

DIANA Scheduling Hierarchies for Optimizing Bulk Job Scheduling

Ashiq Anjum1, 3, Richard McClatchey1, Heinz Stockinger2, Arshad Ali3,
Ian Willers4, Michael Thomas5, Muhammad Sagheer 3, Khawar Hasham3, Omer Alvi3

1 CCS Research Centre, University of the West of England, Bristol, UK
2 Swiss Institute of Bioinformatics, Lausanne, Switzerland

3 National University of Sciences and Technology, Rawalpindi, Pakistan
4 CERN, European Organization for Nuclear Research, Geneva, Switzerland

5 California Institute of Technology, Pasadena, California, USA

Abstract

The use of meta-schedulers for resource management in
large-scale distributed systems often leads to a hierarchy
of schedulers. In this paper, we discuss why existing
meta-scheduling hierarchies are sometimes not sufficient
for Grid systems due to their inability to re-organise jobs
already scheduled locally. Such a job re-organisation is
required to adapt to evolving loads which are common in
heavily used Grid infrastructures. We propose a peer-to-
peer scheduling model and evaluate it using case studies
and mathematical modelling. We detail the DIANA (Data
Intensive and Network Aware) scheduling algorithm and
its queue management system for coping with the load
distribution and for supporting bulk job scheduling. We
demonstrate that such a system is beneficial for dynamic,
distributed and self-organizing resource management
and can assist in optimizing load or job distribution in
complex Grid infrastructures.

1. Introduction

The Grid concept was created to facilitate the use of

available distributed resources effectively and efficiently.
The first step needed before one can utilize the Grid for
running jobs is to locate and use (the best) resources
available to serve those jobs i.e. resource scheduling.
Applying the concept of P2P systems to resource
scheduling, can lead to efficient resource utilization.
Existing scheduling systems e.g. [1][2], are often based
on the client-server architecture with one or several
meta-schedulers [3][4] on top of independent local
schedulers such as LSF, PBS etc. Each local scheduler
can collect information and can schedule the jobs within
its own managed site. Typically, these local schedulers
cannot schedule jobs to some other available site.

Peer-to-Peer (P2P) scheduling systems on the other
hand can provide environments where each peer can
communicate with all other peers to make “global”

decisions, can propagate their information to other peers,
and can control their behaviour through this information.
This feature should make scheduling decisions more
efficient. In contrast to this P2P approach, centralized
scheduler management can be problematic in several
ways since load balancing, queue management, job
allocation, policies etc. are central and are typically
managed by a (single) central meta-scheduler and might
not be fault tolerant. Note that by client server
architecture, we do not mean here a tier system which
uses various tiers, which are clients of each other, to
scale up the client server behaviour. Each tier is not
scaleable if treated in isolation.

Our intention is to incorporate a P2P approach so that
schedulers do not take global decisions at a single central
point, but rather many sites participate in the scheduling
decisions. Each site should have information on load,
queue size etc., should monitor its processing nodes and
then propagate this information to other peers. Local and
certain global policies could be managed at the site level
instead of a central hierarchical management. As a result,
the P2P behaviour can become an important architectural
model for fault tolerant, self-discoverable and
autonomous global resource scheduling.

Schedulers may be subject to failure or may not
perform efficient scheduling when they are exposed to
millions of jobs having different quality of service needs
and different scheduling requirements. They may not be
able to re-organize or export scheduled jobs which could
result in large job queues and long execution delays. For
example in High Energy Physics (HEP) analysis a user
may submit a large number of jobs simultaneously (this
being referred to as bulk job scheduling), and the
scheduling requirements of bulk jobs may well be
different to those of singly queued jobs. In bulk job
submission by a single or multiple users at a particular
site it might become impossible for a local scheduler to
serve all the jobs without using some job export
mechanism. In the absence of this mechanism, it is

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

possible that some of the jobs might be lost by the
scheduler. What is required is a decentralized scheduling
system which not only automatically exports jobs to its
peers under potentially severe load conditions (such as
with bulk jobs), but at the same time it manages its own
scheduling policies, whilst queuing jobs and monitoring
network conditions such as bandwidth, throughput and
latency. The queuing mechanism that is needed at each
scheduling peer should follow a recognised management
scheme. It should associate priorities to each job inside
the queue, depending on the user profile and job
requirements with the scheduler servicing high priority
jobs preferentially to optimise Grid service standards. In
this paper, we explain the functionality of a P2P meta-
scheduler and present its scheduling and queue
management mechanism and demonstrate the advantages
and drawbacks of such a system implementation.

2. Hierarchy of Schedulers

 A meta-scheduler coordinates communication

between multiple heterogeneous local schedulers that
typically manage clusters in a LAN environment (cf.
Figure 1). In addition to providing a common entry point,
a meta-scheduler also enables global access and
coordination, whilst maintaining local control and
ownership of resources through the local schedulers. The
fundamental difference between a meta-scheduler and
local schedulers is that a meta-scheduler does not own
the resources and has no autonomy in its decisions.
Therefore, the meta-scheduler does not have total control
over the resources. Furthermore, a meta-scheduler does
not have control over the set of jobs already scheduled to
a local scheduler (also referred to as local resource
management system). This lack of ownership and control
are the sources of many of the problems to be solved in
the meta-scheduling domain.

Fig. 1: No communication between meta-schedulers

In this example local and meta-schedulers form a
hierarchy and individual schedulers sit at different levels
in the hierarchy. Each local scheduler can cooperate and
communicate with its siblings through a meta-scheduler,
however each meta-scheduler cannot communicate with
other meta-schedulers of other sites or Grids as shown in
Figure 1. Communication is only possible between local
schedulers and the meta-scheduler.

A user submits a job to a meta-scheduler (local to the
user, typically at the same site) which in turn contacts a
local scheduler. A particular meta-scheduler considers
only its own managed sites to schedule the job and does
not look around for other sites managed by other
schedulers to distribute load and to get the best available
resources. The jobs are scheduled centrally irrespective
of the fact that this may lead to a poor quality of service
due to long queuing and scheduling delays. Hence, the
architecture with non-communicating meta-schedulers
can lead to inefficient usage of Grid resources. Further,
in this architecture the meta-scheduler schedules the job
on its site, cannot communicate with the sibling meta-
schedulers and hence does not consider the underlying
network and data transfer costs between the sites. This is
one of the reasons that almost all Grid deployments have
at most only a few meta-schedulers and that any two
cannot communicate and interoperate with each other. In
contrast, in this paper we discuss the DIANA scheduling
algorithm and how it is achieved through a P2P meta-
scheduling hierarchy, and describe the underlying
mathematical and implementation details for managing
queue and load balancing in the DIANA meta-scheduler.

This approach is not simply an ‘all-to-all’
communication. The nodes are managed by local
schedulers which report to the site meta-schedulers. The
site to site communication is in essence a P2P
communication between meta-schedulers. Each meta-
scheduler maintains a table of entries about the status of
the local schedulers, the queue length, jobs in execution
mode, and the nodes managed by them which is updated
in real time when a node joins or leaves the system.
When a user submits a job, the site meta-scheduler
communicates within the local scheduler to find the
suitable resources. If the required resources are not
available within the site, it contacts the meta-schedulers
of other sites in the virtual organisation (VO) which have
suitable resources. This approach is thus not just all-to-
all communication and involves a reduced set of message
passing between the meta-schedulers. Furthermore,
communication between the meta-schedulers is not very
frequent, meta-schedulers communicate only after fixed
intervals to update the status of their resources to each
other. A meta-scheduler might also require to
communicate if a group of jobs at a site needs to be
exported to a site having better resources. Therefore, this
meta-scheduler communicates with other meta-
schedulers for load evaluation and cost determination for
job submission to that remote site.

3. Meta-scheduling with DIANA

It is important in Grid systems to have a distributed

meta-scheduler, which implements the features discussed
in Section 2, and that site meta-scheduler instances

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

should interoperate and communicate with each other,
should be fault tolerant and self organizing and should
make network aware (which includes network
characteristics in the scheduling decisions) data intensive
decisions. In addition to being network-aware, the meta-
scheduler should avoid making centralized decisions. It
should communicate and share the information with all
other meta-schedulers so that Grid resources are well
evaluated and utilized.

DIANA is a Data Intensive and Network Aware meta-
scheduler which performs global meta-scheduling in a
local environment, typically in a LAN. In DIANA, we do
not use independent meta-schedulers but use a set of
meta-schedulers that work in a P2P manner. Each site
has a meta-scheduler that can communicate with all other
meta-schedulers on other sites as shown in Figure 2. The
scheduler is able to discover other schedulers with the
help of a P2P discovery mechanism [5]. We do not
replace the local schedulers in this architecture, rather we
have added a layer over each local scheduler so that site
meta-schedulers can talk directly to each other instead of
getting directions from a central global meta-scheduler.

Fig. 2: P2P Communication between Schedulers

A meta-scheduler can thereby obtain information from
any other site and can make global decisions. Local
information includes processing power, memory, site
load, and queue length and network capability. The
meta-scheduler will make scheduling decisions based on
three essential factors: the network cost, the computation
cost and the data transfer cost [6]. It can communicate
with other meta-schedulers and may transfer jobs to
other sites. It may transfer a job along with its required
data to a remote site, consequently it should also
consider the estimated transfer time of the job and data to
that particular remote peer. Before making the
scheduling decision, it should also consider the estimated
computing capabilities of remote peers. Hence, the job
will be submitted to the site with the least total cost.

In DIANA, the P2P behaviour is complemented by a
discovery service. This discovery service maintains a list
of available/alive peers in different ways. One way is
that whenever a peer meta-scheduler is introduced to the
network, it will inform the discovery service about its
availability and when a peer is properly shutdown, it will
update the discovery service about its new status. This

leads to the question: what would happen if a peer
suddenly went down without informing the discovery
service? In order to cope with this issue, the discovery
service uses an echo request/reply communication with
the peers currently available in the list. The peer which
does not reply is simply removed from the list. Each
meta-scheduler site periodically contacts a discovery
service to collect the updated information about the
available peers. After getting this information, the peers
start communicating with other meta-scheduling peers
and update their local repositories with this information.

Fig. 3: Queue and DIANA Meta-Scheduler Instances

4. Queue Management

In conventional client-server scheduling architectures,

local schedulers handle their queues at the site level
whereas a meta-scheduler has a global queue at some
central location. However, in the DIANA architecture,
there is one DIANA meta-scheduler at each site, i.e. the
DIANA P2P meta-scheduler layer sits on the top of one
or many local schedulers at each site. In client-server
architecture such as the one used by the gLite meta-
scheduler, there is only one large queue at the meta-
scheduler with local queues at each site. However, in the
proposed P2P architecture each site meta-scheduler has
knowledge about the local queue (s) plus a global queue
which is managed by the DIANA layer. This leads to a
scalable and self-organizing meta-scheduling behaviour
which was missing in some of the conventional client-
server scheduling architectures.

Each meta-scheduler has a queue management
mechanism where it can queue the incoming jobs in a
Scheduler Queue as shown in Figure 3, and the meta-
scheduler assigns priorities to the incoming jobs. In Grid
scheduling we have “user quotas” (user quota is the
number of jobs a user can submit within a definite period
of time), network characteristics, data locations and
securely granted user privileges and therefore, each
meta-scheduler needs to maintain its queue according to
these criteria.

Before migrating a job, questions need to be answered
such as:

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

• “What is the queue length on the target site?”
• “Can the target site execute the job quicker than the

current site?”
• “If the job is migrated to another site, what will be the

job priority on the remote site?”
• “How many jobs are ahead of this job in terms of

priority?”

Fig. 4: Queue Management in DIANA P2P Meta-

Scheduler
These considerations can have a significant effect on

Grid performance. Figure 4 illustrates this queue
management issue in the DIANA meta-scheduler. At
each site there are two queues. One is the DIANA queue
and the other is the queue of the local resource
management system. Only the jobs from the DIANA
meta-scheduler queue are exported to other sites. In
contrast, once a job is allocated to a local scheduler at a
site, it is never exported and waits in the local queue
until assigned to a processor. All the prioritization of
jobs, policy enforcement, migration and job steering
issues are handled at the DIANA P2P level whereas the
local scheduler works exactly in the same fashion as
before once the job has been allocated to it.

5. Scheduling Algorithm

There are two scheduling schemes that the proposed

algorithm will use: a Normal Scheduling Scheme and
Job Migration (see Section 6). The Normal Scheduling
Scheme is applicable to those jobs which have arrived
for scheduling for the first time and have not, as yet,
been migrated. Here, the meta-scheduler consults its
peers, collects information about the peers (including
network, computation and data transfer) and selects the
site having minimum cost. It selects whichever site is the
best site for its execution based on this cost estimation
scheme. The meta-scheduler deals with both
computational jobs and data intensive jobs using the
DIANA meta-scheduling algorithm:
1. In the case of computational jobs (i.e. the job requires

mainly CPU time), the meta-scheduler should schedule
a job to the site where the computational cost is a

minimum. At the same time, we have to transfer the
job’s files so that the job can be transferred as quickly
as possible. The job might also require some input data
which suggests selecting a site which has better
network capacity (i.e. highest response time and lowest
latency). Therefore, the meta-scheduler will select the
site with minimum computational cost and but also
takes into account the data transfer cost.

2. In the case of data intensive jobs, our preferences will
change. In this case our job has more data and fewer
computation requirements, and we need to identify the
site where data can be transferred quickly and where
computational cost is also low. In this case, data
location will play an important role since data the
transfer cost will be the key element in such a
scheduling decision.

3. In most cases jobs are at the same time both compute
as well as data intensive and will most likely follow
the third category of the algorithm. In the third
category the algorithm considers compute cost,
network cost, data location and data transfer costs, and
the site having minimum aggregate cost is selected for
job execution.

 6. Job Migration Algorithm

Consider a scenario in which a user submits a job to a

meta-scheduler which places the job in a queue. If the
queue management algorithm (see Section 7) of the
meta-scheduler decides that this job should remain in the
queue, it may have to wait some time before it gets
scheduled or before migration to another site. The Queue
Management Module of the meta-scheduler will ask the
Scheduling Module to migrate this job. One important
point to be noted here is that we want to locate the site
where this job can be executed earliest. Consequently,
our peer selection criterion is based on two things: a
minimum queue length and a minimum cost to execute
this job on the remote site. The meta-scheduler will
communicate with its peers and will ask about their
current queue length and the number of jobs ahead of
this job. The site with the minimum queue length and
minimum total cost is considered as the best site to
where the job can be migrated.

Firstly, the algorithm will get the information about the
available peers from the discovery service. Then it will
communicate with each peer and collect the peer’s queue
length, the total cost and number of jobs ahead in terms
of job priority. Then it will determine the site with the
minimum queue length and the minimum jobs ahead. If
the number of jobs and the total cost of the remote site is
higher than the local cost, then this job is scheduled to
the local site (i.e. it will not be migrated). If other sites
are congested then there is no benefit in migrating the
job, and that job will remain in the local queue and will
eventually be served on the local site. Otherwise, the job

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

is moved to the remote site, subject to a cost mechanism.
Note that the DIANA meta-scheduler does not consider
each job for export process rather a group of jobs is
exported to a remote site which can significantly save the
execution time on the remote site. It will not be cost
effective to poll the remote peers and collect the queue
and cost information for each job. This process is only
carried out for bulk jobs or groups of jobs which are
likely to take more time on their local sites. Furthermore,
this will reduce communication traffic between the peers
since all peers are polled only after some intervals when
jobs at the sites need to be exported. Otherwise if all
peers are polled for each job, this would significantly
increase the communication traffic between peers.

7. Queue Management for Bulk Scheduling

In DIANA we propose a multi-queue, feedback-
oriented queue management approach for bulk job
scheduling. Users may send jobs in a burst, and the
meta-scheduler has to place all these jobs in queues after
assigning priorities. We must ensure that the priority of
the jobs decreases as the number of jobs in the queues
from a particular user increases. This is important
otherwise a single user may send thousands of jobs in a
burst and thereby improve the priorities for all his jobs.

 In a typical scenario, when a user submits a job at a
site for execution, the job is first placed in one of the
queues managed by the queue management module of
the meta-scheduler. A reprioritization algorithm may
result in the migration of jobs from low priority to high
priority queues or from high priority to low priority
queues. The reprioritization technique eliminates the
need for aging since the jobs are assigned new priorities
on the arrival of each new job, and each job gets its place
in the queues according to its new circumstances.

In the case of congestion at the site, the queue
management algorithm will migrate the jobs to any other
remote site where there are fewer jobs waiting in the
queues. Note that only low priority jobs are migrated to
remote sites since low priority jobs will have to wait for
a long time in the case of congestion. Knowing the
arrival rate (job submission rate) and service rate (job
execution rate) of the jobs, we can decide whether or not
to migrate the job to some other site. The formula [7] to
decide whether there is congestion in the queues or not is
simply:

If ((Arrival Rate – Service Rate) / Arrival Rate) > Thrs

where Thrs is the threshold value configurable by the
administrator. If we increase Thrs, then this means that
the arrival rate exceeds the service rate and we allow
more jobs in the queues. In any case this value will lie in
the [0, 1] interval. Taking this, we can now explain the
queue management algorithm. The job’s place in the
queue will be determined by the priority associated with
the job, which is calculated by taking into account the

quota of the user submitting the job, the execution time
required by the job and the threshold on the number of
jobs by a user.

Each queue will contain jobs having priorities falling
in its specified priority range. According to our priority
calculation algorithm, the priority of all the jobs will be
in the interval [-1, 1] where -1 indicates the lowest
priority and 1 indicates the highest priority. In the
process of selecting the job’s position in the queue, we
place the jobs in descending order of their priorities i.e.
the highest priority job will be placed first in the queue
and the same order is followed for the rest of the jobs.

Suppose ‘n’ is the total number of jobs of the user in
all queues, including his new job. Let the new job require
‘t’ processors for the computation and ‘T’ be the total
processors (including ‘t’) required by all the jobs present
in all queues. We denote the quota of the user,
submitting the new job, by ‘q’ and the sum of the quotas
of all the users, currently having their jobs in the queues
including ‘q’, by ‘Q’. Therefore, if the new user has
already some jobs in the queues, ‘q’ will appear just once
in ‘Q’. Let ‘L’ be the sum of lengths of all queues, i.e.
the total number of jobs present in all queues including
the new job. Thus, if there are already 1500 jobs in the
queues when 100 new jobs arrive, L = 1600. To assign a
new job a place in the queue, we associate a number to it.
This number is called the “priority” of the job and has its
value in the interval [-1, 1]. The rule is that “the higher
the priority, the better placed the job will be”. Obviously,
if priority is in the range [0,1], it will be considered
good. To attain a good priority we must meet the
following two constraints:

T
t

L
and

Q
q

L
n

≥≤
1 ……... (1) or

 ()
Q

Lq
n

×
≤ and

t
TL ≤ …….. (2)

Combining these inequalities (1) and (2), we get

()
()tQ

Tq
n

×
×

≤
……………... (3)

We denote ()
()tQ

Tq
×

× by ‘N where ‘N’ represents the

threshold and is clearly dynamic. For each job, its value
will be different. If a user’s number of jobs in the queue
crosses this threshold then the priority of the jobs
crossing the threshold ‘N’ must be lowered. The
following algorithm calculates the priority of the new
job:
 If(n <= N)

 Pr(n) = (N – n) / N
 Else
 Pr(n) = (N – n) / n

where Pr(n) denotes the priority of the new job. On the
arrival of each job, the priorities of all the other jobs will

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

be calculated again. This technique is known as
reprioritization. The reason for doing this that we want
to make sure that the jobs encounter minimum average
wait time and the most ‘deserving’ job in terms of quota
and time is given the highest priority. Moreover, by
using this strategy we do not need to worry about the
starvation problem and there is no need for aging since
jobs are reorganized on the arrival of each new job.

8. Results and Discussion

We present here a performance comparison conducted

using the DIANA P2P meta-scheduler which is a Web
service and uses a Grid services framework called
JClarens [8] to deploy this service.

We implemented a classical scheduling algorithm
which works in a round-robin manner to compare it with
the DIANA P2P meta-scheduler for job scheduling on
various sites. Henceforth, we will refer to it as a ‘Round
Robin Scheduler’ or ‘Simple Scheduler’.

For simplicity we have used our own test Grid (rather
than a production environment) to obtain results since a
production environment requires the installation of many
other Grid components that are not required for our
experiments. We used five sites located in Pakistan
(NUST), Switzerland (CERN) and the UK (UWE) for
the purposes of our tests. Site 1 has four nodes, and the
remaining four sites have five nodes each.

Two types of jobs are used in these experiments. One
type of job is compute intensive which is a simple prime
number calculator (between a specified range) and the
other is data intensive physics analysis job which
requires large amounts of data as input but performs
computation over this data as well.

8.1 DIANA With Single Queue

In our first experiment, we submitted 1000 compute
intensive jobs and calculated their execution times.
Condor is used as a local scheduler for all of our tests.
The execution time includes the time required to
schedule and execute the job to one of the ‘best sites’
plus the time required in sending the data and job to that
remote site. The scheduling decision made by DIANA
in this experiment is independent of the queue
mechanism (Shortest Job First (SJF) or Priority based
queue) and therefore the first experiment uses a single
queue.

As shown in Figure 5, the DIANA P2P meta-scheduler
has a significantly better execution time compared to the
‘Round Robin Scheduler’ algorithm. We then calculated
the queue times of the jobs (cf. Figure 6) to compare how
effectively DIANA can reduce the wait time. The queue
time here is the sum of the time in the meta-scheduler
queue and the time spent in the queue of the local
resource manager. Sometimes the queue time is even
greater than the execution time if the resources are scarce

compared to the job frequency. In this case compute
intensive bulk jobs are placed in the queue before the
DIANA meta-scheduler allocates them to the appropriate
sites. The queue is maintained on a FCFS basis.

Job Execution Time Comparison between DIANA P2P and Simple
Scheduler

0
20
40
60
80

100
120
140

100 250 500 700 1000
No of Jobs

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

With Simple
Scheduler

With DIANA
P2PScheduler

Fig. 5: Execution Times

Fig. 6: Queue Times

8.2 DIANA With Multiple Queues

After this we submitted a set of jobs to calculate the
job execution time with a SJF Queue Mechanism. These
compute intensive jobs are similar with respect to their
prime number requirements but they are different with
respect to their inputs since each job has a different input
range. These jobs are of varying processor requirements
such as 8, 17, 26, and 35. The job demanding 8
processors has an input range 1-19999, 17 processors job
has an input range 1-99999, 26 processors job has an
input range 1-444444, and 35 processors job has input
range 1-555555.

All jobs are submitted to the scheduler, which arranges
them in its queue in an SJF manner on the basis of the
job’s processors requirement. In the comparison graph
of Figure 7, it is clear that the performance (i.e. the
execution time of jobs) gained via DIANA is much better
than that of the ‘Round Robin Scheduler’ algorithm. The
reason behind this is that DIANA worked on a SJF basis
which reduces the total execution time since short jobs
do not have to wait for long jobs. Similarly, the DIANA
P2P meta-scheduler with its multi-queue priority
mechanism has a better execution time compared to the
‘Simple Scheduler’ algorithm. Multi-queues not only
enable the ‘short job first’ execution but also manage the
queues on a priority basis, and this mechanism has

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

significantly reduced the total execution times. From the
data collected in these experiments, we can easily decide
which approach is best in terms of job execution time.
From Figure 7 it is clear that our priority driven approach
results in more efficient execution time than other
approaches.

Job Execution Time comparison between three techniques

0
20
40
60
80

100
120
140

100 250 500 700 1000
No of Jobs

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

With Priority
Calculation
With SJF

With Simple
Scheduler

Fig. 7: Execution time Comparison

Effect of Bandwidth over Execution Time

0
500

1000

1500
2000
2500
3000
3500

10 61 90 150 250 500 10000
Bandwidth in (Mbps)

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(m
in

s)

100 Jobs

200 Jobs

300 Jobs

500 Jobs

600 Job

1000 Jobs

Fig. 8: Execution times vs. Bandwidth

8.3 Data Intensive Jobs and Network Issues

The rest of the results are related to network issues and
have more impact on data intensive jobs than compute
intensive jobs. In this experiment, we submitted the same
number of jobs to different sites with different network
conditions. The bandwidth varied from 10 Mbps to 1000
Mbps so that we can gauge its effect on the job execution
time. We used Iperf to generate the extra network traffic
and saturate the network so that available bandwidth can
vary from 10 to 1000 Mbps. In these tests we show the
effect of bandwidth on the execution time of the job. The
data size is 10 GB and is the same for all jobs.

We see that bandwidth plays a vital role in scheduling
decisions. The ‘Round Robin Scheduler’ algorithm will
schedule the job to one of the sites without consulting the
network conditions of that site. This approach will cause
the user additional wait time since more time is
consumed in transferring the executable and the data. In
our proposed approach, before making any scheduling
decisions for data intensive jobs, the network and
bandwidth parameters are considered to select the best
sites and we can see the impact of this approach in
Figure 8. A lower bandwidth can often result in higher
network costs, and the increase in network cost also
affects the overall performance of the distributed system.
Figure 8 is the comparison of different network costs
against the execution time. Bandwidth is the only

significant parameter in the network cost therefore we
draw the execution time against the bandwidth.

8.4 Scalability Tests

In conclusion we present here the results of the
scalability tests for the DIANA scheduling approach.
These are simulation results since it was not feasible to
deploy the DIANA system on such a high number of
sites. In these tests, we assumed that there is a meta-
scheduler on each node (here, a node corresponds to a
site), and all the nodes work in a P2P way.

As shown in Figure 9, the number of nodes/sites and
the number of jobs scheduled to the Grid was increased
gradually to test which algorithm gives the steepest
increase in time taken. An exponential increase is "bad"
behaviour and shows that the algorithm is not scalable.
In this test, jobs of a processing requirement of 3
MFLOP and a bandwidth load of 1 MB are launched to
the Grid.

Test for Scalability

0

1000

2000

3000

4000

5000

20 48
0

94
0

14
00

18
60

23
20

27
80

32
40

37
00

41
60

46
20

Number of Nodes

Ti
m

e
Ta

ke
n/

s

Round Robin
FLOP Based
Bw-FLOP Based

 Fig.9: Scalability of the DIANA approach

The ‘Round Robin Scheduler’ algorithm has a steep
linear curve showing that it is the most unscalable of the
candidates. FLOP ((Floating Point Operations per
Second) is a common measurement for the
computational capability of a computer. A FLOP based
algorithm could be considered as being completely
opposite to the ‘Round Robin Scheduler’ algorithm,
since it tries to gain complete knowledge about the
current state of resources so that it can schedule jobs to
the most powerful available machine, guaranteeing the
quickest possible runtime. FLOP shows far too much
variation in this case, although it clearly is more scalable
than round robin. The DIANA P2P approach has the best
performance; it shows a nearly linear increase, and hence
it is very scalable. This also demonstrates that DIANA is
a suitable approach for large scale Grids and it can
support increasing numbers of Grid nodes.

9. Related Work and Conclusions

Much work has been carried out in the domain of Grid

scheduling but research in bulk scheduling and P2P
scheduling for the Grid domain is relatively sparse. Prem
et al. [9] present a P2P framework for the Grid but there

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

is little work available on the queue management
mechanism and their framework does not cover data
intensive bulk scheduling. The CoreGRID Project [10]
has worked for fault tolerant scheduling but they tackle
mostly the compute operations whereas in DIANA we
aim for data intensive scheduling. The DIANA P2P
architecture is very much closer to the Napster
architecture but Napster [11] is a P2P file sharing system
whereas DIANA provides Grid enabled data intensive
job scheduling. In the adaptive scheduling scheme [12]
for data intensive applications, Shi et al, consider
bandwidth as the only parameter for calculating data
transfer cost. Moreover, they consider a deadline based
scheduling approach, and the bulk scheduling issue is not
covered. We have shown that other additional parameters
not only need consideration in data intensive scheduling
but that queues can be optimized by including these
parameters in the decision criteria. The European Data
Grid (EDG) Project has created a resource broker which
is an extended and derived version of Condor but this is
subject to the same issues and problems as Condor [13]
itself. Although the problem of bulk scheduling has
begun to be addressed in the most recent version of gLite
the approach taken does not address network aware
scheduling. Elmroth and Peterg [15] describe a Grid
wide fair share scheduling system for local and global
policies. They feature quota based scheduling and
multilevel queues, although they do not consider
reprioritisation, and it was not P2P oriented. The
GridWay Scheduler [14] provides dynamic scheduling
and opportunistic migration but its information collection
and propagation mechanism is not robust, and it has not
as yet been exposed to bulk job scheduling. The Gang
scheduling [16] approach provides bulk scheduling by
allocating similar tasks to a single location but it is
tailored towards parallel applications working in a cluster
whereas we are considering the meta-scheduling of the
data intensive jobs submitted in bulk.

Our results indicate that considerable optimization can
be achieved by applying P2P approaches to bulk
scheduling. We have demonstrated that a scheduling
cost-based approach can significantly improve the
scheduling process if each job is submitted and executed
after taking into consideration associated costs. Further
details can be found in [6]. Our results demonstrate that a
P2P meta-scheduler is better suited to Data Intensive and
Network Aware (DIANA) scheduling than a single,
centralized meta-scheduler. This paper demonstrated that
if queue, priority and job migration are included in the
bulk scheduling algorithm, the same algorithm could be
used for the scheduling of bulk jobs. As a result, a multi-
queue, priority-driven feedback based bulk scheduling
algorithm is proposed and the results suggest that it can
significantly improve the Grid scheduling and execution

process. This not only reduces the overall execution and
queue times of the jobs but also helps avoid resource
starvation as well as creating a next generation
scheduling platform for self organizing and decentralized
scheduling of data intensive bulk jobs.

References

[1] H.Daily et al. A Decoupled Scheduling Approach for the
GrADS Program Development Environment, Supercomputing
2002,Baltimore, Mayland, November 16-22, 2002.
[2] R. Buyya, D.Abramson, and J. Giddy., Nimrod/G: An
Architecture of a Resource Management and Scheduling
System in a Global Computational Grid, HPC Asia 2000,
Beijing, China, , 2000
[3] V.Hamscher, U.Schwiegelshohn, A.Streit, R.Yahyapour,
Evaluation of Job-Scheduling Strategies for Grid
Computing,Workshop Grid 2000 at 7th International
Conference on High Performance Computing (HiPC-2000),
Bangalore, India, LNCS.
[4] G. Sabin & P. Sadayappan, On Enhancing the Reliability of
Job Schedulers, High Availability and Performance Computing
workshop in conjunction with LACSI 2005,Santa Fe, New
Mexico.
[5] A. Ali, et al. Predicting resource requirements of a job
submission, Computing in High Energy Physics, Interlaken,
Switzerland, 2004.
[6] R. McClatchey et al. Data Intensive and Network Aware
(DIANA) Grid Scheduling, Under final review at the Journal of
Grid Computing, Springer Publishers 2006.
[7] J. H. Dshalalow, On applications of Little's formula, Journal
of Applied Mathematics and Stochastic Analysis, 6(3):271-275,
1993.
[8] J. Bunn, et al. JClarens. A Java Framework for Developing
and Deploying Web Services for Grid Computing, IEEE
International Conference on Web Services, 2005.
[9] P. Uppuluri, N. Jabisetti, U. Joshi, Yugyung Lee, P2P Grid:
Service Oriented Framework for Distributed Resource
Management, IEEE International Conference on Services
Computing, 2005.
[10] G. Wrzesinska, et al. Fault-tolerant Scheduling of Fine-
grained Tasks in Grid Environments. International Journal of
High Performance Computing Applications, Feb. 2006.
[11] http://www.napster.com/
[12] H. Jin, X. Shi, et al. An adaptive Meta-Scheduler for data-
intensive applications, International Journal of Grid and Utility
Computing 1(1):32–37, 2005.
[13] J. Frey, et al. Condor-G: A Computation Management
Agent for Multi-Institutional Grids, IEEE Symp. on High
Performance Distributed Computing, San Francisco, 2001.
[14] E. Hudo, R. S. Montero, & I. M. Llorente, “The GridWay
Framework for Adaptive Scheduling and Execution on Grids
Scalable computing: practice and experience (SCPE,), 2005.
[15] E. Elmroth & P. Gardfjall, 2005. Design and Evaluation of
a Decentralized System for Grid-wide Fairshare Scheduling. In
First international Conference on E-Science and Grid
Computing 05
[16] P. Strazdins, J. Uhlmann, A Comparison of Local and
Gang Scheduling on a Beowulf Cluster, cluster2004 San Diego,
California

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

