for the meta-scheduler should lead to a fast and 

reliable communication between the Peers. Peers will self-organize themselves into sub-

Grids and in each sub-Grid, all Peers are nearest neighbours to each other. All subGrids and 

their Peers will be members of the RootGrid. 

To demonstrate our approach, consider that we have six Peers and we need to find the closest 

Peer, with respect to our site, among these six Peers (numbered 1-6). In order to find the 

nearest Peer, we have two options: either to calculate only the RTT from these Peers or to 

calculate available bandwidth to these Peers. In our case, we need more than just the RTT as 
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the criterion to find the nearest node. The other performance parameters that we use include 

Packet Loss and Available bandwidth. As described in [126], we can estimate the upper 

bound of available bandwidth as a function of RTT, Packet Loss and MSS: 

 BW < (MSS/RTT)*(1/sqrt (Packet Loss)) 

 

Figure 6.3: Round Trip Time from source 1-6 to destinations 

As we see in Figure 6.3, R6<R4<R2<R5<R3<R1; this shows that Peer 6 is the nearest node 

and then Peer 4 and so on. But in Figure 6.4, we see that B4>B6>BI>B5>B2>B3. This means 

that Peer 4 has a better network performance as compared to other Peers from the job 

submission site. The reason behind these results is that bandwidth does not depend only on 

RTT, but it also depends upon Packet Loss. In order to define the nearest Peer, let us say we 

have N destination Peers and we have to find the nearest Peer among them. B1, B2, B3,…, 

BN is the estimated available bandwidth from source to N destinations. Using this notation, 

we define the nearest Peer as: 

NP = { Bk | max (Bi) , 0<i<N } 

In this way, the Peer with maximum available bandwidth from source is our NP. The 

bandwidth is measured between the sites (from source to all destinations or from the site of 

the job execution to the places where the required data exists); the link from the source to the 

destination which has the highest bandwidth is treated as the nearest Peer irrespective of its 

distance from the execution site. The equation above describes this effect and selects the 

maximum bandwidth amongst the available sites. However if a case arises where there is no 

major difference in the bandwidth measurement between the sites but the RTT difference is 



 

 135

significant then a link will be selected which has the minimum RTT and the highest (or equal 

in this case) bandwidth. 

 

Figure 6.4: Available Bandwidth from source to 1-6 destinations 

This P2P approach works as follows: The nodes are divided into SubGrids, each SubGrid 

having its own "RootGrid” and (on average) each site has one RootGrid and may have one or 

more SubGrids. A SubGrid is the collection of resources which are geographically proximate 

and under one administrative control. In most cases each site will be under one SubGrid but 

more than one site can also constitute a SubGrid if the sites have fewer machines. A SubGrid 

consists of machines that have good network connections between them. Each SubGrid is 

represented by a RootGrid, which is the most available machine within the vicinity of the 

SubGrid.  The meta-scheduler works at the RootGrid level in this approach and therefore we 

use the RootGrid, and meta-scheduler interchangeably to describe this approach. The 

RootGrid to RootGrid communication is in essence P2P communication between the meta-

schedulers. Each RootGrid maintains a table of entries about the status of the nodes which is 

updated when a node joins or leaves the system and in almost real time. Local schedulers 

work at the SubGrid level. When a user submits a job, the meta-scheduler at the RootGrid 

communicates within the SubGrid to find suitable resources. If the required resources are not 

available within the SubGrid, it contacts the RootGrids of other subGrids in the VO which 

have suitable resources. Therefore a single node within a SubGrid communicates only with 

the Meta-scheduler, which itself communicates with the meta-schedulers at other RootGrids. 

Therefore, this approach is not just all-to-all communication. Had it been the converse where 

a machine communicates with all peers in the Grid (all-to-all communication), that would 

have been prohibitively expensive and the solution would not have been scalable. A 
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RootGrid contains all information about the nodes in its SubGrid. In case a RootGrid crashes, 

a standby node in the SubGrid can take over as a RootGrid. The RootGrid replicates its 

information almost in real time to this standby node to avoid information loss.  The RootGrid 

should always be the machine with the largest availability within that SubGrid and will have 

a unique ID, which will be assigned at the time of its joining the Grid. After joining, a Peer 

will check for the existence of the RootGrid. If the RootGrid does not exist, it means this is 

the first Peer joining the system. That Peer will then create the RootGrid and will join it. If 

the RootGrid exists then the Peer will automatically join that RootGrid and will search for its 

SubGrids and will join the nearest SubGrid using the criteria stated earlier.  

Whenever a site plans to become part of the Grid, a separate SubGrid encompassing the site 

resources is created and it the nearest RootGrid and may even create a new RootGrid using 

the criteria stated earlier. If the site is fairly small in terms of resources, this site may also join 

some existing SubGrid. The size of the SubGrid and RootGrid and other policy decisions 

have to be taken by a VO administrator and may vary from one Grid deployment to another. 

This algorithm will setup the topology, as shown in Figure 6.5.  

 

Figure 6.5: Topological Structure 
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6.6 Implementation and API Details 

The DS has been implemented as a web service within Clarens/JClarens. The development 

work has been carried out in two phases. In the first phase the development of a prototype 

version (or skeleton) of the information service was undertaken. Initially an API is provided 

with the implementation of the methods shown in Figure 6.6. The service interface (see 

figure 6.7) provides a way to describe service information. Different methods for accessing 

and manipulating service data are given in figure 6.6. The choice of parameters was made to 

have more flexibility in providing service information. The list of parameters is given in 

figure 6.7 with a list of methods in figure 6.6.  

To provide an interface between different kinds of storage systems and the service interface, 

we provided a middle layer called the wrapper which can interact with any of the existing 

repositories including UDDI. There are differences in the service APIs but this wrapper can 

replicate the information between UDDI and our discovery service. This also enables us to 

remain independent of the specific implementations of the repositories, e.g. the UDDI 

registry. The wrapper has similar functionality to a UDDI registry, but provides a more 

lightweight API with xmlrpc accessibility and a much more dynamic and distributed 

architecture. Service publications can be performed at any instance of the discovery service, 

and the publication will be automatically broadcast to all other instances of the discovery 

service. This allows clients to locate services from any discovery service instance, regardless 

of where the initial service publication took place. 

Interface 

Method 

Description API Details 

register Publishes service information with the 

discovery service. 

register(ServiceDescriptor[]) 

deregister Removes the service information from 

the repository 

deregister(ServiceDescriptor[]) 

find Allow users to query the information 

service for particular service or services 

find(encoding, uri, provider_dn, 

vo, name) 

find_server Same as find but only provides the find_server (encoding, uri, 
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information about existing servers.  provider_dn, vo) 

Figure 6.6: Service access methods 

Name Description 

Endpoint list {uri, encoding (soap, 

xmlrpc)} 

Information on how to access the service 

including protocol and URL 

Name Name of the service 

Admin Email Email of the administrator who is managing the 

server 

VO The virtual organization of which this server is 

a part. 

Site Name of the site 

WSDL url URL for retrieving WSDL url 

Provider_dn Distinguished name of the provider of this 

service 

Item {key , value} Arbitrary key-value pair for describing the 

properties of the services 

Figure 6.7: Service description 

The data on each service was stored at a centralized location.  A discovery module was 

provided as a core component within the Clarens framework. Each instance of a Clarens 

server registered its services with the locally available information service. Replication was 

not possible between servers and consequently no communication was possible among 

different Clarens servers.  

The support for the replication of the service data was built and communication among 

individual instances was provided in phase 2, as shown in Figure 6.8. A new monitoring 

module was developed within the MonALISA which handles publication requests from 

individual instances of Clarens. Upon its start-up each Clarens server registered its services 

with the local repository and also pushed them to the MonALISA server. The service 
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information is sent to any of the known station servers using the ApMon client library – a 

library that uses simple XDR UDP packets. A JINI-based client is embedded within each 

Clarens server. This client registers with the MonALISA JINI network to listen for any kind 

of information related to the DS. The values are pushed to the Clients so we do not have to 

periodically check for new or modified values. The information received from MonALISA is 

also stored in the local repository. In this way service information from one discovery 

instance is made available to others.  

 

Figure 6.8: Service replication and distributed discovery 

One other important development is to add a service lifetime management mechanism. 

Keeping information for unavailable services not only decreases the efficiency of the 

network, but it may also hinder the overall working of the scheduler. Thus lifetime 

management can be considered a critical component of the DS. In the implementation of the 

DS, the publishing of service information is subject to a finite lifetime. Repositories are 

periodically purged to remove expired entries from the system. The service provider is 

responsible for renewing the service lifetime; the service expiry is managed by the provider 

of the service, so it can be easily adjusted based on the requirements and nature of the Grid 

applications.  
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6.7 Conclusion 

Chapter 6 presented the effect of the network parameters and network characteristics on the 

Meta-Scheduling process. No data-intensive system can be successful so long as it does not 

coordinate with the underlying network. Network aware scheduling has been discussed and 

its influence on scheduling decisions has been analyzed. This chapter also described the 

design and implementation of a DS. We discussed some unique features of the system - the 

most important of which include flexibility, avoiding stale service data by imposing a 

lifetime for each service entry and providing an updated view of the dynamically varying 

Grid system. The ability to attach arbitrary sets of key-value pairs with service information 

makes it possible to easily extend/customize the service description interface. The DS is a 

core component of the DIANA P2P scheduling system. 

In chapter-7 we will discuss Data Aware Scheduling. The role of the Data Location Service 

and its key attributes are explained. Chapter 7 will investigate how catalogues perform in the 

DIANA Scheduler and what are the key features of DIANA which make it unique for Data 

Intensive Scheduling. Chapter 7 also sheds light on the replication and co-allocation issues 

for Data Intensive Scheduling and describes the ways through which this is managed in the 

DIANA Scheduler.  
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Chapter 7 

Data Management and Scheduling Optimization 

Chapter 6 discussed the network characteristics and network managed services which can 

influence the data intensive scheduling process. Network characteristics can significantly 

influence the data intensive scheduling process and therefore, it should be treated as prime 

resource while making the scheduling decisions. The network issues and their association 

with the meta-scheduling was established and the role of a Grid discovery and information 

system was illustrated to dynamically manage the services and network information. Chapter 

6 also presented the architecture and salient features of the Discovery Services. Finally the 

role of a Discovery Service as a P2P enabler for DIANA scheduling was described. 

In chapter 7 the data related aspect of DIANA scheduling are described. The Data Location 

Service (DLS) and its key features are explained. The role of catalogues in the DIANA 

Scheduling and the key features of the DIANA which make it unique for data intensive 

scheduling are highlighted. Chapter 7 also sheds light on the replication and co-allocation 

issues for data intensive scheduling and describes the ways through which this is managed in 

the DIANA Scheduling System. 

7.1 Introduction 

Grid deployments are facing problems due to the limitations in its data management 

capabilities. This is due to the fact that the word "Grid" very often refers to a compute Grid 

with no explicit reference to data semantics. As such, data management is typically an 

afterthought in many of these deployments and data operations need to get a priority due to 

the increasing number of the data intensive scientific and business applications of the Grid. A 

simplified architecture of the Grid system is illustrated in Figure 7.1 [154] to describe how 

compute and data resources interact. In this example tasks from Grid clients are received by a 

Grid scheduler, which then routes and manages these client requests to a set of compute 

nodes. The compute nodes in turn access the necessary information from backend data 

sources. The challenge with most Grids is that the computations they support are fairly data 

intensive and have to be executed with a high degree of parallelism, such as some of the 

Monte Carlo simulations for physics analysis [153]. Often there is also a need to share 

intermediate results amongst a set of interdependent Grid tasks. Data sharing and access can 
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also be very cumbersome since due to better computing power, it may be preferable for the 

jobs to run at a site different to the data location. As a result, most Grid deployments suffer 

from data latency, scalability, consistency and quality of service issues. While these issues 

are seldom noticeable in small-scale pilot deployments (of the order of 10-20 nodes), the 

moment an organization plans a Grid expansion both in functionality and scale (to, say, 

hundreds of nodes), such data management issues become more pressing. To combat these 

issues, we need to recognize the need for innovative data services which can serve the needs 

for data intensive Grid scheduling. Therefore we require services that can deliver this 

functionality and enable the intelligent, on-demand delivery of actionable information to the 

meta-scheduler. 

 

Figure 7.1: Typical Grid architecture [adopted from the 451 Group [159] 

7.2 Data Management and Scheduling 

Data intensive jobs can sometimes read or require users to store their output data in some 

secondary storage or tertiary storage at some remote site after the completion of a job. 

Ideally, end-users should not be concerned where their files are and this should be provided 

automatically by a service that is transparent to the user. Some applications are required to 

perform analyses on datasets geographically distributed across many files, and this requires 

an efficient means to locate and access datasets irrespective of their location and file 

organization. When building a Grid, the most important aspect is to align (co-allocation or 

co-scheduling of data and compute resources) the data with the compute cycles. The 

Scheduler should consider both the data and compute resources for scheduling instead of 

scheduling from a computing perspective only.  Therefore in its design, we need to determine 

our data requirements and how we will move data around our infrastructure or otherwise 

access the required data in an efficient manner. Data management is concerned with 
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collectively maximizing the use of the limited storage space, networking bandwidth, and 

computing resources and this has a profound effect on scheduling decisions. 

For large datasets, it is not practical, and might be infeasible due to storage and transfer 

limitations, to move the data to the system where the job will actually run. Using data 

replication or otherwise copying a subset of the entire dataset to the target system might 

provide a solution. If the target Grid is geographically distributed with limited network 

connection speeds, one must take into account design considerations around slow or limited 

data access. For instance, if a data transfer is going to take five hours and the data is required 

by a job that must run at 14.00 hrs, then one should schedule the data transfer in advance of 

9.00hrs so that it is available by the time the job requires it. This is not a resource reservation 

but rather a scheduling mechanism which takes into account the anticipated transfer times. In 

resource reservation, a set of resources controlled by the scheduling system are set aside from 

normal use for the jobs, and made accessible to a subset of users who have been given 

exclusive rights for this reservation. The resource is not being reserved for a particular user or 

job in the DIANA meta-scheduler but rather a transfer operation is started in advance to 

initiate the job execution in time. The users should also be aware of the number and size of 

any concurrent file transfers to or from any specific resource.  The scheduling system will 

require logic to handle the selection of the appropriate replica that will contain the data that 

the jobs need, while also fulfilling the performance requirements. Note the replication helps 

in achieving systems performance. When a scheduler generates a request for a file, large 

amounts of bandwidth could be consumed in transferring the file from the server to the client. 

Furthermore the latency involved could be significant, considering the size of the files 

involved. The replication reduces access latency and bandwidth consumption. Replication 

can significantly help with scheduling optimization and can improve reliability by creating 

multiple copies of the same data. 

7.2.1 Virtualization and Scheduling 

A data Grid connects a collection of geographically distributed computer and storage 

resources [116] and enables users to share data, compute and other resources. Data 

virtualization plays an important role in realizing data intensive scheduling. By dynamically 

managing data across multiple physical nodes, a data Grid converts every compute node in a 
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Grid into a "data node" as well. These physically disparate data partitions are exposed to a 

scheduler as a unified logical entity that appears to originate from a single source. The 

application is not concerned with the actual data location, nor does it adhere to different 

access protocols, this concept being often referred to as "location transparency" in the Grid 

environment.  

The second important issue is high availability. While improved performance is indeed a 

major benefit of managing data, it should not come at the price of inconsistent data 

availability. High availability without perceivable loss in performance is guaranteed through 

a replication scheme. Any number of data mirrors or replicas can be configured to ensure the 

required level of data availability. When a primary data node fails, a replica can handle client 

requests. Therefore, in data aware scheduling, data virtualization and its availability are 

important considerations and can play a significant role in the scheduling decisions. Figure 

7.2 illustrates the storage and handling of data in the data Grid system [128]. The data Grid 

software components are responsible for wide-area data handling and replication in terms of 

files. The Grid software components provide a grid-wide file replica catalogue service which 

maintains the mapping from logical to physical files.  

 

Figure 7.2: Storage and handling of data in the data Grid system  
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7.2.2 Co-Scheduling and the Data Scheduler  

The ability of a Data Grid to locate and distribute data in a dynamic fashion facilitates 

intelligent interactions with other technologies in a Grid.  A Grid scheduler can be configured 

to enable data-aware routing [122]. In other words, by recognizing the data placement 

strategy of a Data Grid, a Grid scheduler can route certain tasks to nodes that already have 

the required data available to complete a specific task. Conversely, by understanding the data 

requirements of a computation being repeatedly executed on a node, the scheduler can 

intelligently pre-load the data required for that task which often results in significant 

performance benefits. Based on data access, load concurrency and quality of service 

requirements, a scheduler can work in concert to locate data on a set of Grid nodes that are 

equipped with the requisite CPU and memory.  This whole process is known as co-

scheduling of compute and data operations.  An assumption we need to make is that data is 

usually co-located (and co-scheduled) with the application that needs it. In order to be able to 

do so, the Grid job scheduler needs to invoke the Data Scheduler services [114] in order to 

make sure that a given file is available at the chosen site where the job is to be run. This co-

scheduling may not be always possible, so it may be necessary to access the data remotely.  

 

Figure 7.3: Catalogs for data access 
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7.2.3 The Catalogs and the Scheduling Process 

In order to achieve the promise of ubiquity, the Grid Resource Management System (GRMS) 

behaves like a simple operating system to the application. The GRMS performs almost the 

same functions of resource management at the application level in the Grid that an operating 

system performs at the kernel level to manage the system resources. Jobs are scheduled, 

queued and aborted, resources are allocated and released, policies are enforced, 

authentication and authorization are performed and files are managed in almost the same way 

at the application level as an operating system does at the kernel level. Therefore GRMS is 

viewed as an operating system to the application.  It should enable applications to access the 

data independently of the actual location of the CPU on which the job is being executed. Due 

to the distributed nature of the Grid, the files may be replicated at many Grid sites if they are 

heavily used. The user application does not need to know which locations these are as long as 

it is able to run the jobs and read the data as if it were local. 

 The Grid catalogues make sure that the file names and associated metadata are properly 

accessible and secured for the end-user application. Using an external catalogue to keep track 

of the physical location of the file is more flexible than hard-coding the location information 

in the file itself. This allows the file to be moved or replicated. In the Grid environment, high 

level applications view only logical files. A logical file does not exist physically; a physical 

file and all its copies can be viewed as the same logical file. In other words, physical files are 

representations of the logical file. To operate on the contents of a logical file, a service is 

needed to map the logical file to one of its physical representations and this physical file can 

then be opened. The physical location of a file can be represented by its Physical File Name 

(PFN) while the logical file can be represented by a unique logical identifier. It is not 

mandatory for each Grid site to provide the storage functionality described in figure 7.3 but 

each storage site in the Grid should provide this functionality to provide replica, metadata 

and other services for locating and transferring the files for data intensive scheduling.  The 

Grid catalogues are used to manage the Grid file namespaces and the location of the files, to 

store and retrieve metadata and to keep data authorization information for the scheduler. We 

can decompose the catalogues (see Figure 7.3 [114]) into catalogue feature sets which are 

represented by catalogue interfaces. The Replica catalogue exposes operations concerning the 

replication aspect of the Grid files. The File catalogue allows for operations on the logical file 
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namespace that it manages. In order to implement a standalone Metadata catalogue, methods 

are needed to add and remove entries in the Metadata catalogue. The catalogues increase 

performance and optimise interaction with the Grid scheduler. Figure 7.3 also illustrates the 

interaction of the catalogues with the indexing, authorization, and data storage and data 

movement services. 

7.3  Data Location Service 

Data intensive scheduling takes into account large amounts of data, data replication, and data 

transfer as illustrated above. In order to optimize the scheduling process in which large 

amounts of data are involved, we therefore have to take into account data location, size and 

other related aspects. To address this issue, a Data Location Service (DLS) is created which 

returns the best replica of a given logical dataset and it uses the Data Location Interface [149] 

(see section 7.3.2) for this purpose. The DLS provides the means to locate replicas of data in 

the distributed computing system. The DLS is indexed by datasets logical names (LFN) and 

it maps datasets to storage elements (SEs) where they are located. Each LFN is linked to a 

GUID (Grid Unique Identifier) which is unique across the entire Grid. Against each LFN, the 

DLS locates the GUID which in turn looks up GUID to PFN mappings for a given GUID. 

The DLS selects the best replica from all the PFNs which are associated with a GUID. The 

basic content of the catalogue is the one-to-many mapping of the LFN and the PFNs; this 

mapping is sufficient for object lookup and navigation. To register a file is to insert a LFN 

and PFN pair in the catalogue while to lookup a file is to resolve a LFN into a PFN or vice 

versa.  Besides, one can extract a subset of files from one concrete catalogue and cross 

populate them into another catalogue.  The DLS provides the names of sites hosting the data 

and the physical location of constituent files at the sites, or the datasets. Information is 

entered into the DLS, for sites where the data is located, either by the scheduling system after 

job execution or by the data transfer system after transfer. Site manager operations may also 

result in modifications to the DLS, for instance in the case of data loss or deletion. In order to 

steer jobs to the data, the DLS is contacted to select the sites hosting the needed data. This 

translates into an explicit requirement to the Grid Meta Scheduler to schedule the jobs at a 

possible set of sites. 



 

 148

DIANA 
Scheduler

Data Location
Service

Data Location
Service

Data Location
Service

Discovery
Service

Replica 
Catalogue

Data Location Interface

Job Description

Replica 
Catalogue

Data Location Interface

Replica 
Catalogue

Data Location Interface

 

Figure 7.4: Interaction of the DIANA Scheduler with the Data Location Service 

Figure 7.4 shows the architecture of the DLS. In this figure, three instances of the service are 

shown to illustrate that there can be more than one instance of the DLS running at different 

locations in the Grid. We can obtain the list of these instances through the Discovery Service 

(see section 4 of chapter 6) which is the point of contact to access and query the DLS. All 

instances of the DLS returned from the Discovery Service are interacted and queried but 

physical replica from that location is selected which is likely to have a least data transfer cost. 

If a client (in our case the DIANA Scheduler) needs to get information about the datasets 

stored in storage elements and registered in replica catalogues known by the DLS, the client 

first contacts the Discovery Service which provides a list of all the locations where a DLS is 

running. Then the client queries the DLS by passing a logical name of the dataset whose 

physical location is desired. As a result of this query, the DLS returns an optimal physical 

replica of the dataset to the client with reference to the computing element where the job will 

be executed.   

The DLS outlined here focuses on the selection of the best replica of a selected logical file, 

taking into account the network and storage access latencies.  The DIANA Scheduler selects 

the best CE and then the best SE, with reference to this CE, is selected on the basis of criteria 

as discussed in chapter 4. The DLS is a light-weight web service with few SOAP and other 
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custom libraries to copy for installation and running on top of the existing Grid catalogues 

and monitoring infrastructure.  It gathers information from the network monitoring service 

and performs access optimization calculations based on this information. The DLS provides 

optimal replica information on the basis of both faster access and better network performance 

characteristics. The data location process allows an application to choose a replica, from 

among those in various replica catalogues, based on its performance and its data access 

features. Once a logical dataset is requested by the Scheduler, the DLS uses a replica 

catalogue to identify all replica locations containing physical dataset instances of this logical 

dataset, from which it should choose an optimal instance for retrieval. The DLS is fault 

tolerant, so that when one instance goes offline, a scheduler or any other service can still be 

able to work by using another instance of the service. All the instances of the DLS are 

registered in the Discovery Service and it is simply a matter of making just one SOAP call to 

the Discovery Service to find another instance of the DLS. All the instances of various 

services including the DLS are updated after regular intervals, therefore it is guaranteed that 

there are no stale entries in the Information and Discovery Service. As discussed in chapter 5, 

the exact interval to collect the updated services and network information can be changed by 

the site administrator through changing the value in the configuration file but a 15 minutes 

interval was used to update the values. This behaviour is provided by MonALISA and the 

information service as discussed in chapter 6. 

The DLS is a decentralized service which takes into account the selection process on the 

basis of both scheduler and dataset locations and associated network parameters while using 

the discovery service to locate the available replica catalogue services. Each of these 

catalogues is queried by the DLS to find all locations where the requested dataset is available.  

The service returns a list of dataset locations to the caller. The result of a call to this service is 

sorted either by the reliability of the datasets (which is provided by the network cost and 

network features such as bandwidth, packet loss etc) or by the "closeness" determined by 

some network ping time or other network measurements. The DLS also evaluates the 

network costs for accessing a replica. For this it uses information such as estimates of dataset 

transfer times based on network monitoring statistics. The DLS selects the "best" physical 

dataset based on the given network, size and location parameters.  
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7.3.1 Architectural and Implementation Details 

The complete system (that is the DIANA Scheduler with the DLS) is implemented in Java 

although components employed use C, Python and Perl to incorporate the libraries which 

have been developed under different Grid middleware projects like Globus and gLite. We use 

SOAP as well as XML-RPC as the communication protocols to send requests to the services. 

JINI based MonALISA is the core provider of the P2P behaviour in the Discovery Service 

and it inherits parts of the functionality from JINI. The use of MonALISA in the Discovery 

Service was discussed in section 6.6 of chapter 6. Furthermore, the detailed description of the 

decentralized functionality is also provided in the same chapter.  We have employed PingER 

to get the monitoring information since it provides detailed historical information about the 

status of the networks. For the time being, PingER does not provide the web service 

interface, so we store the network monitoring information in a MySQL [108] based relational 

database and simply access this database for using this monitoring information. These 

monitoring values are published to the MonALISA using Apmon API as was discussed in the 

chapter 6. A module incorporates the networking information in the scheduling algorithm. 

Moreover, we created a multi-dimensional array to store the cost values for various nodes 

and populated the cost matrix. We used the search routine discussed in chapter 4 to get the 

best cost for job execution. The Matchmaker, meta-scheduling components, Clarens based 

Discovery and Information Service and itself JClarens (A Java variant of Clarens 

Framework) for services deployment, Data Location Service, Job Monitoring Service, Job 

Steering Service and Estimator Service are created for this thesis whereas the rest of the 

components and utilities have been used from other projects. SOAP and XML-RPC are used 

to provide the request-response mechanism between all these services. The same protocols 

are used to provide access to the contents in the MonALISA repository. 

The DIANA scheduler makes use of a peer-to-peer network to find and schedule the 

resources on the Grid.  The current implementation, as shown in Figure 7.5, makes use of 

three software components for resource discovery: Clarens as a service deployment 

environment, a Discovery Service which stores and publishes the services and network 

parameters,, and a peer-to-peer network provided by JINI based MonALISA network to 

propagate the information in the Discovery Service across the entire Grid.. In DIANA, 

Clarens provides a common resource registration service called the Discovery Service (as 
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previously described).  Resources such as Data Location Service and other web services that 

are offered by Clarens are advertised directly to the Discovery Service.  Resources offered by 

non-Clarens software packages can also be registered with a local or remote Clarens 

Discovery Service.  The Discovery Service forwards the resource description to a 

MonALISA Station Server, where it is propagated to all other Discovery Services by means 

of MonALISA’s underlying JINI network.   
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Figure 7.5: Clarens Servers (CS, DS), MonALISA Station Servers (SS), and clients (CL) as 

part of a P2P discovery system. 

Each Discovery Service receives all resource publications from all other Discovery Services, 

providing a global view of all available resources in each Discovery Service. The DIANA 

Scheduler can then contact any instance of the Discovery Service to find out about available 

resources on the entire Grid. If any instance of the Discovery Service becomes unavailable 

due to hardware or network faults, then any other instance of the Discovery Service can be 

used in its place.  In fact, the Discovery Service can also be used to locate other instances of 

the Discovery Service.  This helps to work around the bootstrapping problem as a client 

application only needs to know the location of a single available Discovery Service. Once 

that service has been contacted, a list of other Discovery Services can be cached locally and 

used if the original Discovery Service ever becomes unavailable.  
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In order to fully include the Data Location Interface (DLI) (see section 7.3.2) into the 

scheduler, changes were required on the client as well as on the server side. The main change 

is the integration of the DLI client into the Matchmaker.  DLI calls follow generally accepted 

web service standards. For each virtual organisation (VO) one has to specify if either the 

Replica Location Service (RLS) or the DLI is called by default. Consequently, when a data 

intensive job request arrives, the Meta-Scheduler checks the InputData type and the server 

side configuration in order to distinguish between RLS and DLI calls.  

7.3.2 Data Location Interface (DLI) 

The Data Location Service uses the DLI to access the replicas from the various catalogues 

[149]. The DLI is also a Clarens Service just like the Data Location Service.  The DLI does 

not directly interact with the Discovery Service. Rather the Data Location Service 

coordinates between the DLI and the Discovery Service. For example, the location and 

contents of the DLI are not published to the Discovery Service. Instead, the Data Location 

Service queries the catalogues through the DLI and publishes the dataset’s information to the 

Discovery Service. The underlying protocol of communication between the DLI and Data 

Location Service is SOAP and the Data Location Service also queries the Discovery Service 

in the same protocol. A unique feature of the DLI is that it locates datasets rather than 

individual files. A dataset is considered to be an atomic unit of data that is defined within a 

VO. Furthermore, a dataset itself can consist of several physical files but the end-user (for 

example a physicist) normally only knows the dataset concept. The DLI (see figure 7.6) takes 

a Logical DataSet (LDS) name as an input and returns the physical locations of the datasets. 

The LDS is defined to refer to an entity of data or a so-called “file collection”. One LDS can 

have several physical replicas. For simplicity we assume that all physical files that belong to 

a dataset are stored at the same storage element and are accessible via the same protocol.   

When a scheduler wants to obtain all physical locations for a given LDS, a SOAP request is 

sent to the Data Location Interface via a Data Location service. The Data Location service 

issues the SQL query to retrieve the possible locations where the dataset is available. The 

results are then mapped internally by the service to have the corresponding Storage Element 

hostnames. Once this is done, a SOAP answer conforming to the Data Location Interface is 

created using the ZSI python module, and is then returned to the scheduler. 
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Figure 7.6: Data Location Interface (adopted from [149]) 

Conceptually, logical files names (LFNs) and LDS can be treated in the same way by the 

scheduler. For both data types, LFN and LDS, it is important to know where the physical 

replicas are located. For LFNs, the replica location is returned by the Data Location Service. 

For logical datasets, an equivalent service needs to implement such a query method and this 

is provided by the DLI that acts as the main interface between the DIANA Scheduler and a 

catalogue for a specific data type. Therefore the DLI is designed in Web Service Description 

language (WSDL) and consequently, the Scheduler can interact with any catalogue 

(providing data locations) that exposes a web service interface.   

7.4 Conclusions 

Chapter 7 described the data related aspects of DIANA Scheduling. It was shown that the 

scheduling efficiency can be improved by selecting the best replica of a dataset having the 

minimum access and transfer costs. The DLS enables the selection of this ‘best’ replica of a 

logical file by taking into account the network and storage access latencies. Moreover, the 

relation between the network characteristics as explained in chapter 6 and data intensive 

scheduling was established and it was shown that the data intensive scheduling process can 

be optimized by taking the replica locations and sorting these replicas based on the network 
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efficiency. The dataset replica having the least access cost with reference to the selected 

computing element is selected by the Meta-Scheduler. Furthermore, the DLS exploits the 

Discovery Service to locate the dataset and file catalogues. 

In Chapter 8 results of tests are presented. Through graphical and analytical details it will be 

demonstrated that DIANA Scheduling significantly optimizes the job queue and execution 

times. It will also be explained that bulk job scheduling and execution operations are 

improved by DIANA Scheduling. It will be illustrated through these results that P2P is better 

suited to data intensive, bulk job scheduling. Moreover the impact of the network and data 

location will be demonstrated for replica selection and consequently on the meta-scheduling 

optimization. 
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Chapter 8 

Results and Discussion 

This chapter presents results of practical tests of the thesis investigation. Section 8.1 

describes the sequence and approach followed for the results. Section 8.2 presents the results 

of the DIANA deployment on GILDA (the Grid INFN Laboratory for Dissemination 

Activities testbed). Section 8.3 describes the results regarding P2P scheduling on a custom-

built testbed and it also demonstrates job steering and information and migration processes 

for the optimization of scheduling. Section 8.4 discusses bulk scheduling and other 

simulation results which have been taken from the MONARC [63] and SimGrid [45] based 

simulation frameworks.  

8.1 Introduction  

Having presented the theory, mathematical background and implementation details of various 

services for DIANA scheduling, the results of practical investigations are now detailed. In 

this chapter, we present a list of the results which were achieved through experimentation and 

simulations as follows: 

1. Firstly we present the DIANA Scheduling results demonstrated through the use of the 

GILDA testbed created by the EGEE project. In section 8.2, we present the testbed set-up and 

then we discuss our findings about job execution times, queue times and replica selection and 

transfer times. 

2. Secondly we show how we created our own experimental testbed to obtain results in which 

the P2P capability of the DIANA Meta-scheduling is demonstrated. In section 8.3 we also 

demonstrate the results of the DS that shows how effectively it registers, discovers and 

replicates the peer’s information. Further results related to priority control, queuing and job 

migration when a scheduler is overloaded at a site, followed by monitoring and estimation 

results are presented in this section. 

3. Thirdly the limitations posed by the testbeds in steps 1 and 2 above are described and how 

they were overcome by creating a simulation environment is detailed. In particular the bulk 

scheduling and scalability process is demonstrated with the aid of simulation results. This is 
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presented through simulation tests since it is not practically feasible to submit thousands of 

test jobs on the Grid testbed since these tests can take days to produce basic bulk scheduling 

and scalability measurements. Consequently in section 8.4, the simulation results for bulk 

scheduling, export and import of jobs to and from the remote sites and scalability tests are 

also presented. 

 

Figure 8.1-a:  A description of the experimental environment  
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8.2       Experimental Results through the GILDA Testbed 

CRAB [165][168] has been used as a job creation and submission tool in the experiments; 

CRAB is short for CMS Remote Analysis Builder. CRAB enables CMS users to easily 

perform analysis jobs on every data or MC (Monte Carlo) set officially published by CMS. 

CRAB hides the usage of the Grid middleware from the user who is not required to have any 

special expertise about the Grid. The users use CRAB to run jobs on officially published 

datasets. CRAB takes care of the submission, the job splitting and the output retrieval. Users 

use CRAB to create jobs in order to process a defined number of events of the requested 

dataset, to submit the jobs via the Grid to farms where the requested dataset is available or 

can be made available and to check the status of submitted jobs and to retrieve the job output. 

Figure 8.1-a shows the experimental environment which describes the flow of user code, 

physics data, and job- and resource-related information throughout the course of an analysis 

job. 

The scheduling system will create job configurations for every job which is to be submitted. 

At submission time, the submission tool will have information about the data location and 

will pass this information to the DIANA Scheduler which in turn can decide where to submit 

the job according to some resource availability metrics. The Scheduler will submit the jobs to 

the Grid as a "job cluster" if necessary, for performance or control reasons, and will interact 

with the job monitoring to allow the tracking of the submitted job(s).The DIANA scheduler 

is responsible for scheduling the jobs to run on specific Compute Elements (CE) and 

dispatching them to the CEs. Each job run-time takes place on a Worker Node (WN) of a 

specific Computing Element (CE)/local resource management. The jobs arrive on the WN 

with an application configuration which is still site-independent. The CE/WN is expected to 

be configured such that the job can determine the locations of necessary site-local services 

(local file replica catalogue, CMS software installation on the CE, access to CMS conditions, 

etc.). Once the job completes, it must store its output some place. For very small outputs, the 

outputs may just be returned to the submitter as part of the output sandbox. For larger 

outputs, the user will have choices. Either the output can be stored on the local Storage 

Element (SE) (for subsequent retrieval by the user) or it can be handed off to an agent of the 

data transfer system for transfer to some other SE. In any case, handling of the output data 

will be asynchronous with respect to the job completion. The job's only obligation is to either 
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successfully store the outputs to the local SE or pass them to the data transfer agent. While 

job processing is in progress, the user can monitor the progress of the jobs constituting his 

task by using the job monitoring system. 

As individual jobs finish (or after the entire set of jobs in the task has finished) the user will 

find the resulting output data coalesced to the destination specified during the "job 

completion" step. If the user wishes to publish this data, the relevant provenance information 

must be extracted from the job monitoring/bookkeeping system, etc. The location of the 

resulting file blocks can then be published in the DLS. Publication is not (yet) supported by 

CRAB. These pieces thus constitute a basic workflow using the CMS and Grid systems and 

services. The CMS tools in association with the DIANA Scheduler are responsible for 

orchestrating the interactions with all necessary systems and services to accomplish each 

specified task. 

 

Figure 8.1-b:  A description of the GILDA Testbed (source https://gilda.ct.infn.it/). 

We have used the GILDA test bed, a test environment for HEP Grid applications, to validate 

the results taken by the deployment of the DIANA implementation (as described in earlier 

chapters). GILDA facilitates testing the capabilities of Grid applications and it consists of 

several academic and “commercial” sites. The testbed has a series of sites and services 
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(including the execution environment for physics analysis) and is located in several sites in 

Europe and South America. Figure 8.1-b describes the testbed, its constituent sites, their load 

and their waiting and running jobs and storage resources on the testbed. The resources are 

geographically distributed and connected through a high speed WAN. All of the machines 

run the CERN Scientific Linux operating system. The GILDA Testbed has some of the 

emerging Grid-standards based EGEE applications already installed, and we made use of 

those components and applications to test our scheduling approaches. We used the GILDA 

testbed to run physics analysis applications as a proof-of-concept demonstrator.  

We first submitted jobs on the GILDA Testbed without the DIANA Scheduler and measured 

the queue times, execution times and data transfer times. After this, jobs are re-submitted 

following the algorithm employed in the DIANA Scheduler which includes the measurement 

of queue times, execution times and data transfer times, as described in chapter 4. We took a 

particular computationally intensive job from the high energy physics (HEP) group CMS 

which produced a very large amount of data. We selected this CMS job because its execution 

time is of the order of minutes, in order to minimise the effect of varying network 

characteristics. The total time for job execution is discussed below. Tests are performed by 

submitting jobs through GILDA's user interface. The client machine was a Pentium based 

machine with a 2.4 GHz processor and 1 GB RAM. The network card was of 100 Mbps 

capacity.  

Due to varying load conditions, it can be difficult to estimate the true effect of the DIANA 

scheduling approach if jobs are run at different times and/or results of various approaches are 

taken at different times. In order to compare the two approaches, we executed short duration 

jobs in as near-identical environments as was practically possible. DIANA Scheduling is 

equally applicable to short and long duration jobs. For the longer jobs it is the execution time 

which will vary and accordingly queue times will also increase. The execution cost will 

remain the same with time since once a job is submitted, whether it is a long or a short job, it 

will not be pre-empted until it completes its execution (and therefore it is not time 

dependant). The same is the case for the data transfer cost which should remain the same 

whether a longer job is being executed or a shorter job is being scheduled. The only variable 

which can change with time is the network cost. Although the network cost can influence the 

data transfer cost it does not affect the execution time since jobs do not communicate with 
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each other during execution. The data transfer cost is the replication cost and is equally 

important for the longer and shorter jobs as far as their execution times are concerned. From 

this we can conclude that although these results are being presented for short duration jobs 

they are equally applicable to long duration jobs and therefore the results can be generalized. 

We submitted differing numbers of jobs. Firstly we submitted 25 jobs on the GILDA Testbed 

and observed their queue time and execution times. The GILDA Testbed employed the gLite 

workload management system as a meta-scheduler and therefore the submitted jobs followed 

either eager or lazy scheduling with resources being allocated on a First Come First Served 

(FCFS) basis. Figure 8.2 and 8.3 show the queue and execution times of gLite workload 

management against which we are comparing the DIANA meta-scheduler. Secondly, we 

submitted the same number of jobs three times and re-measured the queue and execution 

times. Then we increased the number of jobs to 500 and then gradually to 1000, so that we 

could check the capability of the existing matchmaking and scheduling system. We increased 

the number of jobs for two main reasons: to monitor how the queue size increases over time 

and in which proportion the meta-scheduler submits the jobs (that is whether the jobs are 

submitted to some specific site or to a number of CPUs at different locations depending on 

the queue size and the computing capability). Then we calculated and plotted the queue times 

and investigated how it increased and decreased with the number of jobs.  

 

Figure 8.2:  Queue time versus number of jobs. 
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We observe from the results presented in Figures 8.2 and 8.3 that both queue and execution 

times follow very similar trends. This is primarily due to the fact that DIANA preferentially 

selected those sites for job execution which could quickly execute jobs (i.e. those that have 

short local queues with low latency). The trends in figures 8.2 and 8.3 show that queue time 

is almost proportional to execution time because if the job is running and taking more time on 

the processor, the waiting time of the new job will also increase correspondingly since it will 

spend more time in the queue. Although the execution time does not include queue times, a 

higher number of jobs running at a site can influence the queue time. Furthermore, increasing 

the number of jobs in the queue can influence the overall job completion times (i.e. the 

scheduling time, queuing time and execution time) of the new jobs since they will be 

competing for the resources to get an execution slot, especially if the jobs are composed of 

sub-jobs. Large jobs are divided into small sub-jobs after a job partitioning process, and most 

of the time work on the same set of the data. They have similar characteristics and are treated 

as independent jobs during scheduling, queuing and execution stages. However, their output 

is returned to the user as a single aggregated unit. These subjobs are always scheduled on a 

single site, and the overall time of the job depends on the execution of these subjobs. Some of 

these jobs will be in the queue and others will be running but the overall time of execution 

will be the aggregate time when all these subjobs complete their execution. There is no 

empirical or quantitative proof of this assertion but trends in figures 8.2 and 8.3 lead us to 

this conclusion and this could be one possible future direction of work. 

The queue time of the meta-schedulers and the local resource management systems is very 

significant in the Grid environment and it takes a large proportion of the job’s overall time 

(see Figure 8.2). Sometimes this is greater than the execution time if the resources are scarce 

compared to the job frequency. In our experimental setup, we took only a single job queue in 

the meta-scheduler and we assumed that all jobs have the same priority. Multi-queue and 

multi-priority job scenarios will be discussed later in this chapter. In fact, the job allocation 

algorithm being employed by DIANA in this case is also based on the FCFS principle. The 

FCFS queue is the simplest and incurs almost no system overhead. The queue time here is the 

sum of the time in the meta-scheduler queue and the time spent in the queue of the local 

resource manager. The graph of the queue times when the number of the jobs changes is 

shown in Figure 8.2.  It shows that the queue grows with an increasing number of jobs and 

that the number of jobs waiting for the allocation of the processors for execution also 
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increases. The graph shown in Figure 8.2 is based on the average values of times for varying 

number of jobs as mentioned previously. Improvements in the queue times of the jobs due to 

DIANA scheduling are also depicted in the same figure. From the figure it is clear that the 

DIANA scheduling technique significantly decreases the queue time of the jobs. This is 

because only those sites were selected for job placement which had fewest jobs in the queue 

and which were likely to quickly execute the jobs once scheduled on that site, were selected 

for job placement. 

 

Figure 8.3:  Execution time versus number of jobs. 

The execution time is normally longer than the processor time consumed by the process 

because the CPU is doing other things besides just running the process, including running 

other user jobs and operating system processes or waiting for disk or network I/O. The 

execution time does not, however, include queue time or waiting time. By increasing the 

number of the jobs, it is evident from Figure 8.3 that the average time to execute a job is 

increased. More competing jobs clearly require more time for a specific job to complete. 

From figures 8.3 it is clear that the DIANA scheduling approach has improved the execution 

times of the jobs. This time is calculated by dividing the available computing power by the 

number of jobs and is indicative of the aggregated execution times. Only one job is executed 

on a CPU at one time, and jobs cannot run in parallel on that CPU since we are following a 

non pre-emptive scheduling model. More CPUs on a site can execute a higher number of 
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(sub-) jobs and more competing jobs clearly mean more time for a specific job to complete. 

DIANA has improved the execution times of the jobs since it selected only those sites for the 

job execution which had the required data, had less loads, had fewer jobs in the queue and all 

this contributed to the execution optimization. Otherwise the sites having a higher number of 

jobs already running or heavily loaded sites can make the execution times worse. 

 The graphs in Figure 8.3 show the execution optimization achieved by employing the 

DIANA algorithm. We can see that with an increasing number of jobs the execution 

performance increases which indicates the effect of the DIANA scheduling approach for the 

job scheduling. Here we note that the effect of DIANA became more significant as the 

number of jobs increased since DIANA identifies only those sites for job executions which 

are least loaded and which preferably have the required data, since this will reduce any 

transfer times. The site should also have a better network capacity to transfer the job output 

data back to the client side. DIANA is equally applicable to compute intensive jobs (as well 

as data intensive jobs) since it will find a site where there is least queue, and jobs when 

placed will get higher execution priorities, as explained in earlier chapters. Moreover the 

output of the compute operation will be quickly transferred to the submission site as a result 

of DIANA’s optimal selection of the link between the submission and execution nodes. 

Figure 8.4 shows the replica selection by the Data Location Service (DLS), which is based on 

the data transfer cost since DLS will select only that replica of a dataset which has the least 

data transfer cost. We measured the parameters required for calculating the data transfer and 

network costs. Packet loss and jitter of the sites was almost insignificant since the network 

links between the GILDA Testbed sites were rather stable and these values hardly make any 

difference on the data transfer and network costs. Since most of the Testbed sites are in 

Europe, the RTT remained almost the same other than for those sites in Brazil and China. 

Bandwidth was the only parameter which varied across sites and could obviously influence 

the data transfer and network costs and could dictate how the scheduler selected a dataset 

replica for the job. We took three sets of files of varying size (10, 50 and 100 GB) to 

demonstrate that against each required dataset, the scheduler could select a site having the 

shortest transfer time. From Figure 8.4 it is clear that for all three cases the shortest transfer 

time was for the site which had the highest bandwidth i.e. 1000 Mbps and most of the jobs 

used this dataset since it reduced the overall execution time of the jobs. With an increase in 
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the available bandwidth, the replica transfer time decreases and this remains valid for the 

datasets of all sizes. These measurements do not show an exact linear relationship due to 

delays and saturation in the network. Since we are using a public network, there can be traffic 

from other applications and users on the network although we tried to minimize this effect by 

taking the readings at times when there is very minimal activity from other users. 

 

Figure 8.4:  Replica transfer vs. network cost. 
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Fig. 8.5: Execution times vs. bandwidth. 
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Figure 8.5 demonstrates the results related to network issues which have a high impact on the 

execution of the data intensive jobs. In this experiment, we submitted the same number of 

jobs to different sites with different network conditions. The bandwidth varied from 10MB/s 

to 1000MB/s to enable us to gauge its effect on the job execution time. We used Iperf [170] 

to generate the extra network traffic and to saturate the network so that available bandwidth 

could vary from 10 to 1000 Mbps. In these tests we showed the effect of bandwidth on the 

execution time of the jobs. The data size was the same for all the jobs. Here the execution 

time included the time required to schedule and execute the job to one of the ‘best sites’ plus 

the time required in sending the data and job to that remote site and the time elapsed in 

queuing on that remote site. We used different networks to check the influence of the 

network parameters on the data transfer cost.  From the comparison graph in Figure 8.5, we 

note that the network plays a vital role in scheduling decisions. The round-robin scheduler 

will schedule the job to one of the sites without consulting the network conditions of that site. 

This approach will cause the user additional wait time since more time is consumed in 

transferring the executable and the data. In our proposed approach the network and 

bandwidth parameters are considered to select the best sites before making any scheduling 

decisions for data intensive jobs and we can see the impact of this approach in Figure 8.5.  
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Figure 8.6: Network cost influence on the data transfer cost. 

It is an observed fact that communicating over lower bandwidths often results in high 

network costs due to more packet losses and a longer RTT (round trip time). The increase in 
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network cost can also affect the overall performance of the distributed system especially in 

terms of transfer and communication time and therefore it is an important consideration for 

any scheduling decisions. A lower bandwidth results in high network costs and the increase 

in network cost also affects the overall performance of the distributed system. Figure 8.6 

demonstrates that with increasing network capacity, the RTT and network losses decrease, 

which leads to reduced transfer times and hence better execution times. 

In actual operating conditions for the LHC experiments (i.e. in the full production data 

analysis at CERN), there will be hundreds of jobs in the queue as well as in execution mode 

and this should allow optimization of the scheduling process with a greater factor than that 

shown in the graphs, since results show an upward trend with an increasing number of jobs. 

We can ascertain from the graphs that as the number of jobs increases, DIANA has a more 

profound impact on the scheduling optimization and execution of the jobs. Since most of 

these jobs take the data from the few selected locations where the replica of that dataset 

exists, it is assumed that execution and transfer times will decrease further when thousands of 

jobs take the actual input data from optimal locations as demonstrated in the Figure 8.5 

above. In this case, the efficiency of the DIANA scheduling approach will increase further 

since it is better suited for environments where large numbers of jobs are involved and a great 

amount of data is handled. Consequently, DIANA scheduling will help to decrease the 

overall execution times of LHC jobs and will therefore provide an efficient way to optimize 

data intensive Grid jobs, although this of course needs to be verified in practice during LHC 

operation from late 2007 onwards. 

8.3 DIANA P2P Scheduling Results  

We present here a performance comparison conducted using the DIANA P2P meta-scheduler 

which is a Web Service that uses a Grid services framework called JClarens to deploy this 

service. We implemented a classical scheduling algorithm which works in a round-robin 

manner to compare it with the DIANA P2P meta-scheduler for job scheduling on various 

sites. Henceforth, we will refer to it as a ‘Round Robin Scheduler’ or ‘Simple Scheduler’. For 

simplicity we have used our own test Grid (rather than a production environment) to obtain 

results since a production environment requires the installation of many other Grid 

components that are not required for our experiments. We used five sites located in Pakistan 

(NUST), Switzerland (CERN), USA (Caltech) and the UK (UWE) for the purposes of our 
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tests. Site 1 has four nodes, and the remaining four sites have five nodes each. Two types of 

jobs are used in these experiments. One type of job is compute intensive which is a simple 

prime number calculator (between a specified range) and the other is a data intensive physics 

analysis job which requires large amounts of data as input but also performs computation 

over this data. This section also demonstrates the capability of the DS for discovering and 

propagating information related to resources and services. Moreover, the impact of job 

steering and job monitoring on the scheduling decisions is also shown in this section. 

8.3.1  Execution and Queue times with DIANA on the Custom Testbed 

Using the custom Grid testbed discussed above, in our first experiment, we submitted 1000 

compute intensive jobs and calculated their execution times. Condor is used as a local 

scheduler for all of our tests. The execution times included the time required to schedule and 

execute the job to one of the ‘best sites’ plus the time required in sending the data and job to 

that remote site.  The scheduling decision made by DIANA in this experiment is independent 

of the queue mechanism (Shortest Job First (SJF) or priority based queue) and therefore the 

first experiment used a single queue. As shown in Figure 8.7, it is evident that the DIANA 

P2PScheduler performed better than the Round Robin Scheduler. In this research, the main 

intention is to increase performance by utilizing Grid resources more effectively. In our 

scenario, DIANA has been able to select and employ those resources which are least loaded, 

have smaller queues and which can run the jobs more efficiently than the Round Robin 

Scheduler.  

We then introduced the multi-queue mechanism and measured the associated queue times of 

the jobs (see Figure 8.8) to compare how effectively DIANA can reduce wait times. The 

queue time here is the sum of the time in the meta-scheduler queue and the time spent in the 

queue of the local resource manager. Sometimes the queue time is even greater than the 

execution time if the resources are scarce compared to the job frequency. Firstly we 

employed the Shortest Job First (SJF) queue mechanism and measured the overall execution 

time of the job to check the impact of the approach. In this case compute intensive bulk jobs 

were placed in the queue before the DIANA scheduler allocated the short jobs first to the 

appropriate sites. The queue was maintained on a FCFS basis. These jobs were similar with 

respect to their requirements (prime numbers calculation) but they were different with respect 
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to their inputs as each job had different input ranges. These jobs were of varying processor 

requirements such as 8, 17, 26, and 35 processors. The job demanding 8 processors has an 

input range 1-19999, 17 processors job has an input range 1-99999, 26 processors job has an 

input range 1-444444, and 35 processors job has input range 1-555555. All jobs were 

submitted to the scheduler, which arranged them in its queue in a SJF (Shortest Job First) 

manner on the basis of the job’s processors requirement.  
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Figure 8.7:  Execution time with and without the DIANA P2PScheduler. 

In the comparison graph of Figure 8.8, it is clear that the performance (or execution) time of 

jobs obtained using DIANA was better than that of the Round Robin Scheduler. Without pre-

emption, the jobs ran to completion before a new job was selected. The reason behind this 

was that DIANA worked on a SJF basis which reduced the execution time as short jobs did 

not have to wait for long jobs. As stated earlier SJF minimizes the average wait time because 

it services small processes before it services large ones. While it minimizes average wait 

time, it may penalize the jobs with large service time requests. The jobs with large service 

times tended to be left in the queue waiting for their turn while the small jobs received 

service. If the site had little additional time after servicing the short jobs, jobs with large 

service times would never be served. This total ‘starvation’ of large jobs may be a serious 

limitation of this SJF algorithm. Therefore this algorithm is ideal for bulk jobs which are of 
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short duration but might not be suitable for those jobs which are supposed to run for days or 

months. 

Job Execution Time Comparison between Multi-Queue SJF and Simple 
Scheduler
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Figure 8.8: The effect of Shortest Job First on execution time. 

Next we submitted a set of jobs to calculate the job execution time with a multi-queue 

priority mechanism. These compute intensive jobs were similar with respect to their prime 

number requirements but they were different with respect to their inputs since each job then 

had a different priority. In priority scheduling, processes were allocated to the CPU on the 

basis of an externally assigned priority. The Scheduler ran the highest-priority processes first 

and allowed CPU’s to be allocated preferentially for important jobs. The key to the 

performance of priority scheduling is in choosing priorities for the processes. However, 

priority scheduling may cause low-priority processes to starve. This starvation can be 

compensated for if the priorities are internally computed.  

Suppose one parameter in the priority assignment function is the amount of time the process 

has been waiting. The longer a process waits, the higher its priority becomes. This strategy 

tends to eliminate the starvation problem. Moreover, the SJF algorithm maintains the high 

priority queue in order of increasing job lengths. When a job comes in, it is inserted in the 

highest priority queue based on its processor requirements. When current processing has been 

completed, the scheduler picks the one at the head of the queue and executes it. As shown in 

Figures 8.9 and 8.10, the DIANA P2PScheduler with its multi-queue priority mechanism had 
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an improved execution compared to the Simple Scheduler.  Multi-queuing not only enabled 

the short job first execution but also managed the queues on a priority basis and this 

mechanism significantly reduced the total execution times. 

Job Execution Time Comparison between Multi-Queue 
Priority Calculation and Simple Scheduler
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ure 8.9: Using multi-queue and priority calculation. 
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Figure 8.10: Execution time comparison. 

8.3.2 Discovery and propagation performance in a Peer to Peer Network (P2P) 

We calculated the time it takes for retrieving the data related to scheduling Peers from the 

Discovery Service (DS), using a java based XML-RPC client. All of these tests were 

conducted on an Intel P4 machine with a 2.8 GHz processor with 256 MB memory. The 

graphs in Figures 8.11, 8.12 and 8.13 show the results of data retrieval with varying numbers 
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of scheduling instances. These results were calculated both from a memory-based and two 

different database-based storage systems (MYSQL and HSQLDB).  
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 Figure 8.11: Service retrieval (in memory cache). 

Service retrieval (HSQLDB)
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Figure 8.12: Service retrieval (HSQLDB). 

The Service Descriptor contains the Endpoint list {uri, encoding (soap, xmlrpc)}, Name, 

Admin email, VO,uri_suffix,Site Description,WSDL url provider_dn, item {key, value} and 

the following methods(see section 6.6 for details) were used to register and access the 

services. These include find_server (encoding, uri, provider_dn, vo), find (encoding, uri, 

provider_dn, vo, name) register (ServiceDescriptor[]) and deregister (ServiceDescriptor[]). 

The service retrieval test did not include the time taken for making the connection or for 

authenticating the user with the DIANA Scheduler. The somewhat larger increase in service 
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retrieval time as the number of instances increased is due to the overhead involved in parsing 

the XML-RPC response from the Clarens server. We note that the in-memory cache was 

suitable for fast retrieval of service data. The only problem was with the memory overflow 

when the scheduler registered a large number of services or data at a site or across sites.  The 

access and propagation times of the scheduler peers and services were the same since in our 

implementations we used both of these metrics interchangeably. Consequently these graphs 

demonstrate how quickly scheduler instances discovered, communicated and propagated the 

scheduling related information to other peers in the Grid network. The reason we stored the 

peer information in the database was to ensure reliability and persistence and this came at the 

cost of the performance as demonstrated by Figures 8.11, 8.12 and 8.13. 
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Figure 8.13: Service retrieval (MySQL). 

Another test was to measure the time the DS takes to replicate node and service information 

to other instances of the scheduler and discovery services over the WAN. The service 

retrieval time was calculated based on the difference in time between services being 

registered at one node of JClarens (running at NUST, Pakistan, UWE Bristol and CERN, 

Switzerland) and becoming available at another node (running at Caltech, USA). The 

response we got varied from 3 seconds to 10 seconds, with it rarely going above 22 seconds. 

The mean of different observations was 10.7 ± 8.3 seconds. The variance in the upper values 

is attributed to the network latency in our network. Therefore on average it took about 10.7 

seconds for the transfer of one service or scheduler instance across the Grid network through 
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the MonALISA replication mechanism. Figure 8.14 presents the values obtained for service 

retrieval for a different number of attempts. These values represent the average time for a 

different number of attempts. The x-axis represents the number of attempts and the y-axis 

represents the average time taken to retrieve the service for these numbers of attempts. This is 

the average time rather than the time for a single attempt. We did not try to determine the 

actual values of these latencies and their effect on the service retrieval data this being one 

direction for future work. Moreover, due to the factors involved in network monitoring and 

performance evaluation, this becomes more a network performance measurement problem 

than a scheduling issue and is not the core subject of interest in this thesis.  
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  Figure 8.14: Service replication. 

8.3.3 Job Migration and Monitoring 

The DIANA Scheduler can steer jobs to sites which can ensure their optimal execution; for 

this purpose, the scheduler uses a steering service. Note that job migration and steering will 

be used interchangeably in this section. Since the steering service is providing the import and 

export behaviour to jobs, therefore in this section we will use the word “steer” to describe the 

export and import functionality. This empowers the scheduler to periodically monitor the 

performance of the job (using the job monitoring service), to make dynamic estimates of the 

job completion time, and to reschedule the job when required so that the productivity and 

throughput of the Grid infrastructure is enhanced. This does not mean that the job in progress 

is checkpointed and re-started from the previous execution state on the target site. Rather, the 
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DIANA scheduler uses this steering service to track those jobs which are extremely slow on a 

site and their re-scheduling on another site could potentially improve the execution times. 

The previous state of the job is not saved and migrated since this can be a very expensive 

operation for data intensive jobs. Furthermore, the steering service is only called when a job 

is closer to failure and there are very few chances of its execution completion on the current 

site. Otherwise a non-pre-emptive mode of scheduling and execution is strictly followed in 

the DIANA scheduler. 

Moreover, since the APIs of the steering service also enable users to obtain this information, 

the scheduler can also make such rescheduling decisions when the performance is deemed 

insufficient. It might be difficult to get near real-time performance from the system due to the 

fact that it takes some time to detect any slow processing rate of a job, due to the large job 

queues and the fact that other jobs are running. The earlier a slow site or machine is detected, 

the quicker it is to export its jobs to better performing sites to optimize execution. However, 

once this has been detected a rescheduling of the job, based on updated monitoring 

information, can dramatically reduce the overall execution time since the scheduler will 

ensure that the jobs will get higher priorities on the target site and spend less time in the 

queue via this job migration. 
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Figure 8.15: Job Completion at different sites. 
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Figure 8.15 shows the completion time of a job under different scenarios and demonstrates 

performance achievements after migrating the job to a different site. Figure 8.16 shows the 

estimated and actual completion time of the job. Currently this estimate is calculated by 

running the job many times on different machines that have negligible CPU load. This 

estimate comes out to be around 283 seconds and therefore we assume that if a CPU is 

available (and not loaded) the job will normally complete in around this time. Moreover, 

Condor provides us the ability to see how much "wall-clock time" the job has actually 

accumulated on a node or in a Condor pool. Note that this "wall-clock" time does not include 

the time the job consumes while it is idle and waiting for the CPU or other resources to 

become available. We used this feature of Condor coupled with the above-mentioned 

assumption as a way to measure the progress of the job when it is running on a node with 

significant CPU load. Thus, if the job has accumulated 141 seconds of wall-clock time (as 

shown by Condor) when it is running on such a node, we assume that roughly 50% of the job 

is complete, even though the time elapsed since the job had been scheduled on that node may 

be greater.  
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Figure 8.16: Actual & Estimated Runtimes for 20 test cases. 

Based on this data, we chart the progress of a job from 0 to 100% (as shown in Figure 8.15) 

while it was waiting on a node A with significant CPU load. The purple line shows the job 

that was running on site A under significant CPU load. The scheduler monitored the progress 
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of this job (using the job monitoring service) and decided to move this job based on its slow 

execution rate (note that the user could equally have moved the job from site A to site B 

manually). This job was then rescheduled on some new site B, while the job was also allowed 

to continue running on site A for testing purposes. It is clear that after rescheduling, the job 

has completed much sooner than the copy of the job that was executing at site A (as indicated 

by the yellow line).  

The job can be completed even quicker than the recorded time of 369 seconds if it is 

checkpoint-able and flocking (job migration) [61] is enabled between site A and Site B. 

However, we are using non pre-emptive scheduling due to the data intensive nature of the 

jobs and this binds a job to continue execution once a CPU is allocated to the job. The 

execution gains are achieved mostly due to the queue time improvements. A critical factor 

that affects the job completion time is the time at which the decision to move the job is taken. 

The quicker the decision is taken, the better the chance that it will complete quicker. Another 

important factor is the time taken to transfer the data files needed by the job. All of these 

factors are taken into account when deciding whether a job should be migrated or allowed to 

run to completion at its primary location. 

 

Figure 8.17: Response times for queries to Job Monitoring Service. 

We also carried out a number of tests to measure the performance of the Job Monitoring 

Service in the scheduler. The job movements and scheduling decisions are dependent on the 

monitoring information and how accurately it is being measured and how quickly it is being 
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service to access job monitoring information. Figure 8.17 shows the results in terms of the 

average time taken to fulfil a request when different numbers of clients tried to access the 

service concurrently. The results show that the performance of the service scales well with an 

increasing number of clients, which means that the scheduler can monitor a large number of 

jobs. The client authentication process can take time therefore the client has to wait for a 

certain interval before getting the information.  

8.4 Results for Bulk Scheduling  

We present here results from a set of tests which have been conducted with the DIANA 

scheduler using MONARC [63] and SimGrid [45] simulations to check the algorithm 

behaviour for bulk scheduling. SimGrid is a toolkit that provides core functionalities for the 

simulation of distributed applications in heterogeneous distributed environments. The 

specific goal of the SimGrid toolkit is to facilitate work in the area of distributed and parallel 

application scheduling on distributed computing platforms, ranging from simple network of 

workstations to Computational Grids. SimGrid provides several programming environments 

built on top of a simulation kernel. Each environment targets a specific audience and 

constitutes a different paradigm. Testbeds were generated from 50 nodes to 1000. Each Node 

had a processing power randomly generated from 10 KFLOPS to 1 GFLOPS Each Node had 

network connectivity from 56 kpbs to 10 MB/s (maximum allowable 2 Gps).    

MONARC is a simulation framework whose aim is to provide a design and optimization tool 

for large scale distributed computing systems. Its goals are to provide a realistic simulation of 

distributed computing systems, customized for specific physics data processing, and to offer 

a flexible and dynamic environment to evaluate the performance of a range of possible data 

processing architectures. The present version comes with a set of new features, such as the 

possibility to simulate data replication and distributed scheduling, and with more ways to 

represent the simulation results, in order to adapt better to the users' requirements.  

In the bulk job scheduling, hundreds of thousands of jobs are submitted and once scheduled 

on a site, they can take days and even months to complete execution. Since we have to 

conduct a number of experiments with differing numbers of jobs, huge data transfers for 

input and output results are involved, scheduling and execution operations take a much 

longer time and such tests also practically consume nearly all the available resources leaving 
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little space for other jobs or operations. Therefore we have employed the simulation results to 

investigate and support the conclusions. Further, due to policy and quota enforcements on a 

number of our sites, jobs might not be able to be executed on the best sites and this can lead 

to less accurate results. Therefore we need to simulate the ideal behaviour of the scheduler to 

overcome any experimental issues over the testbed. Note that we conducted these tests in 

almost ideal circumstances with little bias from the environment and this can be quite 

different to the actual Grid deployment where latencies, queuing and scheduling delays occur 

and job failure rate can sometimes be high. Therefore this aspect of the results should be 

considered when interpreting the simulation results.  

8.4.1  MONARC Simulations for Bulk Scheduling  

The simulation setup is created to overcome the limitations of the experimental testbed for 

the bulk jobs. This testbed has five sites in different regions of the world. Sites have different 

computing capacity, bandwidth and data availability to emulate a natural Grid testbed which 

has a mixture of strong and weak sites. For all sites in the MONARC based tesbed, each CPU 

has 512 MB of memory and processing power 100 (SI95). The processing time for the jobs is 

normally distributed, with an average of 3 hours; each CPU can execute only one job at a 

time (due to memory limitations).  The number of processors in each site varies from 10 to 

100, which means more than enough CPU power to process the jobs. Jobs can be submitted 

to any of the sites since DIANA functionality is available for each site in the testbed. Each 

site can import and export the jobs based on its load, computing capability, data availability 

and the network conditions. This simulated Grid testbed is created in such a way that these 

sites are inter-connected through high speed internet links so that job movement and data 

replication is encouraged for scheduling and execution optimization. Each site can execute 

jobs equal to the number of processors it has and the remainder of the jobs are placed in a 

queue. Therefore the job threshold on each site is different. This is the maximum execution 

capacity of a particular site i.e. the threshold beyond which jobs will be exported to remote 

sites for execution. This is quite different to the user job threshold which is a virtual 

organisation (VO) wide entity. The total number of all the jobs in the whole VO from a single 

user should not cross a particular limit this being controlled by the user threshold. Again this 

varies from one Grid deployment to another and the priority of the jobs is controlled by 

controlling this threshold as detailed in chapter 4. 
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The number of jobs that can run simultaneously on a site is equal to the number of available 

CPUs on that site and jobs are exported only in exceptional circumstances when the jobs in 

the queue are estimated to take greater times than that when exported to a remote site. As 

discussed in the bulk scheduling algorithm in chapter 4, the submitted jobs are divided into 

the subgroups of jobs which were generated through a splitting process. In the bulk 

scheduling, either subgroups are scheduled instead of individual jobs or the whole of the bulk 

is scheduled. The size of each subgroup varies in different scheduling scenarios. As the 

number of resources and sites increases, the size of the subgroups also varies, as now the sites 

can handle the subgroups of different size. This can lead to more flexible scheduling 

alternatives, eventually leading to scheduling optimization. When a site exports a job, the 

whole subgroup is exported in bulk scheduling since all the jobs in a subgroup have the same 

input and output requirements. All the jobs in a subgroup execute on the same set of the data 

and therefore it is natural to export them as one unit. The same is the case for the import of 

jobs. When some site requests a job import, in the case of the bulk jobs the whole subgroup is 

imported. This import and export phenomenon of the bulk jobs and their subgroups reduced 

the data transfer cost and selected the computationally optimal sites and therefore, 

significantly contributed in the scheduling optimization.  
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Figure 8.18: Job frequency higher than the execute capacity of the site. 
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First we submitted a number of jobs which exceeded the processing capacity of the candidate 

site and observed large queues of jobs which could be processed in an optimal manner. The 

bulk scheduling algorithm discussed in chapter 4 was employed to schedule the bulk jobs and 

the job migration algorithm was used to migrate the jobs to other sites. We discuss here the 

summary of the jobs which were executed locally and that of those migrated to other sites. 

The results suggest that as the number of jobs increased beyond the threshold limit, more and 

more jobs were migrated to other less loaded sites over time, since the current site selection 

was no longer optimal. While selecting a single site, we used DIANA so that all the network, 

compute and data related details discussed in chapter 4 were brought under consideration 

before job placement on the selected site.  

Figure 8.18 shows that when the job submission frequency was much higher than the site 

consumption rate, the site kept on processing jobs at a constant rate, and the rest of the jobs 

were exported to other optimally selected sites. It is even possible for a site to export jobs 

which do not have the required data locally. It should be noted that a site continued 

processing jobs and at the same time its scheduler also migrated other jobs to more optimal 

sites, according to data availability and job priority. Moreover, this site simultaneously 

allowed the importation of jobs from other sites which required data that was available only 

at this site and allowed the exportation of jobs which could get better execution priority or 

shorter queues on remote sites. As stated earlier, we employed a non pre-emptive approach in 

our scheduling algorithm, and once a job started execution we could not move it. The non 

pre-emptive approach was followed because it avoids check-pointing and re-starting which 

are very expensive operations in data intensive applications. In migrating previously started 

jobs the whole input data plus the executable has to move with the job and this can 

considerably degrade the overall system performance.    

Once the number of jobs at a site exceeds the threshold limit, the bulk scheduling algorithm 

once again uses the DIANA algorithm to select the best alternative site for execution in terms 

of computation power, data location, network capacity and queue length as discussed in 

chapter 4. As the number of jobs increases beyond the threshold, the bulk scheduling 

algorithm employs the policies and priorities detailed in chapter 4 to provide the desired QoS 

to all or to some preferred users and also restricts certain users making monopolistic 

decisions, thus avoiding starvation for other users. In Figure 8.18 we can see the effect of 
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jobs exceeding the execution capacity of a site and how jobs are exported to least loaded sites 

to optimize the execution process. Even the fluctuation in the submission rate is reflected by 

the corresponding export and execution rates. If the number of jobs being processed at a site 

is less than its execution capacity, then this site can import jobs from other sites in order to 

reduce the global execution and queue time of jobs across the whole Grid as shown in Figure 

8.19.  
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Figure 8.19: Capacity of the site greater than the submitted jobs. 

In another experiment, 15 users submitted 450 jobs each. The job size was the same for all 

the users however, their respective quota was different. User IDs along with their respective 

quotas are given in figure 8.20-a. 

 
User ID No. of jobs Job size 

(No. of processors 
required) 

Quota 

User1 450 2 5000 

User2 450 2 2000 

User3 450 2 1000 

User4 450 2 700 
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User5 450 2 300 

User6 450 2 1300 

User7 450 2 1700 

User8 450 2 900 

User9 450 2 2600 

User10 450 2 1800 

User11 450 2 10 

User12 450 2 100 

User13 450 2 0 

User14 450 2 10000 

User15 450 2 80 

 
Figure 8.20-a: Quota and Priority 

The results suggest that the quota has a significant effect on the priority of the user and the 

priority of job is high when the quota value of the user is high. Figure 8.20-b shows that with 

increasing the value of quota, the job priority increases and vice versa.   
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Figure 8.20-b: Quota and Priority 



 

 183

Figure 8.20-b is hard to understand due to the large number of users and jobs. Therefore, we 

reduced the results to 5 users with 50 jobs. Figure 8.20-c is shown below and it is much more 

visible and understandable. The quota values are already provided in the table above. In the 

next experiment, 10 users submitted different number of jobs in the queue. However, this 

time the quota and job size were the same for all users. User IDs along with the total number 

of jobs by each user are provided in the figure 8.21-a. 
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Figure 8.20-c: Quota and Priority 

 
User ID Quota Job size 

((No. of processors 
required)) 

Number of Jobs 

User1 100 2 100 

User2 100 2 50 

User3 100 2 300 

User4 100 2 1000 

User5 100 2 500 

User6 100 2 700 

User7 100 2 200 
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User8 100 2 2 

User9 100 2 1500 

User10 100 2 20 

Figure 8.21-a: Number of Jobs and Priority 

The results suggest that job priority decreases gradually when a user keeps sending jobs in 

the scheduler queue. Thus, in the case when a user bombards a site with hundreds of jobs, the 

scheduler decreases the priority of the jobs of that particular user. Figure 8.21-b shows that at 

the outset, when a user starts sending his jobs in the queue its priority was high however, if 

he bombard the site with jobs, the priority decreased gradually with an increasing number of 

jobs. 
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Figure 8.21-b: Number of Jobs and Priority 

In the next experiment as shown in the figure 8.21-c, each of the 10 users submitted 500 jobs. 

All the users had a same quota value but the job size or the number of processors required for 

each job was different. The users along with their respective job information are detailed in 

the figure 8.21-c.   
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User ID Quota 

 
No. of Jobs 
 

Job Size 
(No. of processors 
required) 

User1 100 500 2 

User2 100 500 5 

User3 100 500 8 

User4 100 500 11 

User5 100 500 15 

User6 100 500 20 

User7 100 500 18 

User8 100 500 25 

User9 100 500 1 

User10 100 500 30 

Figure 8.21-c: Job size and Priority 
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Figure 8.21-d: Job size and Priority 
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The results in figure 8.21-d suggest that a large number of jobs from a user lead to a lower 

job priority. Thus the algorithm makes best use of the available resources to schedule the 

short jobs before the resources are allocated to the large jobs. 

8.4.2 Scalability and Consistency Tests 

Next we compared the DIANA scheduling approach with two other approaches being used in 

common scheduling applications and the simulation results are presented here for a large 

number of bulk jobs and hundreds of compute and data nodes. In the following sections, first 

we introduce the approaches with which DIANA was being compared and other approaches 

which will be used during the description of the results and then comparisons are given for 

compute, data and network capability of all the three approaches. The results in this section 

are using the SimGrid environment and a summary of all these tests is given in the figure 

8.22-a. 

The Round Robin and the FLOP are the two other approaches against which DIANA is being 

compared for these bulk scheduling tests. The Round Robin approach as used in some Grid 

Middleware, for example Chimera VDT, takes into consideration only the list of nodes, and 

assigns tasks to them one by one. The Round Robin algorithm which has been implemented 

for these comparisons is not pre-emptive, as is the case in operating systems. With respect to 

the Grid Round Robin mentioned here, it is similar to a circular linked list. Each cell 

represents a node of the Grid and the scheduler starts from the first element in the list, 

schedules the incoming jobs to it, increments the list count and schedules the next job to the 

new node. The Round Robin algorithm is ideal for environments which have homogenous 

hardware resources, or clusters which have equivalent computer power. This is certainly not 

the case when it comes to large scale Grid systems where individual machines and sites may 

have many times the storage, network and computing power compared to other nodes and 

sites. Thus the Round Robin algorithm is expected to under perform in such environments.  

The FLOP based approach used in Cluster middleware, for example Condor, considers the 

computation capability of the nodes. FLOP (Floating Point Operations per Second) is a 

common measurement for the computational capability of a computer. The FLOP based 

algorithm could be considered as being completely opposite to the Round Robin algorithm, 

because it tries to gain complete knowledge about the current state of resources, so that it can 
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schedule jobs to the most powerful available machine, guaranteeing the quickest possible 

runtime. The FLOP based algorithm could be considered wasteful, because the job which is 

currently being scheduled may not need the most powerful computer at all and could be 

processed in a machine with some moderate capabilities, with similar runtime. However 

FLOP based algorithms are popular amongst cluster level middleware. The central manager 

in such systems, on every job submission, tries to compare the capabilities of each node in 

the cluster, via resource descriptions called ClassAds and the node with the most capable 

ClassAd is selected to execute the job. 

Application Type Resource Brokering Algorithm and execution times 
 Round Robin/s FLOP Based/s DIANA/s 
Compute Intensive 
(1KFLOP) 

Average: 0.88 
Floor: 0.49 
Ceiling: 1.68 

Average: 0.57 
Floor: 0.27 
Ceiling: 2.17  

Average: 0.25 
Floor: 0.21 
Ceiling: 0.3 

Compute Intensive 
(1MFLOP) 

Average: 345.47 
Floor: 26.19 
Ceiling: 1386.29 

Average: 10.45 
Floor: 0.73 
Ceiling: 73.52 

Average: 64.1 
Floor: 6.74 
Ceiling: 353.2 

Compute Intensive 
(1GFLOP) 

Average: 345149.43 
Floor: 25787.6 
Ceiling: 1386000 

Average: 59250.52 
Floor: 6831.68 
Ceiling: 236855 

Average: 64026.55 
Floor: 6643.16 
Ceiling: 353107 

Communication 
Intensive (1KB) 

Average: 0.88 
Floor: 0.49 
Ceiling: 1.68 

Average: 0.57 
Floor: 0.27 
Ceiling: 2.17 

Average: 0.25 
Floor: 0.21 
Ceiling: 0.3 

Communication 
Intensive (1 MB) 

Average: 544.86 
Floor: 281.65 
Ceiling: 1043.15 

Average: 415.83 
Floor: 124.61 
Ceiling: 2044.49 

Average: 100.39 
Floor: 99.7 
Ceiling: 106.23 

Communication 
Intensive (1 GB) 

Average: 544709.35 
Floor: 281539 
Ceiling: 1043040 

Average: 415678.4 
Floor: 124433 
Ceiling: 2044360 

Average: 100242.02 
Floor: 99505.6 
Ceiling: 106129 

Hybrid (1 KFLOP 
& 1 KB) 

Average: 0.7 
Floor: 0.5 
Ceiling: 0.95 

Average: 1.2 
Floor: 0.27 
Ceiling: 4.16 

Average: 0.25 
Floor: 0.21 
Ceiling: 0.3 

Hybrid (1 MFLOP 
& 1  MB) 

Average: 546.6 
Floor: 382.43 
Ceiling: 755.23 

Average: 1024.93 
Floor: 152.01 
Ceiling: 4037.47 

Average: 100.91 
Floor: 99.61 
Ceiling: 109.58 

Hybrid (1 GFLOP 
& 1 GB) 

Average: 546475.3 
Floor: 382305 
Ceiling: 755036 

Average: 1024.93 
Floor: 152.01 
Ceiling: 4037.47 

Average: 100.91 
Floor: 99.61 
Ceiling: 109.58 

Figure 8.22-a:  Comparison of different algorithms with DIANA 
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The DIANA Algorithm considers network connectivity, data location and computational 

capability when scheduling. It is a variant of the simple FLOP based algorithm. FLOP based 

algorithms are popular in cluster level, however when it comes to the Grid, the network is 

hard to ignore. Clusters are usually linked via high-speed network links, often these high-

speed networks are only slightly slower than the internal computer speed. Thus cluster 

middleware completely ignores the network, and treats each node just as an additional CPU 

to the host machines. This is in stark contrast to the Grid. Although some contemporary Grids 

are linked via high speed networks, Grid middleware often takes high speed networking for 

granted and does not treat it as a resource. However when it comes to a scheduling system 

which tries to connect the resources spread all over the word for complex compute and data 

operations, we cannot take the network for granted, and it has to be treated as a resource in 

the same manner as traditional computing resources, such as CPU and memory. Therefore to 

accommodate the network in resource scheduling decisions, we add one more parameter, to 

the normal FLOP based scheduling in these tests, the network connectivity, as measured in 

terms of bandwidth, between two nodes. When a job is submitted to the Grid, the resource 

broker requests members of the virtual organization for their current resource state, the 

virtual organization consisting of all the nodes which are capable of executing the 

application. The member nodes respond to the request by dynamically creating resource 

descriptions and additionally at runtime try to determine the current “real” bandwidth from 

the site which requested the descriptions. 

Scheduling Compute Intensive jobs
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Figure 8.22-b: Node Selection in DIANA 
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The following two tests evaluate the efficiency of the algorithm in terms of picking suitable 

nodes for jobs. An algorithm not performing well in this simulation shows that it is not the 

best suited algorithm for data intensive scheduling and it is not able to peruse the Grid 

infrastructure adequately. In this test a batch of 100 compute intensive jobs was dispatched to 

the Grid. We took two sets of results with different processing requirements and each job had 

a processing requirement of 100KFLOPs and 1MFLOP respectively in each case. In this test 

each job’s communication traffic was 10Kb.  In the first test, a number of computational 

intensive jobs were launched to the Grid to measure which algorithm took the least time to 

execute the entire batch of jobs.  In Figure 8.22-b, we can see that each algorithm has a lot of 

variation; however in all cases the DIANA algorithm shows the best performance. It is 

scalable for a large number of nodes and has minimum execution times when compared to 

other algorithms as show in figure 8.22-b. The flat line in the figure shows that DIANA is 

consistent and stable for a number of nodes and jobs and has the best performance when 

compared against other algorithms. To further diagnose the performance, a number of 

computationally intensive jobs were submitted to the Grid to measure which algorithm took 

the least time in executing the entire batch of jobs. We can see a definite pattern in figure 

8.23. FLOP and DIANA behave consistently and reliably, whereas Round Robin has far too 

much jitter and thus is bad from a QoS perspective. DIANA performs better among all of the 

three and practically has no jitter. This suggests that DIANA is best suited for the scheduling 

of the compute intensive jobs involving some data transfer. The reason behind selecting the 

low communication traffic cost was to reduce the simulation overhead without affecting the 

authenticity and quality of the results. The reasons behind the improved performance of 

DIANA Scheduling include its capability to take into account the network characteristics 

which empowered the scheduler to select resources that could transfer the data quickly. 

Furthermore, DIANA Scheduler scheduled the jobs on those resources which had minimum 

queue and a better computing capability. These are the reasons due to which the DIANA 

scheduler performed well for a large number of jobs and resources and consistently 

outperformed the other algorithms in terms of the performance and throughput. This 

behaviour remains valid from a small to large number of jobs and resources, making DIANA 

Scheduling a suitable approach to cater the scheduling needs of diversified number of users 

and applications. 
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Scheduling Compute Intensive jobs
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Figure 8.23: Performance comparison of the algorithms 
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Figure 8.24: Network Efficiency of DIANA 

Now we present simulation results to test the network efficiency of the DIANA algorithm. In 

a Grid environment nodes are connected via variable network links; an algorithm which does 

not use the network as a resource in the scheduling decisions will be inefficient and will 

waste resource as well as complete tasks in an untimely manner. The network is an especially 

critical resource for data intensive scheduling. As has been established in earlier chapters and 

through practical results: ignoring the network can lead to suboptimal scheduling decisions. 

In these tests 100 100KFLOP jobs were submitted with various data communication 
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complexities. In the first such simulation, jobs which have low communication complexity 

were scheduled to the Grid (100KB traffic). The response of each algorithm is shown in 

figure 8.24. DIANA clearly has stable and consistent performance, whereas Round Robin 

and FLOP show a lot of variation.  This suggests that DIANA is a very suitable technique for 

the data intensive jobs and its consistent performance further verifies the suitability of this 

approach. 

To evaluate further the network related aspects of DIANA and to compare it with other 

approaches, simulation jobs of higher computation complexity were scheduled. In this 

particular test jobs of 1MB were scheduled on the Grid. As shown in figure 8.25, DIANA 

clearly has stable and consistent performance, whereas Round Robin and FLOP show 

significant variation. This also suggests that as the data size increases, the optimization 

achieved through DIANA outperforms the other approaches. This effect becomes more 

prominent when an increasing numbers of jobs start arriving and queuing, and scheduling 

operations become challenging (due to huge data transfers and computing resource 

requirements).  
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Figure 8.25:  Comparison of DIANA for data intensive scheduling 
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Scheduling Data Intensive Tasks
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Figure 8.26: DIANA efficiency for data intensive jobs 

After this, simulation jobs having the highest computation complexity (with higher data 

traffic between the jobs) were scheduled and the response noted in figure 8.26. In this 

particular test, jobs of 1GB were scheduled on the Grid and DIANA had stable and consistent 

performance, whereas Round Robin and FLOP showed a lot of variation as illustrated in 

figure 8.26. Some FLOP data points are invalid, that is why some points are nearly zero.  As 

we can see in most figures of section 4.1, DIANA has the best performance in a wide number 

of scheduling scenarios, in efficiently scheduling compute and data intensive jobs preserving 

scalability and network efficiency.  

The usage environment of DIANA is different to that of the two previous algorithms. 

DIANA is designed for P2P environments and not for centralized environments. Round 

Robin and FLOP are actually useful in centralized environments whereas DIANA cannot 

efficiently perform in such environments, because each node directly communicates with 

another node in DIANA scheduling. When it comes to centralized environments, there might 

be many tiers of sub-central environments in the Grid for scalability. For example modern 

Grids can be divided into Virtual Organizations, Clusters, etc. In such environments DIANA 

would have to go through the centralized hierarchy, finding the network connectivity with 

central servers before getting to the node at the site level which actually will process the job 
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or submit it. Thus any environment which uses DIANA ideally must be P2P, and sites must 

have the capability to directly connect to any other site on the Grid network. 

Test for Scalability
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Figure 8.27: Scalability Test for DIANA 

In conclusion we present here the results of the scalability tests for the DIANA scheduling 

approach. These are simulation results since it was not feasible to deploy the complete 

DIANA system on such a large number of sites. In these tests, we assumed that there is a 

meta-scheduler on each node (here, a node corresponds to a site), and all the nodes work in a 

P2P manner. As shown in figure 8.27, the number of nodes/sites and the number of jobs 

scheduled to the Grid was increased gradually to test which algorithm gives the steepest 

increase in time taken. An exponential increase reveals ”poor” behaviour and shows that the 

algorithm is not scalable. In this test, jobs of a processing requirement of 3 MFLOP and a 

bandwidth load of 1 MB were launched to the Grid. The Round Robin Scheduler algorithm 

has a steep linear curve showing that it is the most non-scalable of the candidates. FLOP 

shows too much variation in this case, although it clearly is more scalable than Round Robin. 

The DIANA P2P approach has the best performance; it shows a nearly linear increase, and 

hence it is very scalable. This also indicates that DIANA is a suitable approach for large scale 

Grids since it can also support increasing numbers of Grid nodes. In an actual Grid 

deployment, there can not be any interference from other schedulers since there is either only 

one scheduler at each site or different schedulers at each site manage their own resources. 

Therefore, no two schedulers can interfere. Particularly the resources and schedulers are 
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dedicated in LCG, OSG, Nordu-Grid and EGEE testbeds, being used by CERN and its 

collaborators, and this makes the interference chances further minimal. This is further 

ensured in the DIANA Scheduling where all site schedulers work towards a common 

scheduling goal and inform and facilitate each other through information sharing and fault 

tolerance. 

8.5 Conclusions 

In this chapter results of the scheduling process are presented using three different 

techniques. First a set of tests were performed as a result of the DIANA deployment on the 

GILDA testbed. It was demonstrated through these tests that data transfer, computation and 

network considerations could significantly optimize the data intensive scheduling process. It 

was also demonstrated that the network managed services and suitable selection of the 

network links between the sites before making the scheduling decisions was key to Grid 

optimization. Replica selection is crucial to data intensive scheduling; it depends on the 

network characteristics and an optimized replica selection leads to an optimized data 

intensive scheduling. These considerations not only improved the execution times of the jobs 

but also reduced the queue times of the jobs. It was identified that decentralized scheduling 

was not only suitable for data intensive bulk jobs, but it also improved the execution and 

scheduling process significantly.  It was noted that the quality and accuracy of decisions in 

the P2P scheduling depended on the peer discovery and information propagation to other 

scheduling peers. It was demonstrated that in-memory cache is better suited for the rapid 

discovery of the scheduling instances and proved instrumental in realizing the improved 

performance in the DIANA scheduling. Job migration to better performing nodes can 

contribute further to the optimization of scheduling. It was also demonstrated that the multi-

queue and priority-aware scheduling not only avoids starvation of the resources but also 

improves the quality of service. This priority and the multi-queue mechanism can 

significantly optimize the scheduling process, especially for the bulk scheduling and 

execution. 

In conclusion, results related to bulk scheduling were presented. It was demonstrated that 

scheduling and execution can be optimized if jobs are migrated to those sites which have 

better execution capacity, have less load and queues and where the required data is also 

already available or can be made easily available. Furthermore, migration will enable lower 
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priority jobs to get high priority and their total execution times can be further reduced. 

Similarly, it was shown that this priority control can ensure the smooth allocation of 

resources so that no user can be subject to starvation by submitting millions of jobs at a time 

but rather jobs and users can be moderated by controlling the priority and migration 

procedure. It was also demonstrated that overall queue and execution time can be 

significantly reduced if the jobs having similar nature are co-scheduled in bulk. Furthermore, 

it was concluded that DIANA is better in scalability and consistency when compared to other 

contemporary scheduling approaches. 
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Chapter 9 

Summary and Future Directions 

This chapter is divided into three sections: Section 9.1 summarizes the whole thesis and 

presents a brief review of the issues and approaches which have been taken throughout the 

thesis text. Section 9.2 draws conclusions from the thesis findings and the findings are 

analysed and their significance is identified and discussed in this section. Section 9.3 

discusses the future direction of the work which emerged during this research or which is 

related to those issues that were relevant but outside the scope of this research. Finally, the 

thesis is concluded with a closing statement. 

9.1 Summary   

In this thesis we described a Data Intensive and Network Aware (DIANA) meta-scheduling 

approach which takes into account data, processing power and network characteristics when 

making scheduling decisions across multiple sites. The DIANA approach considers the Grid 

as a combination of active network elements and considers network characteristics as a first 

class resource in the scheduling decision matrix, along with computation and data. The 

scheduler can make “intelligent” decisions by taking into account the changing state of the 

network, the locality and the size of the data and the pool of processing cycles.  

The research hypothesis investigated in this thesis asserted that: 

Data intensive bulk scheduling can be significantly improved by taking into consideration a 

combination of network, data and compute costs, as well as by implementing effective queue 

management and priority control. 

The research hypothesis has been proven through various experimental studies as discussed 

in chapter 8 and is supported by a series of theoretical, mathematical and architectural 

investigations in the previous chapters. Section 9.2 of this chapter will summarize the key 

findings and conclusions to support the hypothesis and associated research questions. The 

hypothesis was investigated and has been proven through experimentation and the research 

questions related to this hypothesis have been addressed in this thesis. Chapter 2 described 

the background of this thesis’s research and detailed the state-of-the-art in the data intensive 
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job scheduling domain. Related research was presented and an analysis of the current and 

previous efforts was discussed. Chapter 3 provided an analysis of the DIANA scheduling 

requirements and listed the salient features of such a system. Amongst those features it was 

established that data location is central to the working of an optimized Grid and hence it 

should be considered in scheduling decisions. It was also established that the ‘best’ or most 

optimal network path to computing and storage elements should be identified and that the 

scheduling system should calculate and incorporate network measurements while planning 

job submission. Chapter 3 further asserted that the network, computation and data transfer 

costs and the priority of job placement are vital when dealing with a large frequency of data 

intensive jobs and optimizing the scheduling decisions. A use case based study was discussed 

to identify and analyze the requirements for data intensive and network aware scheduling and 

these then led the research described in the later chapters of this thesis. 

In chapter 4 a description of the DIANA scheduling algorithm and its key scheduling 

parameters was provided and how they influence optimization was discussed. It was shown, 

with the help of mathematical equations, that a candidate matrix of compute, network and 

data transfer costs can significantly optimize the scheduling process if each job is submitted 

and executed after taking into consideration certain associated costs. Queue time and site 

load, processing time, data transfer time, executable transfer time and results transfer time are 

the key elements which need to be optimized for optimization of scheduling and these 

elements were represented in the DIANA scheduling algorithm. The DIANA algorithm was 

extended and it was demonstrated that if queue, priority and job migration were included in 

the DIANA scheduling algorithm, the same algorithm could be used for the scheduling of 

bulk jobs. As a result, a multi-queue, priority-driven, feedback-based bulk scheduling 

algorithm which extends the DIANA scheduling algorithm was presented and illustrated.  

Chapter 5 discussed the architecture of the Grid schedulers and related issues that can 

optimize the scheduling and execution process. Various scheduling hierarchies were 

discussed and it was concluded that centralized scheduling models are not adequate for 

complex scheduling scenarios, as in the case of bulk scheduling. We discussed how a P2P 

scheduling model would be ideal for the DIANA Scheduling and illustrated its queue 

management mechanism. We then described the DIANA scheduling architecture and 

illustrated the DIANA scheduling API. Chapter 6 described the process of extracting and 
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analyzing the network values and their impact on scheduling decisions. Network aware 

scheduling was discussed and its influence on scheduling decisions was described. This 

chapter also described the design and implementation of a Discovery Service and discussed 

its unique features such as flexibility, avoiding stale service data by imposing a lifetime for 

each service entry and providing an updated view of the dynamically varying Grid system.  

In chapter 7, the role of the Data Location Service and data aware scheduling was explained. 

Chapter 7 also shed light on the replication and co-allocation issues for data intensive job 

scheduling and described the ways through which this could be managed in the DIANA 

Scheduler. It was illustrated that the scheduling efficiency could be improved by selecting the 

best replica of a dataset having the minimum access and transfer costs. It was illustrated that 

the data intensive scheduling process can be optimized by taking the replica locations and 

sorting these replicas based on network efficiency. The dataset replica having the least access 

cost with reference to the selected computing element would be selected by the Meta-

scheduler.  

9.2 Critical Analysis and Conclusions 

In Chapter 8 the results of tests related to the thesis research were discussed. Through 

experimental, graphical and analytical details it was demonstrated that DIANA Scheduling 

significantly optimizes the job queue and execution times. It was further demonstrated that 

bulk job scheduling and execution operations are improved by the decentralized, migration 

oriented, multi-queue and priority aware approach followed in the DIANA Scheduling. It was 

also concluded that a combination of data transfer cost, network cost and computation cost 

can significantly optimize the Grid scheduling and execution process which was the key 

message of the DIANA scheduling approach.  These results validate the research questions 

and the hypothesis that data intensive bulk scheduling can be significantly improved by 

considering a combination of network, data and compute costs and by implementing effective 

queue management and priority controls. 

The main conclusions of this research are the following: 

• It was concluded that a comparative consideration of appropriate replicas and their 

computation and network costs can help in significantly optimizing data intensive job 

scheduling. It was concluded that it might be more logical and optimal to move the 
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data towards jobs in data intensive scheduling and some times both data and job 

movement to a third location can be helpful in scheduling optimization. It was also 

concluded that a considerable scheduling and execution optimization can be achieved 

if the network is treated as a resource and combination of the data transfer cost, 

network cost and computation cost is included in the scheduling decisions and this is 

the key message of the DIANA scheduling approach. This addresses research 

question 1 as outlined in chapter 1 which asserts that co-allocation and co-

scheduling is a key phenomenon for the scheduling optimization. This also validates 

research question 4 which emphasises the inclusion of data, compute and network 

costs in the optimization of data intensive scheduling. 

• This thesis demonstrated that network characteristics and the selection of stable 

connecting links optimizes the data intensive scheduling process. It was further 

demonstrated that replica selection depends on the network characteristics and 

suitable replica selection is essential to optimize data intensive job scheduling. These 

considerations not only improved the execution times of the jobs but also reduced the 

queue times of the jobs. This validates research question 2 which states that the 

network aware services are required to optimize the data intensive scheduling.  

• It was demonstrated that decentralized scheduling significantly improves the 

execution and scheduling process. The level of the optimization cannot be exactly 

quantified due to the changing state of the resources having different capability at 

different sites but the approach roughly optimizes the execution and queue times 

around 20 % to 50 % on average. Also the quality and accuracy of the decisions in 

P2P scheduling depends on the peer discovery and information propagation to other 

scheduling instances. This addresses research question 5 which establishes that the 

decentralized scheduling hierarchies are an effective approach for the data intensive 

bulk scheduling optimization. 

• It was further shown that multi-queue and priority aware scheduling not only avoids 

starvation of the resources but also improves quality of service (QOS) by ensuring the 

smooth allocation of resources. This priority and multi-queue mechanism can 

significantly optimize the scheduling process, especially when bulk jobs are being 

scheduled and executed. It was shown that job migration to better performing sites 



 

 200

can contribute to optimizing job scheduling. It was demonstrated that scheduling and 

execution can be optimized if jobs are migrated to those sites which have better 

execution capacity, less load, and where queues and required data are also available 

or can be made easily available. It was also demonstrated that overall queue and 

execution time can be significantly reduced if the jobs having similar nature are co-

scheduled in bulk scheduling process. This partially addresses research question 3 

which suggests finding new techniques for the bulk scheduling optimization and then 

linking the priority and queuing with these techniques for overall scheduling 

optimization. 

• It was concluded that bulk jobs cannot be optimally scheduled by contemporary 

scheduling techniques. Converting the whole bulk into subgroups and then taking 

each subgroup as a single job, at the scheduling level, can improve the scheduling and 

execution process. This technique also enables one to use the existing scheduling 

system for this type of job which can be scheduled using the DIANA scheduling 

mechanism. This addreses research question 3. 

• It was shown that the DIANA P2P approach is scalable at the level of thousands of 

nodes and performs much better than contemporary scheduling approaches. The 

DIANA P2P approach has the best performance; it shows a nearly linear increase, 

and thus is very scalable. This also demonstrates that DIANA is a suitable approach 

for large-scale Grids and can support increasing numbers of Grid nodes. This in part 

addresses research question 5 which outlined the scalability concerns in the DIANA 

scheduling approach.   

• It was also demonstrated that DIANA is not only scalable but at the same time it is 

also a very stable scheduling approach. It does not respond exponentially and does 

not face congestion as the number of jobs increases beyond a certain capacity or the 

number of nodes increases beyond a certain limit. Therefore it is a rather stable 

approach for a large number of jobs and nodes and is suitable for large-scale Grid 

projects. This resolves the concerns outlined in research question 5 about the stable 

nature of the DIANA approach for the bulk scheduling optimization.  

These conclusions endorse the hypothesis described in chapter 1. These conclusions also 

adequately answer the research questions stated in chapter 1.  This work is unique in the 
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sense that it tried to resolve a real life problem being faced by the LHC analysis community 

but at the same time it can be applied to other areas of Grid scheduling especially those 

domains where a lot of the data, computation and long distance data transfer calls are 

involved. Furthermore it can handle “chaotic” job scenarios and can ensure quality of service 

even in the worse case scenarios such as High Energy Physics analysis where thousands of 

users submit millions of jobs to analyze the data distributed and replicated all over the world.  

Due to the emerging scientific and business applications, more and more data is being stored 

and needs to be analysed. Scheduling computing resources for the analysis of this data can be 

done quickly and effectively by using the issues and concerns discussed in this thesis. There 

are a number of other fields beyond the Physics analysis domain where these results can be 

applied, for example, earth sciences, bioinformatics, neurosciences, drug discovery, climate 

modelling, aerospace science  and weather forecasting, to name but a few. Even the major 

software industry giants like Cisco, HP, Oracle, IBM and Microsoft are working in the 

similar direction to launch their products, for example Noemix, Parabon, Sun Grid Engine, 

Platform LSF, PBS, Avaki, Legion, Data Synapse, Entropia, and this thesis research could be 

very beneficial for these and other products and companies. 

Four major areas in computer science can benefit from this research. Distributed and Grid 

computing is the major beneficiary since it can now also provide solutions to very complex 

problems which require distributed wisdom; the use and economy of resources can be 

managed which otherwise can be difficult to achieve. More precisely, the resource 

management and scheduling in distributed computing has been advanced by providing a next 

generation self-organizing solution which can deal with almost any scheduling eventuality. 

The concepts and solutions discussed in this thesis can equally be extended and applied to 

operating systems, the second area of computer science to benefit from this research. Work 

has already been started towards the next generation Grid Operating System (GridOS) to 

make the Grid a ubiquitous problem solving environment which can be accessed and used 

even by everyday users. We have published a concept paper [50] in which we emphasized 

that most of these concepts and solutions will become part of a Grid operating system since 

all operating systems in essence do some sort of resource management. Due to the nature and 

complexity of Grid applications, it is most feasible to port the Grid services to the operating 

system thus enabling plug and play, self-discoverable Grid computing.  
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The third major area in computer science that benefits from this research is the Grid 

middleware itself. Up to now, most of the services and solutions have been advocated by 

assuming that the underlying network is intelligent and therefore it will automatically take 

care of the application needs. Unfortunately, this is not the case in reality and by introducing 

the concept of network managed services and application aware networks, we have laid the 

foundation for the next generation middleware which should be coupled with the network 

characteristics and should respond according to the network and application needs. It will be 

difficult for existing middleware to support the next generation of Grid applications due to 

the reasons stated earlier and this research has paved the way for new middleware which 

should not only meet the needs of emerging applications but should also can ensure a high 

level of optimization. Moreover, as established in previous chapters the centralized Grid 

middleware solutions are not sufficient for emerging compute and data-intensive problems 

and a decentralized architecture is more effective, suggesting that the middleware domain 

should move to a self managing, scalable and fault tolerant middleware in general and Grid 

resource management systems in particular.  

The fourth area of computer science application is the mining and analysis of the data 

distributed in remote locations. We have observed an explosive growth in the number and 

size of data being produced around the world from the scientific and business applications in 

the last few years. This gave researchers the opportunity to develop effective data mining 

techniques for discovering and extracting information from huge amounts of data. But due to 

their size and also to social or legal restrictions that may prevent analysts from gathering data 

in a single site, the datasets are often physically distributed. The analysis and mining process 

is data and computationally expensive and the Grid is a natural platform for deploying a high 

performance service for the parallel and distributed information discovery process. The Grid 

environment may in fact furnish coordinated resource sharing, collaborative processing, and 

high performance data mining analysis of the huge amounts of data produced and stored. 

Since these applications are typically data intensive, one of the main requirements of such a 

Grid environment is the efficient management of storage, computation and communication 

resources and this is the area where the DIANA scheduling technique can be very effective in 

optimizing the analysis process. DIANA can enable the distributed database community to 

quickly analyze large datasets and optimize their algorithms and applications by efficiently 

exploiting the computing and storage resources. 
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There are certain limitations which should be considered when applying the results of this 

research. We have adopted simulation results to demonstrate the DIANA bulk scheduling 

process. We could have deployed the DIANA bulk scheduling on the EGEE, OSG, NORDU 

etc Testbeds and ideally should have tested it on different transatlantic Testbeds to 

investigate the effect, limitation and other problems which can be faced by such a scheduling 

system when coping with the job frequency from hundreds of users and the job scheduling on 

resources distributed all over the world. Due to the nature of the jobs spanning days and 

consuming huge amounts of data, this was not possible on current Grid deployments. The 

simulation results that were used for bulk scheduling were as close to the real world 

environment as was possible however the behaviour of the actual Grid deployment might 

eventually vary due to the nature of the jobs and scheduling requests from different users and 

administrative limitations and policies. For example, some users may want to run all of their 

jobs on a single site or there might be the case that the VO admin does not allow the jobs to 

run on some site beyond a certain limit and in this case, the scheduler cannot take the 

optimized decision due to these limitations. Therefore this can be the biggest limitation to 

generalizing and applying the results of this thesis research to all Testbeds.  

Grid deployments should follow the policies and requirements outlined in this thesis to 

realise the true benefit of the optimization. In other words, VO policies can have strong 

influences on the level of the scheduling optimization which can be achieved by deploying 

the DIANA scheduling approach. Furthermore, decentralized scheduling provides better 

availability, fault tolerance and effective bulk scheduling through job migration, but produces 

more network traffic, is less flexible, and is consequently more difficult to implement. The 

steering and migration of jobs is optimal only for long running jobs and the scheduler should 

not migrate short running jobs due to the severe associated penalties. There are many ways to 

determine the real bandwidth between two nodes, however there are limitations to each, we 

base our bandwidth determination mechanism on TTL of ICMP packets [40]. Many 

organizations block ICMP traffic, thus our bandwidth determination method would not work 

in those environments. Other methods such as, using SNMP to determine bandwidth, are not 

feasible over different networks, as many routers are not yet SNMP enabled, and 

organizations disable SNMP support from their routers for security purposes. Besides these 

two techniques there are a number of bandwidth intrusive techniques, such as Iperf which 

have their own inherent problems. The accuracy and quality of the network information can 
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enhance the quality and accuracy of the scheduling decisions. Moreover, the stability of the 

network links is crucial for quality scheduling since otherwise assumptions and predictions 

made at a particular time might not be valid at a later point in time and therefore can lead to 

non-optimal scheduling. These and other related limitations such as changing network 

characteristics due to traffic and congestion problems, the availability of the resources and 

the site and job failures on Grid Testbeds, may limit the application of these thesis results. 

9.3 Future Direction  

There are many other related aspects of the research area beyond those issues stated above 

which are important in data intensive bulk scheduling research but were not covered in the 

DIANA scheduling approach. For example, the failure and re-submission of jobs is not 

covered and further research is needed for future fault tolerant job scheduling. The Scheduler 

should be aware of failing jobs and such jobs should be resubmitted to stable sites in the case 

of a failure. Furthermore, when jobs are failing on a site it should be evaluated whether the 

jobs should continue to be sent to that site or whether the scheduler should select a new more 

appropriate site based on some site reliability index. Moreover, the Scheduler should also be 

aware of the execution environment on a particular node prior to job submission and methods 

need to be established for providing this functionality. Data persistency and permanent 

storage is another issue which needs to be investigated. The scheduler should also have the 

capability to decide whether to store or cache the data on a particular location for possible 

later use. Potential Schedulers should also be parameterized so that certain jobs would always 

be scheduled by a particular scheduler tuned for that type of jobs thereby increasing the job 

scheduling and execution efficiency. It also needs to be determined whether parameterized 

schedulers can contribute to meta-scheduling optimization. These are just some of the 

research issues which were not able to be covered in this thesis but merit future 

investigation.. 

9.3.1 Potential Limitations of the DIANA Algorithm   

DIANA mainly relies on performance information collected in the past in order to schedule 

jobs, i.e. to “predict” the future. Therefore, the system relies on the fact that the future is 

assumed to be similar to the past and this is a potential problem in all forecasting systems. In 

addition, since the cost model depends on very detailed and up-to-date monitoring 
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information, DIANA relies very heavily on the stability, scalability and accuracy of the 

underlying monitoring system. Like many meta-schedulers DIANA uses the push approach 

where jobs are actually pushed (or sent) to computing elements. This approach has the 

disadvantage that jobs might fail due to configuration errors at the destination sites. 

Schedulers with pull approaches can take care of this problem.  Another way to overcome 

this is to send jobs that constantly monitor the environment for potential errors. All these 

issues need to be considered in future research surrounding data intensive job scheduling. 

9.3.2 The Comparison of Bulk Scheduling Algorithms 

The comparative performance of the bulk scheduling algorithm discussed in chapter 4 needs 

to be evaluated. There is no competitive algorithm available against which we can compare 

the performance and effectiveness of the discussed bulk scheduling algorithm since it is the 

initial work of its kind, especially splitting the jobs into groups and subgroups is quite novel. 

Therefore we could not compare with existing approaches or create some alternative 

approach to our bulk scheduling approach. There is the possibility of customizing available 

algorithms like the gang scheduling algorithm that is an algorithm for parallel jobs and 

provides strong inter-process communication. Endeavour should be made to test and compare 

our bulk scheduling algorithm with different variants of gang scheduling and other 

contemporary algorithms. One possible approach would be to customize the gang scheduling 

algorithm for non-parallel environments, align it to the bulk scheduling needs and then 

compare it with the bulk scheduling algorithm we discussed in chapter 4. 

9.3.3  Network Managed Scheduling 

Load balancing and scheduling has traditionally been carried out at the application level but 

due to the changing nature of applications, application-aware networks and network-aware 

applications are becoming increasingly recognised as pre-requisites for true end-to-end 

scheduling optimization. While network routing ensures that packets take the ‘best’ source to 

destination route, it should be the application that decides the communication end points. 

Being able to choose the communication end points requires that the application has access to 

the network information and the server load. It is therefore essential to have the services that 

understand the dynamics of the underlying network infrastructure at the packet level. This 

will enable scheduling applications to communicate by routing application messages to the 
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appropriate destination, in the format expected by that destination. This will allow the 

scheduler’s message-level intelligence into the network to better meet the underlying needs 

of applications for real-time visibility, security, event-based messaging, optimized delivery, 

and other core integration and deployment services. As a consequence future scheduling 

systems need to be created which can autonomously estimate the network qualities between 

the end points including bandwidth, topology and load and can then autonomously balance 

the Grid work load. Such a scheduling system should self-manage, self-organize and self-heal 

themselves in case of failures. 

9.3.4 From Grid Middleware to a Grid Operating System 

Existing Grid middleware supports only primitive forms of resource management. Grid 

middleware such as Globus mostly facilitates Grids which are aggregations of clusters. 

Various schemes based on usage policies, resource reservation and quota and accounting 

have been implemented, however these do not provide effective resource management in 

which collections of clusters can look like a single virtual machine. Most of these issues can 

be resolved effectively by migrating many of the functions that Grid middleware has 

traditionally been responsible for to the operating system level. Migrating Grid computing 

functions to the operating system level would make it transparent and invisible to the user 

and would thereby remove the obstacles related to the installation, management and 

maintenance of Grid middleware. Grid enabling process management in the operating system 

would yield a completely new paradigm for developing Grid enabled applications, which 

could remove many of the barriers related to the re-engineering of applications for execution 

on Grids, and could provide universal support for many more types of applications including 

support for legacy desktop applications.  

Resource management which has been carried out traditionally at the application level in 

Grid middleware could be done more effectively at the operating system level, since at their 

heart (distributed) operating systems are basically resource management systems. Migrating 

Grid computing to the operating system, would remove any differences between non-Grid 

computing systems and Grid computing enabled systems, thus making Grid computing 

ubiquitous. We envisage a brokering and scheduling engine inside the operating system 
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kernel which takes into consideration entire pools of resources available across the Grid. 

Further details are available in the paper [50]. 

9.3.5 Pre-emptive Scheduling of the Bulk Jobs 

We asserted throughout this thesis that we are using a non pre-emptive job execution model 

due to the costs involved in the data transfer and other limitations of the Grid environment. 

However there are some cases where checkpointing and state migration of data intensive jobs 

might be useful and therefore a pre-emptive mode of DIANA scheduling ought to be 

considered. This might lead to the scheduling optimization although almost all major Grid 

projects are currently considering only the non pre-emptive approach. Applications might 

eventually emerge which can produce optimized results if they are executed in a pre-emptive 

scheduling mode. The steering and migration of such jobs would be a challenging task but 

should be considered in future research. 

Furthermore, bulk jobs are executed in groups which might take days to complete and due to 

failures of the machine or increases in load this process may even take weeks. Consequently, 

it will be cost effective to migrate and export the whole bulk submission to some other site 

which may produce results very much more quickly than the current site. Currently this is not 

possible until we can also migrate the previous execution state of the jobs since at present the 

execution time is likely to lengthen. All these aspects need due consideration in future 

research. 

9.3.6 Meta-Scheduling Peers Grouping 

In DIANA, every site meta-scheduler communicates with its peers on other sites. This may 

become problematic when the size of the Grid grows beyond a certain limit due to 

communication overhead involved since each meta-scheduler will propagate its information 

to other peers at all the Grid sites and this may choke the network. There should be a region 

wise grouping of the peers so that sites in each region might first talk to each other for 

effective scheduling and should contact other peers beyond that region if the jobs 

requirements cannot be met within that group of sites. This will restrict the traffic within the 

group and only limited traffic will travel across the whole Grid. This will not only restrict the 

traffic size but will also reduce the amount of the data replication across the long distance 
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sites and will facilitate the job migration process. There can be further investigation to 

consider a group meta-scheduler if the Grid size becomes too big. 

9.3.7    Workflow Optimization through DIANA   

In this thesis the jobs undertaken for scheduling, for example the physics jobs, did not have 

mutual dependencies. The DIANA approach could be extended in future to actually optimize 

the workflow of the dependent jobs. This optimized workflow would be constructed 

following the DIANA characteristics and would become an input to the scheduler for further 

optimizing the overall scheduling and execution process. There are a number of applications 

where jobs are tightly coupled and depend on each other, for example the bioinformatics 

jobs, and this step would enable DIANA to emerge as a ubiquitous scheduling environment. 

9.4 Closing Statement 

Grid computing is poised to become the platform to support emerging applications which 

need huge resources and are unable to be managed by the existing clustering or 

supercomputing techniques. To enable the Grid to efficiently employ the distributed 

resources, an efficient scheduling system is required which can make informed decisions by 

taking into account the state of the distributed resources. In this thesis, the DIANA 

Scheduling approach was presented which can significantly optimize the data intensive 

scheduling process. It can support the huge frequency of the jobs on the Grid to access and 

analyse this data by co-allocating and co-scheduling the data and computation power. 

Network aware scheduling decisions, regulated by the priority driven algorithms working in 

decentralized mode, creating multi-queues and converting and scheduling the bulk jobs into 

the homogeneous clusters and groups can significantly optimize the queuing and execution 

times.  
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Appendix-A Bulk Scheduling Algorithm  

The following is the pseudo code for the algorithm to schedule the bulk jobs on the Grid. It 

works in association with the algorithm discussed in the section 4.6.4. It takes into account all 

of the points which were discussed earlier to schedule the bulk jobs. It extends the DIANA 

algorithm to select the best site for a single or homogeneous bunch of jobs. 

 
1. Describe the job(s) 
2. If  job(s) matches with local site and local site is least loaded 

 
2.1 Check the queue size and number of jobs by N= R*W    //Little’s  Formula 
 
2.2 If arrival rate is less than Job processing rate 
  

2.2.1    If the local site has the required data 
 

2.2.1.1 submit the job to local site 
 

2.2.2 else  
 

2.2.2.1 go to step 3 
 
3 else  
 

3.1 while(all sites(peers) contacted) and required information is retrieved 
 

3.1.1 calculate the network cost (e.g.; bandwidth between execution and 
submission site) 

3.1.2 Calculate the computation cost 
 

3.1.3 Calculate the data transfer cost(data location, data size etc) 
 

3.1.4 Total cost = network cost + computation cost+ Data transfer cost 
 

3.1.5 Calculate the total cost for the candidate execution sites 
 

3.1.6 Calculate the cost for local job execution 
 

3.1.7 If Total Cost less than Local cost 
 

3.1.7.1 submit job to remote site 
3.1.7.2 Copy data or read from remote site // which ever is 

appropriate 
 
3.1.8 else 
 

3.1.8.1  submit Job to local site 
3.1.8.2 Copy data or read from remote site //which ever is appropriate 

 
3.2 end while loop 

 
4 Once a job submitted // Either local or Remote Site 
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5 Set the Job Threshold //which varies from site to site 
 
6 Set the Time Threshold // which varies from site to site 
 
7 Push the jobs in the queue 
 

7.1 Do the Data reading or transfer operations //as decided in 3 
7.2  Allocate jobs to processing cycles in FCFS order// First come First served 

 
8 Arrange Jobs in the queue on the basis of Job and time threshold 
 
9 If the number of job(s) from a user in the queue greater than Job Threshold 

 
9.1 allocate the job(s) to one of the lower priority queues 

 
10 else  
 

10.1 check the size of the job by its CPU requirements 
 

10.2 If job is shorter than the jobs in the queues 
 

10.2.1 Use SJF algorithm //Shortest Job First 
 
10.2.2 Allocate this job to one of the higher priority queues 
 

10.3 else 
 

10.3.1 Allocate this to comparatively lower higher queues 
 
11 while(Job is Submitted)//Either to local or remote site 
 

11.1 If job(s) is in lower priority Queue 
 

11.1.1 after each threshold time 
 
11.1.2 Check the job status 

 
11.1.3  if Job is  not in higher priority queue 

 
11.1.3.1 Increase the priority of the job(s)  by a fixed number 

 
11.2 If the job(s) from the user crosses the Job Threshold limit 
 

11.2.1 Check the Job Status and if not in the lower priority Queue 
 
11.2.2 reduce the priority of the job(s) from the User by a fixed number 

 
12 end while loop 
13 end function 
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