
Effects of Virtualization on Network and Processor
Performance using Open vSwitch and XenServer

Adnan Noor Mian
Department of Computer Science

Information Technology University

Arfa Software Technology Park,

Ferozpur Road,

Lahore, Pakistan.

Email: adnan.noor@itu.edu.pk

Ali Mamoon, Raees Khan
Department of Computer Science

Information Technology University

Arfa Software Technology Park,

Ferozpur Road,

Lahore, Pakistan.

Email: {alimamoon@gmail.com,

raees.khan@itu.edu.pk}

Ashiq Anjum
School of Computing and Mathematics

University of Derby,

Kedleston Road,

Derby, UK.

Email: a.anjum@derby.ac.uk

Abstract—Cloud computing is based on virtualization, where
a single physical resource is virtualized into multiple virtual
resources. Processor and network virtualization offer many
advantages like saving in hardware cost, energy consumption,
human effort and management of resources. In this paper we
have evaluated the effect of network and processor virtualization
using popular open source tools, Open vSwitch and XenServer.
Based on a number of experiments in which we compared
virtualized with non virtualized scenarios, we found that the
virtual network using Open vSwitch is secure. Moreover TCP
and UDP throughput is not much effected but there is an
increase in average Round Trip Time (RTT). Similarly, processor
virtualization on XenServer does not affect much the average
schedule time in comparison with a non-virtualized machine. We
thus conclude that in general a slight decrease in the performance
in case of virtualization is not significant as compared with
the advantages we get from virtualization when using Open
vSwitch with XenServer. This work motivates for the application
of virtualization using Open vSwitch and XenServer instead of
using non-virtualized environments for setting up data centers.

Keywords—Open vSwitch; XenServer; network virtualization;
cloud computing; data center

I. INTRODUCTION

Cloud services are provided by a system which consists
of a large pool of hardware and software resources. These
resources can be dynamically re-configured to adjust to the
variable load and allow for an optimum resource utilization
[1]. This scalable and efficient utilization of resources is not
possible without the virtualization of hardware and software
resources. With the help of virtualization, a single physical
processor, memory, storage and network can be used as multi-
ple virtualized resources. These virtualized resources are able
to run in parallel resulting in better efficiency of the hardware
[2]. Virtualization enables businesses to reduce IT expenses
while increasing the efficiency, utilization and flexibility of
their existing computer hardware. Figure 1 represents a very
basic case of a virtualization environment where multiple
virtual resources are being used to provide services to the
users. These virtual resources work collaboratively in order
to provide services. For collaboration between the virtual
resources, there must exist a communication mechanism and a
way to manage and control this communication. Such a com-
munication is achieved through network virtualization [2]. In

physical networks we can control, track and manage network
communication between nodes but in virtual environments
these tasks are not easy. All of the communication is carried
out at virtual layer where it may or may not pass from any
physical network hardware, making it much more difficult to
track, secure and isolate the virtual networks [2] [3] [4]. These
challenges are handled by network virtualization.

��� ��� ���

���� ���� ���� ����

��	
���������
��

����

�������������	�
����

Fig. 1. Virtual Network Data Transfer and Hypervisor

Network virtualization is a networking environment where
multiple virtual networks are established on top of a physical
network. Each virtual network in a network virtualized envi-
ronment is a collection of virtual nodes and virtual links. In
such a network, we can create and manage multiple virtual
networks at software level which can co-exist in isolation
without interfering with each other. These networks are then
used by service provider to host services for the users [5].
Network virtualization is based on the model of standard L2
switch or IP Router functionality and is included in hypervisor
or hardware management layer [3]. This software layer works
as a bridge between physical network interfaces (PIFs) and
virtual interfaces (VIFs) of virtual machines (VMs). In cloud
environment, VMs are not given direct access to the physical
network interfaces. Instead these are connected via VIFs to the
software layer which is responsible for interconnection of VMs
within the same host or to the outer world via PIF, as shown

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing

978-1-4799-7881-6/14 $31.00 © 2014 IEEE

DOI

762

in Figure 1. A virtual machine may have one or more VIFs
connected to the software switches in the hypervisor layer.

An emerging application of virtualization is setting up
clouds in data centers. Traditionally data centers use dedicated
servers to run applications. Such approaches have a number of
limitations like not providing dynamic resource allocation, cus-
tomized applications and network protocols, management poli-
cies and performance isolation [6]. Most of these limitations
are overcome if processor and network virtualization are used
for the implementation of clouds in data centers. For processor
and network virtualization, a popular combination is to use
XenServer using Open vSwitch for designing clouds. In this
paper we evaluate the effect of virtualization on network and
processor performance using the combination of XenServer
and Open vSwitch. We have found that by using virtualization,
there is no significant loss in major network and processor
performance. This work motivates for developing virtualized
data centers instead of using non virtualized solutions. To the
best of our knowledge we have not found such a detailed
experimental study on investigating the performance of using
Open vSwitch and XenServer.

In rest of the paper, we discuss related work in section II.
We then describe the experimental set up and the experiments
performed in section III. In section IV we discuss the results
and finally in section V we conclude and give a future direction
of this work.

II. RELATED WORK

Open vSwitch (OVS) is an open source software switch
used for network virtualization and communication between
virtual machines. We can incorporate this switch in multiple
supported hypervisors. Pfaff et al. [3] described that open
vSwitch acts as a bridge between VMs and PIFs and replicates
the Ethernet (Layer-2) switching behavior. They focused on the
implementation aspect of Open vSwitch and how it can be used
to handle problems like isolation in joint-tenant environments,
mobility across subnets, and distributing configuration and
visibility across hosts. We, on the other hand, have focused on
the evaluation of Open vSwitch based on multiple parameters.

Pettit et al. [4] incorporated OpenVswitch in XenServer and
tested its various capabilities. They argue that Open vSwitch
provides most of the capabilities provided by an advance
hardware network switch when used with a hypervisor like
XenServer. We believe their arguments are correct and we
take it further to evaluate the performance of Open vSwitch in
XenServer for Network and CPU virtualization.

In [7], authors incorporated Open vSwitch with an open
source hypervisor OpenNebula. A single-root I/O virtual-
ization (SR-IOV) based architecture has been proposed in
[8]. The authors also proposed a dynamic network interface
switching (DNIS) scheme to address the migration challenges
and suggest that SR-IOV provides a good solution for high
performance I/O virtualization without sacrificing migration. In
our paper, the focus is not on the migration aspect in network
virtualization. For data center designs using Open vSwitch and
XenServer, [8] can serve as a guide for handling migration
challenges.

Lee et al. [9] proposed a network services deployment
framework i.e. In-Network Processing (INP) which could

proficiently shift the network services processing from separate
hardware to network devices and computing resources. For
switch management, they used OpenFlow and XenServer hy-
pervisor as processing module and Open vSwitch to control the
network flow. In our work, the focus is not on the policy im-
plementation, processing, controlling or access management.

In [10] Duan et al. proposed a service-oriented architecture
(SOA) in network virtualization environment and evaluated its
performance. When SOA was applied within network virtu-
alization environment, the resultant behavior greatly depicted
the benefits of merging networks and cloud. They named it
as “Network as a Service” (NaaS) [11] and also proposed a
framework for NaaS whose main focus is on network service
description, discovery and composition. NaaS is also discussed
for hybrid clouds in [12]. A joint virtualization of network
and cloud resources is been proposed in [13] for addressing
resource allocation problem. In our paper, primarily the focus
is on the evaluation of network virtualization but the results
we got can serve as a guidance for setting up a data centers
which can be used for providing network oriented services.

The difference of our research, in general, from all of
the previously mentioned works, is that we have evaluated
the effects of virtualization using the combination of Open
vSwitch and XenServer. We have not focused on the ac-
tual implementation or internal working of Open vSwitch.
Instead we have focused on the factors which may affect
the performance of the system. The work which is close to
what we have done in this paper, is given in [2]. Authors
in [2] have conducted experiments in network virtualization
using Open vSwitch version 1.0.99 and used XenServer as
hypervisor. They evaluated the security, performance and QoS
service of the Open vSwitch. In our work we have not only
focused on the effects of network virtualization but also on
the processor virtualization. Moreover, we have done more
extensive evaluations. Similarly in [14], authors have evaluated
the network virtualization and virtual machines in Amazon
clouds, whereas we have done the same for Open vSwitch
and XenServer.

III. EXPERIMENTAL SETUP

We first installed XenServer version 6.2.0 on two different
physical machines. This version has the Open vSwitch version
1.4.6 pre-installed. Moreover this version of XenServer can
only be installed on 64-bit machines. XenServer is based on
Linux kernel and hence installs like any other Linux flavor
except with few differences. XenSever does not allow to create
custom size partitions and also manage the storage drive and
file system itself. In our experiments, we used one hard drive
on each pc for storing VMs. For network configuration, we had
1 NIC (PIF) per physical machine. We configured the network
using static addresses and universally unique ids (UUIDs).

After XenServer installation we installed XenCenter, and
connected XenCenter to the XenServer. XenCenter provides a
centralized control with which we need just one machine to
interact with all of the installed XenServers. We then created
two VMs on each of the physical machines and installed
Windows 7, 64 bit and Ubuntu 12.04, 64 bit on each of the
VM on a physical machine. This setup is shown in figure 2.
We also installed XenServer Tools on VMs. XenServer tools

763

TABLE I. XENSERVER CONFIGURATIONS

XenServer 1 XenServer 2

Processor Intel Core i3 Intel Core i3

RAM 4GB 4GB

Network Interface 1000Mbps 1000Mbps

XenServer Version 6.2.0 6.2.0

Open vSwitch Version 1.4.6 1.4.6

IP Address 192.168.2.10 192.168.2.20

Subnet Mask 255.255.255.0 255.255.255.0

Default Gateway 192.168.2.1 192.168.2.1

Number of VMs 2 2

act as drivers for the VMs so that VM and XenServer can
interact with each other. XenServer tools are only available
for specific operating systems. If the operating system is not
supported by XenServer and XenServer tools, we will be able
to create VM but will not be able to use it properly. List of
supported operating systems can be found at [15].

After the successful installation of XenServer tools, we
configured VLAN with all the security, QoS and other features.
For this purpose we added VIFs and assign them to the VMs.
We created VLANs connections and assigned VLAN tags
to these connections. These tags help in providing security,
since VMs assigned with a tagged VLAN connection can only
communicate with a machine having a connection with the
same tag.

��� ����

������ ������

����

�����
�����

���� ����

������ ������

����

�����
�����

�����������	� �����������
�

�����������

Fig. 2. Experimental Setup

After performing these steps, we have established the vir-
tualized environment by creating XenServers on two different
physical machines. The hardware and software configurations
for both of these servers are shown in Table I. On each
server we have created two VMs running Windows and Linux
operating systems respectively. In Figure 2 we have shown the
overall view of the experimental setup.

TABLE II. PING AND ARP TEST WITHOUT VLAN TAGS

VM 1 VM 2 VM 3 VM 4

VM 1 - Y Y Y

VM 2 Y - Y Y

VM 3 Y Y - Y

VM 4 Y Y Y -

TABLE III. PING AND ARP TEST WITH VLAN TAGS

VM 1 (T-5) VM 2 (T-6) VM 3 (T-5) VM 4 (T-6)

VM 1 (T-5) - N Y N

VM 2 (T-6) N - N Y

VM 3 (T-5) Y N - N

VM 4 (T-6) N Y N -

IV. RESULTS AND DISCUSSION

Now we discuss different experiments including security,
network packets monitoring, throughput measurement, RTT,
processor utilization on network activity and processor sharing
among virtual resources.

A. Network Virtualization

In this subsection we evaluate the effect of virtualization
on different network parameters like enabling security, network
throughput and RTT.

Enabling security/traffic isolation: Physical isolation is an
important mechanism to improve the security of the network.
In physical environment, networks cannot be isolated into
different physical subnets. In VLANs we can isolate the com-
munication between machines in the same physical network.
In fact machines in the same virtual subnets can communicate
with each other whereas those on different virtual subnets can
not. This is because that ARP request sent by one machine
will not reach the other machine if they are in different virtual
subnets [2]. To test the security of the network we have
conducted the ping and Address Resolution Protocol (ARP)
tests as described below.

We conducted the VLAN test to see whether Open vSwitch
is able to isolate VM traffic using VLANs. In this test, we
sent the ping request from one VM to other VM. The ping
results are shown in table II. Interestingly we found that every
VM was able to send and receive packets from all other VMs
which was conflicting with statement of isolation. The reason
is, that at time of XenServer host installation, one network per
physical NIC is created automatically. When XenServer tools
are installed on VMs, network is established with this default
feature. This network does not involve any VLAN tags.

We setup a new VLAN using an existing NIC. This is
represented with VIF (virtual network interface) as NIC with
VLAN tag and attached this connection to the VM. XenServer
supports up to 4 physical network interfaces per XenServer
host and up to 7 virtual network interfaces. There are 3 server
side objects that represent network entities of XenServer:
Physical Interface (PIF), Virtual Interfaces (VIFs) and Network
(Virtual Ethernet switch). Multiple PIFs can be assigned to
single network interface card but separate VLANs are assigned
to separate PIFs. VIF is the virtual network interface on virtual
machine. Network consists of a name, description, universally
unique id UUID and collection of PIFs and VIFs. Using
this information, we established a network connection with
VLANs, using the server on XenCenter.

764

TABLE IV. TCP AND UDP THROUGHPUT

Min (MB/s) Max (MB/s) Avg (MB/s)

TCP with no VLAN Tag 11.28 11.33 11.31

TCP with VLAN Tag 11.25 11.28 11.27

TCP without VLAN 11.30 11.32 11.31

UDP with no VLAN Tag 28.04 30.28 29.58

UDP with VLAN Tag 22.28 29.90 28.70

UDP without VLAN 7.36 7.55 7.42

After assigning newly created configuration to VMs, we
again performed the VLAN test. Table III shows result with
VLAN tag configuration. When we used the default connection
without any VLAN tag, every VM regardless of the hosting
server was able to access other VMs. But when VLAN tagged
connections were used, only those VMs were able to access
other VMs which are connected using connection having same
VLAN tag and subnets otherwise connection was failed to
established. With these results we can deduce that using Open
vSwitch, we can achieve network isolation and thus can assure
secure communication using virtual networks in XenServer.

Network Throughput: We conducted the following tests
to measure the performance of the virtual networks using both
TCP and UDP data streams. We used two different connections
with and without VLAN tags. We also applied QoS rate of
100MB to the connection with VLAN tag. For measuring the
performance, we used Microsoft NTttcp tool and windows
VMs. The results were taken for 20 different measurements
by changing the time in each measurement calculation. The
first test was run for 10 seconds and in each following test
this time span was increased by 1 second.

Figure 3 shows the TCP throughput results. The average
frame size was ranging from 1455-1456 during TCP through-
put calculation. We observe that there is not much difference
in with and without VLAN tag results.

5

10

15

20

25

30

35

40

10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Measurement Time (sec)

TCP Throughput with no VLAN Tag
TCP Throughput with VLAN Tag
TCP Throughput without VLAN
UDP Throughput with no VLAN Tag
UDP Throughput with VLAN Tag
UDP Throughput without VLAN

Fig. 3. TCP &UDP Throughput for Open vSwitch (using VLAN tags and
without VLAN tags)

Figure 3 shows the plots for TCP and UDP throughput.
We see that in case of UDP the throughput is higher than
the TCP case. In table IV, we can see that the average TCP
throughput with and without VLAN tag is 11.27 MB/sec and
11.31 MB/sec respectively which are quite close. Similarly,
the average UDP throughput with and without VLAN tag is

TABLE V. ROUND TRIP TIME (RTT)

Min (ms) Max (ms) Avg (ms)

VMs on same physical
Machine

0.15 4.42 0.38

VMs on different physi-
cal Machine

0.34 12.44 0.64

Non-virtual machines 0.11 12.34 0.23

28.71 MB/sec and 29.58 MB/s respectively, which are very
much close too . Thus we find that enabling security and
network virtualization has virtually no effect on the throughput.
Moreover we see that in older version of XenServer and Open
vSwitch [2], the TCP throughput variation is high but in newer
version of Open vSwitch this variation is small.

Round-Trip Time (RTT): In order to measure the delay
in network communication we calculated the RTT. Figure 4
shows the RTT plots when (1) both VMs are on the same
physical server, (2) when VMs are on two different physical
servers and (3) when the VMs are placed on different non-
virtual machines. For each of the cases, we sent 5000 ping
probes with the gap of 0.2 seconds. It is quite obvious to see
that RTT for case (2) is higher than that of case (1). This
is due to the latency involved in the management overhead
of Open vSwitch. In network virtualization, request from VIF
is transferred to the Open vSwitch which redirects it to the
PIF. The summary for RTT is given in table V. The average
RTT between VMs on same physical machine is 0.38ms, it
is 0.65ms between VMs on different physical machines and
0.23ms between two physical (non-virtual) machines.

We find that the average RTT is maximum for the case of
VMs on different physical machines and this increase is about
2 times. The increase is due to the network virtualization in
which the processor not only schedules the VMs but also has
to do the task of switching.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
T

T
 (

m
s
)

Measurment Number

RTT-2 VMs on same machine
RTT-2 VMs on different machines
RTT-2 physical machines

Fig. 4. Round Trip Time (RTT)

B. Processor Virtualization

In this subsection we shall evaluate the effect of virtual-
ization on CPU performance in terms of network activity and
processor/CPU sharing.

765

TABLE VI. CPU UTILIZATION DURING TCP AND UDP

Min (%) Max (%) Avg (%)

TCP with no VLAN Tag 4.34 6.98 5.42

TCP with VLAN Tag 2.65 3.89 3.34

TCP without VLAN 3.06 6.03 3.75

UDP with no VLAN Tag 55.90 58.69 57.56

UDP with VLAN Tag 55.68 59.78 57.47

UDP without VLAN 2.82 5.41 4.22

Virtualized processor utilization for throughput test:
Figure 5 shows the plots of processor utilization during the
throughput calculations. These plots are obtained with the help
of Microsoft NTttcp. The summary of the experiment results
has been given in table VI. We see that in case of TCP, the
processor utilization is minimal but during UDP data stream,
it is up to 60% higher. The average processor utilization in
case of TCP with and without VLAN tag is 3.34% and 5.42%
respectively. Similarly the average processor utilization in case
of UDP with and without VLAN tag is 57.47% and 57.56%
respectively. Thus we see that the processor utilization almost
remains the same in case of enabling security in network or
in other words using VLANs. Though we also find that the
processor utilization is higher in case of UDP in comparison
with the TCP. This is because in case of UDP, the throughput
is higher leading to a higher utilization of processor.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30

C
P

U
 U

s
a

g
e

 (
p

e
rc

e
n

ta
g

e
)

Measurement Time (sec)

TCP CPU usage with no VLAN Tag
TCP CPU usage with VLAN Tag
TCP CPU usage without VLAN
UDP CPU usage with no VLAN Tag
UDP CPU usage with VLAN Tag
UDP CPU usage without VLAN

Fig. 5. TCP & UDP Processor Usage (using VLAN tags and without VLAN
tags)

Processor virtualization using VM: Virtual machines are
being executed on top of XenServer hypervisor. In order to
determine processor utilization with XenServer, we conducted
this experiment. For XenServer, VMs execution is no more
different than scheduling a VM process on physical server.
A VM is being executed as a process in XenServer and we
compare this with the processor sharing among processes on
a non-virtualized machine. For this purpose, we wrote a small
application in C++ and executed it on the VMs and physical
machine. This application reported the time on which it is
scheduled to the processor. While performing this experiment
we made sure that no other user process is running during the
execution of this test.

We did the test for two cases. In the first case, only one
VM was running on XenServer hypervisor which is compared
with the non-virtual machine where only one user process

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

S
c
h

e
d

u
le

 T
im

e
 (

u
s
)

Measurment Number [x 10
3
]

VM on Xen Server
Physical Machine

Fig. 6. Processor Sharing between 1 VM with 1 User process and 1 Physical
Machine with 1 User Process

TABLE VII. PROCESSOR SHARING BETWEEN 1 VM WITH 1 USER

PROCESS AND 1 PHYSICAL MACHINE WITH 1 USER PROCESS

Min (μs) Max (μs) Avg (μs)

VM on XenServer 2 3156 2

Physical Machine 2 68 2

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

S
c
h

e
d

u
le

 T
im

e
 (

u
s
)

Measurment Number [x 10
3
]

VM on Xen Server
Physical Machine

Fig. 7. Processor Sharing between 2 VM with 1 User process each and 1
Physical Machine with 2 User Processes

TABLE VIII. PROCESSOR SHARING BETWEEN 2 VM WITH 1 USER

PROCESS EACH AND 1 PHYSICAL MACHINE WITH 2 USER PROCESSES

Min (μs) Max (μs) Avg (μs)

VMs on XenServer 2 6729 3

Physical Machine 2 342 4

766

was executed. In the second case two VMs were executed
in XenServer and compared with non-virtual environment by
executing two user processes. Figure 6 shows the plots for
the first case. We note that scheduling time in non-virtual
machine is negligible. This is because there is only one user
process was running while scheduling time for the VM varies.
Figure 7 shows the results for the second case. In this case
we executed two processes but result is taken for one process.
The result for this case is surprising. The schedule time for
non-virtual machine did not change and followed the same
behavior as in the first case with minimal time. But schedule
time for the virtualized machines also has reduced at majority
of instants, depicting better processor sharing among VMs.
In case of processor sharing, the average sharing time for
VMs and physical machine with one process is 2μs seconds
as shown in table VII. The table VIII shows that with two
processes, the average sharing time for VMs and physical
machine with one process is 3μs seconds and 4μs seconds. We
thus find that virtualization has negligible effect on processor
sharing.

V. CONCLUSION AND FUTURE WORK

In network virtualization with Open vSwitch we can
achieve network security and scalability, as we can assign
multiple VIF to the VMs. A VM can only communicate with
those VMs over virtual network which are having same VLAN
tags otherwise communication is not possible. The network
throughput that we can achieve for TCP or UDP are almost
same with or without VLAN tag but the added advantage is the
security benefit we achieve using VLAN tags without affecting
network performance. The RTT results in virtual network is
slightly higher than those in non-virtual environment. This
behavior is due to the involvement of hypervisor layer which
is acting as a bridge between VIFs and PIFs. Same is the case
with processor sharing, where multiple VMs are sharing the
same processor as in comparison with non-virtual environment
where no processor sharing is actually done. This also adds
some latency in process scheduling whereas it is almost equal
to zero in non-virtual system.

We thus find the effect of virtualization on network and
processor performance using Open vSwitch and XenServer.
The effect is negligible for most of the performance parameters
as compared with non-virtualized environments. Though there
may be an increase in the cost for setting up the virtualized
environment but the benefits we get is far more than using a
non-virtual environment. This work thus motivates for setting
up clouds for data centers based on virtualization. In future we
plan to have similar performance evaluations and comparisons
for Open Stack, one of the emerging open source cloud middle-
ware.

ACKNOWLEDGMENT

The authors would like to thank Ms. Farah Amjad, research
assistant Information Technology University, Lahore, Pakistan
for her helpful comments and suggestions.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[2] Z. He and G. Liang, “Research and evaluation of network virtualiza-
tion in cloud computing environment,” in Networking and Distributed
Computing (ICNDC), 2012 Third International Conference on. IEEE,
2012, pp. 40–44.

[3] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[4] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual switching
in an era of advanced edges,” in 2nd Workshop on Data Center–
Converged and Virtual Ethernet Switching (DC-CAVES), 2010.

[5] N. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 54, no. 5, pp. 862–876, 2010.

[6] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
Communications Surveys Tutorials, IEEE, vol. 15, no. 2, pp. 909–928,
Second 2013.

[7] H.-M. Tseng, H.-L. Lee, J.-W. Hu, T.-L. Liu, J.-G. Chang, and W.-C.
Huang, “Network virtualization with cloud virtual switch,” in Parallel
and Distributed Systems (ICPADS), 2011 IEEE 17th International
Conference on. IEEE, 2011, pp. 998–1003.

[8] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with sr-iov,” Journal of Parallel and
Distributed Computing, vol. 72, no. 11, pp. 1471–1480, 2012.

[9] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee, “No more middle-
box: integrate processing into network,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 4, pp. 459–460, 2010.

[10] Q. Duan, “Modeling and performance analysis on network virtualization
for composite network-cloud service provisioning,” in Services (SER-
VICES), 2011 IEEE World Congress on. IEEE, 2011, pp. 548–555.

[11] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-oriented
network virtualization toward convergence of networking and cloud
computing,” Network and Service Management, IEEE Transactions on,
vol. 9, no. 4, pp. 373–392, 2012.

[12] D. Kakadia and V. Varma, “Network virtualization platform for hybrid
cloud,” in Cloud Computing Technology and Science (CloudCom), 2013
IEEE 5th International Conference on, vol. 2. IEEE, 2013, pp. 69–74.

[13] J. Soares, J. Carapinha, M. Melo, R. Monteiro, and S. Sargento,
“Resource allocation in the network operator’s cloud: A virtualization
approach,” in Computers and Communications (ISCC), 2012 IEEE
Symposium on. IEEE, 2012, pp. 000 800–000 805.

[14] G. Wang and T. E. Ng, “The impact of virtualization on network per-
formance of amazon ec2 data center,” in INFOCOM, 2010 Proceedings
IEEE. IEEE, 2010, pp. 1–9.

[15] “Citrix XenServer 6.0 Virtual Machine Installation Guide,” http://
docs.vmd.citrix.com/XenServer/6.0.0/1.0/en gb/guest.html, 2014, [On-
line; accessed 29-June-2014].

767

