
Context Parsing, Processing and Distribution in Clouds

Saad Liaquat Kiani∗, Ashiq Anjum†, Nik Bessis†, Richard Hill† and Michael Knappmeyer‡,∗
∗Faculty of Engineering and Technology, University of the West of England, Bristol, UK

†School of Computing and Mathematics, University of Derby, Derby, UK
‡Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück, Osnabrück, Germany

Abstract—Context is information that describes the situ-
ations in which computing, social and physical interactions
take place. The complexity and scope of context information
available for utilization by context-consuming applications,
such as those executing on smart mobile devices, sensing
and tracking platforms, etc. is growing with the increased
integration of digital artifacts in smart environments. Similarly,
the uptake of Cloud computing has significantly influenced the
traditional information processing and infrastructure provi-
sion models by offering an agile, scalable and cost effective
computing paradigm. This is leading to the adoption of Cloud-
based solutions for the pervasive and ubiquitous environments;
however, there are significant challenges that need to be
overcome before its exploitation by real world applications
and users. The context information consumed and produced
by the applications and devices needs to be represented,
disseminated, processed and consumed by numerous compo-
nents in a context-aware Cloud system. Significant amount of
context consumption, production and processing takes place
on devices and there is limited or no support for collaborative
modeling, persistence and processing between the device-Cloud
ecosystems. In this paper we propose an environment for
context processing in a Cloud-based distributed infrastructure
that offloads complex context processing from the applications
and devices. An experimental analysis of complexity based
context-processing categories has been carried out to establish
the processing-load boundary. The results demonstrate that the
proposed collaborative device-Cloud infrastructure provides
significant performance and energy conservation benefits for
mobile devices and applications.

Keywords-context processing; distributed infrastructure;
Cloud computing;

I. INTRODUCTION

Context-aware systems have distinct functional elements

that perform the role of data acquisition, context synthesis,

context storage, context dissemination and coordination.

We label the functional roles of context dissemination and

coordination as context provisioning. Under this functional

task, the produced contextual information is communicated

between context consuming applications and context produc-

ing services. The context provisioning function deals with

making context information acquired by context providers
available to context consumers. Context consuming and pro-

ducing applications/services are usually assisted via context
servers or brokers within the context provisioning systems to

coordinate the flow of context queries and subscriptions and

responses or notifications. A context provisioning system

may also provide other services such as caching, reasoning

and storage of contextual information to increase the over-

all functional usability of the system. Context-consuming

applications usually aggregate simple context information

(location, time, etc.) about entities (users, devices, etc.)

into complex contextual information e.g. user activity. This

aggregation may involve varying levels of reasoning and

parsing of contextual data. While desktop based context-

consuming applications have adequate processing ability

available to for such purposes, the parsing, processing and

reasoning about contextual information presents a processing

burden to context-consuming applications deployed on smart

mobile devices. Context servers or providers usually carry

out the reasoning related processing, however the parsing,

querying and processing of is still carried out by the con-

text consumers. In this paper, we explore the possibility

of delegating such tasks from smart device based context

consumers to a Cloud-based service and evaluate the benefits

of the approach in terms of processing time improvement

and reduction in processing cost on such devices.

Our analysis of the focal issues is carried out within

the scope of the Context Provisioning Architecture [1],

which is a federated broker based system for provisioning of

contextual information from Cloud-based context providing

services to mobile and desktop based context consuming

applications. The collection and dissemination of contextual

information from Cloud-based services (context brokers and

providers) contribute to the notion of context-aware Clouds.

However, the consumption of context-information dissemi-

nated from the context-aware Clouds is expensive in terms of

processing and communication costs. Modeling and repre-

sentation of real world concepts into machine understandable

format, for reasoning and consumption by applications, is

a non-trivial task. Predominantly, semi-structured modeling

approaches have been used for this purpose e.g. XML based

schemas and Ontologies. Other, simpler approaches such

as name-value pairs are easier to implement, but do not

offer acceptable levels of expressiveness and the flexibility

required for modeling real world concepts. The complexity

involved in processing semi-structured data e.g. inference

of useful information from an XML based document, is

both time and space dependent. For example, the complexity

of XPath query processing increases with respect to both

the size of the query and the XML document containing

2011 Third International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4579-0/11 $26.00 © 2011 IEEE

DOI 10.1109/INCoS.2011.70

141

the information. Gottlob et al. [2] report that common

implementations of XPath engines require exponential time

with respect to the size of the queries in the worst case

and that even the simplest queries take quadratic time in

the size of the data. This complexity is significant in the

domain of context provisioning systems in which context

consuming and producing applications execute on smart

mobile devices. Although the technological capabilities of

such devices have increased rapidly in the last decade, they

are still and likely to remain weaker as compared to desktop

computing devices. Furthermore, another limitation is the

limited energy available to battery-powered smart mobile

devices and complex processing imposes an extra burden

on the finite energy resources of the devices.

A natural solution to the issue of parsing, processing and

distribution of context, is to offload such processing onto

resource-capable computing systems such as those hosted

in a Cloud infrastructure. But the additional communication

steps incur further costs in terms of time taken to process

information and energy used in communicating with Cloud

hosted processing services. The querying complexity and

document size boundary at which the offloading of query

processing starts being beneficial in terms of time and en-

ergy costs needs to be investigated. Furthermore, offloading

simple queries on small sized documents may not provide

time/energy conservation benefits as compared to complex

queries on large size documents. The relative benefits may

also vary due to different processing capabilities of hetero-

geneous devices and platforms. This article is targeted to-

wards addressing these issues and questions in our federated

broker based Context Provisioning Architecture that utilizes

an XML schema based model for contextual information.

Specifically, our evaluation is focused on the processing of

contextual information represented in ContextML [3], which

is an XML based schema used for representation of control

messages and context information in the Context Provision-

ing Architecture. The answers to the issues discussed above

will provide an assessment of the degree of query complexity

and document size to be efficiently managed by modern

smart devices during context consumption and processing.

Furthermore, our approach presents a mechanism for context

provisioning within the Cloud infrastructure itself, support-

ing context-aware applications and services.

Before describing our context provisioning architecture

and the experimental framework that is used for studying

and evaluating the issues discussed above, we describe the

background and work related to the problem domain being

addressed in this paper in Section II. Description of the

salient features of the federated broker [1], [4] based context

provisioning system, including ContextML and Cloud based

Context Processing Service is provided in Section III. There-

after, Section IV describes the experimental evaluation of

offloading context processing from the device to the Cloud

service and discusses the experimental results of varying

scenarios, and the significance and impact is also provided.

We conclude this article in Section V, which also elaborates

the general future direction and specific targets that are

planned for further exploration of the issues discussed in

this article.

II. BACKGROUND AND RELATED WORK

Badidi and Esmahi [5] have proposed a Cloud-based

context provisioning system that focuses on quality of ser-

vice in the provisioning of contextual information. However,

their emphasis is on using Cloud-based decision making to

select appropriate context services for context subscribers,

and their system does not cater for the cost of processing

complex contextual information for context consumers. Xiao

et al. [6] have developed the CasCap framework, which

utilizes a Cloud-based function for offloading and adaptable

services to improve energy efficiency in data communica-

tion. However, CasCap is primarily a power management

framework that uses the device context information and

collaborates with Cloud services to provide efficient power

management for mobile devices. Korpipää et al. [7] have

specified some basic requirements for designing a contextual

model in terms of simplicity (for easy manipulation and

reasoning), flexibility (modification of existing concepts),

generality (range of concepts that can be modeled) and

expressiveness (encompassing the properties of the modeled

concepts). XML and Ontology based context modeling and

representation schemes generally provide adequate cover-

age of these properties, with each scheme having scenario

and usage dependent strengths and weaknesses e.g. XML

Schema based approaches are inherently simpler and light-

weight in comparison to ontology based approaches but lack

the generality offered by ontologies in terms of modeling

a wider spectrum of domain knowledge. In this article,

we will consider the processing of contextual information

represented using XML based schemas.

There are two predominant methods of processing XML

documents, Simple API for XML (SAX) and Document

Object Model (DOM) [8]. In the SAX approach, the parser

starts at the beginning of the source document and passes

each piece of the document to the application in the se-

quence it finds it. The application receives the parsed data

sequentially and it is not saved in memory. Hence any in-

memory manipulation of the data is not possible e.g. data

cannot be updated in memory and committed to the XML

document. A parser using the DOM approach creates a tree

of objects that represents the content and organization of data

in the document. The parsed tree exists in memory but in

this case the application can navigate through the whole tree

to access the data it needs, and if appropriate, manipulate it.

SAX parsers have certain benefits over DOM-style parsers.

Primarily, the amount of memory that a SAX parser must

use in order to function is typically much smaller than that

of a DOM parser. This is so because DOM parsers must have

142

the entire tree in memory before any processing can begin,

so the amount of memory used by a DOM parser depends

entirely on the size of the input data. The memory footprint

of a SAX parser, by contrast, is based only on the maximum

depth of the XML file (the maximum depth of the XML

tree) and the maximum data stored in XML attributes on a

single XML element. Both of these are always smaller than

the size of the parsed tree itself. Moreover, because of the

event-driven nature of SAX, processing documents is often

faster than DOM-style parsers. Memory allocation takes

time, so the larger memory footprint of the DOM is also

a performance issue. However, there are situations where

DOM-style parsers are comparatively more useful, e.g. some

kinds of XML processing simply require having access to

the entire document e.g. XSLT and XPath based processing

need to be able to access any node at any time in the parsed

XML tree. This aspect of the DOM approach makes it more

relevant to situations where the processing is to be carried

out based on the whole content of the document rather than

on a subset of elements e.g. XPath queries in ContextML

based documents. XPath [9], proposed by the World Wide

Web Consortium as a practical language for selecting nodes

from XML document trees, is an XML query language.

The role of XPath is at the core of several other XML-

related technologies, such as XSLT, XPointer, and XQuery.

However, a drawback of XPath based query processing is

that it leads to an exponential time complexity [2], [10].

The complexity of an XPath query is largely dependent

on the predicates and assertions specified in the query e.g.

attributes and elements to match, and the size/depth of

the document being processed. Efficient implementations

of XPath processing have been proposed in literature that

achieve to polynomial (combined) complexity [2]. However,

such improved implementations have not been integrated in

widely deployed XPath engines such as those available in

Java, Android and .NET platforms.

A consequence of the complexity of XPath processing is

that it is costly, in terms of time and space, to process large

documents and/or complex queries, especially on mobile

devices. Context data has a high degree of temporal sig-

nificance; a context datum may be valid at one point in time

and invalid at the next. Processing delays may invalidate the

integrity of processed information. Hence, it is important to

process contextual data as soon as possible and within the

temporal bounds of the data itself. The computational com-

plexity of executing XPath queries on mobile devices also

affects the limited energy resources. While processing and

storage capacity of mobile devices has continually increased

over the last decade, energy capacity has not followed a

similar trend and remains the limiting factor in the usability

of smart mobile devices as a dependable computational

platform. The significance of the limiting factor is evident

from the hardware and software mechanisms put in place

by the device manufacturers and platform developers for

the sole purpose of energy conservation. These include

dynamic CPU scheduling, dimming of displays during non-

use scenarios, adaptable radio transmission power, CPU-

wake lock based application execution etc. This issue is one

of the main thrusts of this paper and we aim to identify the

XPath query processing and offloading scenarios that lead

to energy conservation on mobile devices by reduction of

the processing burden. Before describing the experimental

framework to analyze the XPath query processing costs,

in terms of time and energy consumption, it is necessary

to describe our federated broker based context provisioning

system, titled the Context Provisioning Architecture, and the

ContextML scheme.

III. CONTEXT PROVISIONING ARCHITECTURE

A. Consumer-Broker-Provider Model

The Context Provisioning Architecture is based on the

producer (provider)-consumer model in which context re-

lated services take the roles of context providers or context

consumers. These basic entities are interconnected by means

of context brokers that provide routing, event manage-

ment, query resolution and lookup services. The following

paragraphs describe these three main components of the

architecture.

Context Consumer - A Context Consumer (CxC) is a com-

ponent (e.g. a context based application) that uses context

data. A CxC can retrieve context information by sending a

subscription to the Context Broker (CxB) or a direct on-

demand query and context information is delivered when

and if it is available.

Context Provider - The Context Provider (CxP) component

provides contextual information. A CxP gathers data from

a collection of sensors, network/Cloud services or other

relevant sources. A CxP may use various aggregation and

reasoning mechanisms to infer context from raw sensor,

network or other source data. A CxP provides context data

only to a specific invocation or subscription and is usually

specialized in a particular context domain (e.g. location).

Context Broker - A Context Broker (CxB) is the main

coordinating component of the architecture. It works as a

facilitator between other architectural components. Primarily

the CxB has to control context flow among all attached com-

ponents, which it achieves by allowing CxCs to subscribe

to context information and CxPs to deliver notifications.

A depiction of the core system components described

above is presented in Figure 1, emphasizing the complemen-

tary provision of synchronous and asynchronous context-

related communication facilities. A number of useful ap-

plications have been developed based on this architecture.

Further details of this architecture and industrial trials are

described in [11], [12].

Context consumers and providers register with a broker

by specifying its communication end point and the type

of context they provide or require. This in turn enables a

143

�������

�	
�

�	��

�����

������������

�
��

��
��
��

�

��
��
��

��
�

������������

�����������

�����������

�����������

Figure 1. Basic broker based context provisioning component interaction

brokering function in which the context broker can lookup

a particular context provider that a context consumer may

be interested in (e.g. based on the type of context being re-

quested). The broker can cache recently produced context, in

order to exploit the principle of locality of reference, as done

routinely in internet communications to improve overall

performance. A distinguishing feature of this architecture is

the federation of multiple context brokers to form an overlay

network of brokers Figure 2, which improves scalability of

the overall system and provides location transparency to the

local clients (CxCs and CxPs) of each broker. This federation

of context brokers is achieved with a coordination model

that is based on routing of context queries/subscriptions and

responses/notifications across distributed brokers, discovery

and lookup functions and is described in detail in our earlier

work [4].

�������
���

�������
���

�������
���

���	
��
������ �
����
���� ����������������!�

�����
��

����!��	��	���
����	������
��	

"��
���	��	������"��
����������

�

!��	��	���
�����
��	

"�
������"�

������

�
����!� �	#	�
	�
��
��	

"��
������ �����������
��������������������

�!��� ��!���!��� ��!��

�!��� ��!��

Figure 2. Simplified view of the federated broker based interaction

B. ContextML

ContextML is an XML based schema for the represen-

tation of contextual information. The defining principle in

ContextML is that context data relates to an entity and is of

a certain scope. The entity may be a user, a username, a SIP

or email address etc., and scope signifies the type of context

data e.g. weather, location, activity and user preferences.

The actual context information about scope is encoded

using named parameters, parameter arrays and complex pa-

rameter structures in ContextML elements. In addition to the

representation of contextual data, ContextML also contains

a specification for control messages between components,

subscriptions and notifications, component advertisements

and routing related messages that are utilized in the overall

system for coordination of context exchange. A parser,

titled the ContextML Parser, has been implemented as a

Java library for Java SE, EE and the Android platforms

that can be used by context producing and consuming

applications for the processing of contextual information

and other messages encoded in ContextML. The model of

the contextual data-related elements is depicted in Figure 3,

detailed discussion about various dimensions of ContextML

is presented in earlier work [3].

�����$���������� 	����$��
���������%�����&�

	����$��
���������%�����&�

	����$��
���������%�����&�

	����$�������

	����$������������

	

	

	

	

	 	����$�������

���������

����������������������������

�$�������������

�����������������������
������

�����������	����$��
����������

'���������������'�

'���������������'�

'����������(����

(����

(����

�

&

&�

�

'����

'�

'�

'�

'�

(��'�

'���������������'�

'�

'���������������'�

'�

	����$��
����������%�����&� �����

������

'�����������'�

'�

�����(��'�

	����$��
����������%�����& �����

������

�����

' '

'�

(��''

(��'�

	����$��
��������

' '

'�

'

(��''

Figure 3. ContextML model of the ctxEl element

C. Context Processing Service

As discussed above, CxCs request context by subscribing

with their CxBs. The CxBs look up the relevant CxPs and

forward the subscriptions to the CxPs, which reply with the

context data satisfying the particular context subscription.

The CxBs maintain subscription tables and hence can for-

ward incoming notifications to the subscribing consumers. A

context consuming application usually subscribes to multiple

context scopes in our architecture and has to infer complex

context by processing multiple context messages. Keeping

in mind the increasingly involved role of mobile devices

in human-computer interaction and ubiquitous computing,

the Context Provisioning Architecture allows the context

consuming applications on mobile devices to submit XPath

queries to be applied on context notifications generated in

response to their subscriptions as well. Furthermore, the

context consumers can submit contextual data and process-

ing queries to the context brokers in order to decrease

their processing burden. The context brokers provide these

facilities through a Context Processing Service (CPS), which

exposes RESTful HTTP based interfaces for CxCs to submit

queries for processing over contextual data. The query and

context data can be provided by the CxCs during invocation

of the CPS or via the CxB (cp. Figure 4). Upon completion

of query processing, the CPS returns the results to the

144

submitting client. It is expected that this model of offloading

complex processing tasks should be beneficial in terms of

time and space complexity on mobile devices. Consequently,

such a mechanism could also affect the energy consumption

on mobile devices and result in conservation of this critical

resource.

	���������������

	
�����������������
��������������

	
��������������
��������������

	
��������
����

	���

��
����������������

��
����������

	 �

���	
������	
�����������

	
�����������

	
�����������

	�	�

Figure 4. RESTful HTTP interfaces exposed by the CxB and CPS

Despite the simplistic offloading mechanisms obvious

benefits, there are critical questions to be addressed. Firstly,

the trade-off between the efficiency improved by offloading

complex tasks, and that compensated by addition of the

remote communication process, is not yet evident and quan-

tified. Secondly, all contextual processing is not complex.

The processing complexity of XPath, being used in our

analysis, is dependent both on the size of the document

(ContextML based information) and the complexity (number

of parameters) of the XPath expression/query. The cost

of processing of simple XPath expressions on small sized

ContextML documents may be less than that incurred when

offloading to a remote Cloud based service (due to addition

of the communication cost incurred during data transfer

from device to Cloud service). The size of the ContextML

document, the complexity of the XPath query, the processing

time, the communication cost and energy consumption are

the main parameters that need to be evaluated in order to

establish the realistic benefits of offloading complex query

processing from mobile devices to the Context Processing

Service. The following section describes our experimental

analysis of these factors and its results in detail.

IV. CONTEXT PROCESSING OFFLOADING ANALYSIS

A. Experimental Framework

Figure 5 depicts the system architecture of the Context

Provisioning Architecture relevant to the focus of this dis-

cussion. The experimental framework consists of a CxB

deployed on a network host and a CxC deployed on an

Android based mobile device (Google Nexus One). The

device and the CxB are connected through an IEEE 802.11g

based WLAN setup. The CxB exposes RESTful HTTP

based interfaces to the CxC for requesting context from

CxPs and submitting contextual queries for processing to

the CPS. Context requests, queries and responses are ex-

changed between the interacting components in the form

of ContextML encoded messages over the RESTful HTTP

	
��������
��������
�������������������

	
������
��
�������

	
��������������
����������

	���

	���

	���

	���

��
����
	
������

	
��������

	�������
���

	�
����������������
��
��	
��������
�����

��

�
��
���
��
��
��
��
��
��
��
��
�

�
��
��
��
���
��
��

���
��
�

��
��

	
��������������

	
�����������������
��������������

	
��������������
��������������

	
�����������

	
�����������

	
�����������

Figure 5. System architecture with focus on components relevant to the
experimental framework

interfaces. In order to reduce the variable parameters from

the experimental framework, CxPs are not utilized rather the

CxB is provided with stored context notifications messages

spanning 10 context scopes and 10 entities. The contextual

data has been recorded from real-world deployments of

various context providers of the Context Provisioning Archi-

tecture and include contextual scopes of user location (GPS),

weather, proximity, activity, wi-fi (nearby access points),

bluetooth (nearby devices), user profile, device status, device

settings and device location (cellular). The document sizes

of the ContextML encoded context information range from

2KB to 32KB; Figure 6 shows a ContextML snippet from

one such document, containing the wf scope context that

contains contextual information about detected/known Wi-

Fi access points and their properties.

<contextML>
 <ctxEls>
 <ctxEl>
 <contextProvider id="DevCxP-354957030977071" v="0.8" />
 <entity id="354957030977071" type="imei" />
 <scope>wf</scope>
 <timestamp>...</timestamp>
 <expires>...</expires>
 <dataPart>
 <par n="wfList">...</par>
 <parA n="wfDevices">
 <parS n="wfDevice">
 <par n="wfName">SLK</par>
 <par n="wfBssid">0024B29A4D18</par>
 <par n="wfType">[WPA-PSK-TKIP]</par>
 <par n="wfSignal">-77</par>
 <par n="wfOpen">false</par>
 </parS>
 </parA>
 <parA n="wfDevices">
 <parS n="wfDevice">
 <par n="wfName">SLK</par>
 ...
 ...
 </parS>
 </parA>
 </dataPart>
 </ctxEl>
 </ctxEls>
</contextML>

Figure 6. ContextML snippet from a document containing contextual
information about the detected and known Wi-Fi access points in proximity
to an entity.

145

0

750

1500

2250

3000

32K 16K 8K 4K 2K

Mean query processing times on device

M
ea

n
q

ue
ry

 p
ro

ce
ss

in
g

tim
e

[m
s]

Document size [bytes]

QT1 Device QT2 Device QT3 Device
QT4 Device

(a) Mean query processing time – all queries
processed at the device

0

500

1000

1500

2000

32K 16K 8K 4K 2K

QT1 via Cloud service

M
ea

n
q

ue
ry

 p
ro

ce
ss

in
g

tim
e

[m
s]

Document size [bytes]
QT1 Cloud QT2 Device QT3 Device
QT4 Device

(b) Mean query processing time – QT1 queries
processed by the CPS, rest at the device

0

500

1000

1500

2000

32K 16K 8K 4K 2K

QT1+QT2 via Cloud service

M
ea

n
q

ue
ry

 p
ro

ce
ss

in
g

tim
e

[m
s]

Document size
QT1 Cloud QT2 Cloud QT3 Device
QT4 Device

(c) Mean query processing time – QT1 and QT2
queries processed by the CPS

0

500

1000

1500

2000

32K 16K 8K 4K 2K

QT1+QT2+QT3�via�Cloud�service

M
ea

n
q

ue
ry

 p
ro

ce
ss

in
g

tim
e

[m
s]

Document size [bytes]
QT1 Cloud QT2 Cloud Qt3 Cloud
QT4 Device

(d) Mean query processing time – QT1, QT2
and QT3 queries processed by the CPS

0

38

75

113

150

32K 16K 8K 4K 2K

QT1+QT2+QT3+QT4�via�Cloud�service�

M
ea

n
q

ue
ry

 p
ro

ce
ss

in
g

tim
e

[m
s]

Document size [bytes]
QT1 Cloud QT2 Cloud QT3 Cloud
QT4 Cloud

(e) Mean query processing time – all queries
processed by the CPS

Figure 7. Query processing times – experimental results

The CxC on the mobile device is also provided with

these ContextML documents for use when the cost of local

device-based processing is to be evaluated. The CxC is

also configured to issue context queries spanning these

documents. The queries are divided into four categories of

complexity, consisting of:

1) QT1, an XPath expression that searches for a fixed

string value of parameter n in any element i.e.

//*[contains(@n,’string’)]
2) QT2, an XPath expression that searches for two

different string values of any parameter in any

element i.e. //*[contains(.,’string)] |
//*[contains(.,’string’)]

3) QT3, an XPath expression that searches

for a particular combination of parameter

n values along an element path /parS/par

i.e. //parS[contains(@n,’string’)]
/par[contains(@n,’string’)]

4) QT4, an XPath expression that retrieves all parameter

n values from the document i.e. //*[@n]

B. Results

Figures 7b, 7c, 7d and 7e illustrate the reduction in mean

query processing times when QT1, QT1 + QT2, QT1 + QT2

+ QT3 and all types of query processing is offloaded to

the CPS. The communication time between the device and

the CPS is minimal as the experiments are performed in an

isolated WLAN.
Figure 10 aggregates the various scenarios and demon-

strates the gradual reduction in mean query processing times

as subsequent query types are offloaded to the CPS. The

graph shows that the relevant benefits, in terms of improved

processing time, increase with the increase in the document

size and the complexity of the queries. We can observe

from Figure 10 that the there is a minor improvement in

mean query processing time between the cases when QT1

is offloaded to the CPS and when QT1+QT2 are offloaded.

However, the improvement is greater when complex query

types (QT3 and QT4) are offloaded as well. These trends

are visible from the slope of the lines representing each

experiment set in Figure 8. Table I further quantifies the total

time taken when a certain experiment set is carried out across

all document sizes. The results show that offloading complex

query types to the CPS provide greater improvements in the

overall mean query processing time.
The reduction in processing burden also affects the energy

consumption on the device. Figure 9 illustrates the energy

consumption plot during different query processing scenar-

146

0

375

750

1,125

1,500

32K 16K 8K 4K 2K

Mean�query�processing�time,�various�scenarios

M
ea

n
q

ue
ry

 p
ro

ce
ss

in
g

tim
e

[m
s]

Document size [bytes]

QT1+QT2+QT3+QT4 Device QT2+QT3+QT4 Device / QT1 Cloud
QT3+QT4 Device / QT1+QT2 Cloud QT4 Device / QT1+QT2+QT3 Cloud
QT1+QT2+QT3+QT4 Cloud

Figure 8. Mean query processing times – various scenarios

Table I
QUERY PROCESSING TIMES

Query processing location Total processing time across all
document sizes (2K–32K) [ms]

All QT on Device 2314
QT1 CPS 2068.25
QT1+QT2 CPS 1708.25
QT1+QT2+QT3 CPS 1144.75
QT1+QT2+QT3+QT4 CPS 246.25

ios. PowerTutor [13] is used for calculating the energy used

by individual applications (broker, consumers and providers)

on the device. PowerTutor is an application for Google

phones that displays the power consumed by major system

components such as CPU, network interface, display, etc.

and different applications. This application allows software

developers to see the impact of design changes on power

efficiency. PowerTutor calculates the phones breakdown of

power usage with an average of 1% error over 10-second

intervals while the worst case error over 10 seconds is

2.5% [13, pg. 8]. In these experiments only the energy

used by an application in utilizing the CPU and Wi-Fi is

considered when calculating its energy consumption sig-

nature. Executing all query sets on the device consumes

131.4J in our experiment scenario. Offloading QT1 and

QT2 to the CPS results in a reduction of about 11.5%

energy cost at each step, whereas the offloading of QT1,

QT2 and QT3 to the CPS results in 38.4% reduction in

energy consumption when compared to offloading only

QT1 and QT2 queries. Expectedly, offloading all queries

to the CPS results in minimal energy consumption at the

device: 0.74J in our experiments. These relative energy

consumption measurements follow a similar trend as in case

of mean query processing time (Figure 8, Table 1I) i.e.

energy consumption improves when complex query types

are offloaded to the CPS. These results signify the benefit

of our approach in terms of energy conservation on mobile

devices taking part in context consumption and processing.

Moreover, it highlights the beneficial and supportive role

context-aware Clouds can play in processing and distribution

of contextual information.

QT1+QT2+QT3+QT4 Device

QT2+QT3+QT4 Device / QT1 Cloud

QT3+QT4 Device / QT1+QT2 Cloud

QT4 Device / QT1+QT2+QT3 Cloud

QT1+QT2+QT3+QT4 Cloud

0 38 75 113 150

��)�)

*���

����+

��*��

�����

Energy�consumption�at�the�device

Energy consumption (Joule)

Q
ue

ry
 t

yp
e

an
d

 p
ro

ce
ss

in
g

Figure 9. Energy consumption at the device – various scenarios

V. CONCLUSION AND FUTURE WORK

This article has briefly described the Context Provisioning

Architecture, focusing on analysis of ContextML query

processing, on a smart mobile device, and experimentally

evaluating the benefits of offloading complex query process-

ing to a Context Processing Service. The RESTful HTTP

based access of the CPS and the CxBs can be ideally

utilized by deployment in a Cloud infrastructure to exploit

the benefits of scalability in increasing load scenarios,

providing device independence, and improving reliability.

Our experimental framework has considered XPath based

queries in four categories of complexity and demonstrated

the computational cost associated with such processing on a

mobile device. The experiments evaluated the improvements

in query processing times, as the processing of queries in

various complexity categories is offloaded to the CPS. The

results have demonstrated significant improvement in the

overall query processing times. This improvement has a

direct effect on the energy consumption of the mobile device

during the query processing as well.

The distribution of queries is uniform in our experimental

framework, i.e. the queries in each complexity category are

equally distributed in the experiments. Furthermore the dis-

tribution of queries over the size of ContextML documents is

also equally distributed. While this setup allows for a basic

assessment of query processing costs, it may not occur in

real world scenarios too often. Therefore, we plan to repeat

the experiments with a non-uniform distribution of queries

and ContextML document sizes. Specifically, some types

of contextual information (ContextML scopes) are more

frequently accessed than others, and hence the distribution

of queries over the size of ContextML documents also

147

becomes non-uniform. Furthermore, we have only consid-

ered communication through the Wi-Fi interface of the

device, whereas a real-world scenario may involve a greater

portion of communication being carried through the 3G

interface on the device, which has different speed and energy

consumption characteristics than the Wi-Fi interface. This

factor may influence the energy consumption and improved

processing time related benefits that we have quantified in

this paper. These issues are the main focus of our future

work.

REFERENCES

[1] S. L. Kiani, B. Moltchanov, M. Knappmeyer, and N. Baker,
“Large-scale context-aware system in smart spaces: Issues
and challenges,” in Baltic Congress on Future Internet and
Communications – Special Session on Smart Spaces and
Ubiquitous Solutions, Riga, Latvia, February 2011.

[2] G. Gottlob, C. Koch, and R. Pichler, “Efficient algorithms for
processing XPath queries,” ACM Transactions on Database
Systems, vol. 30, no. 2, pp. 444–491, 2005.

[3] M. Knappmeyer, S. L. Kiani, C. Frá, B. Moltchanov, and
N. Baker, “A light-weight context representation and context
management schema,” in Proceedings of IEEE International
Symposium on Wireless Pervasive Computing, May 2010, pp.
367 – 372.

[4] S. L. Kiani, M. Knappmeyery, N. Baker, and B. Moltchanov,
“A federated broker architecture for large scale context dis-
semination,” in Proceedings of the International Conference
on Computer and Information Technology. Los Alamitos,
CA, USA: IEEE Computer Society, 2010, pp. 2964–2969.

[5] E. Badidi and L. Esmahi, “A cloud-based approach for context
information provisioning,” World of Computer Science and
Information Technology Journal, vol. 1, no. 3, pp. 63–70,
2011.

[6] Y. Xiao, P. Hui, P. Savolainen, and A. Ylä-Jääski, “Cascap:
cloud-assisted context-aware power management for mobile
devices,” in Proceedings of the second international workshop
on Mobile cloud computing and services, ser. MCS ’11.
New York, NY, USA: ACM, 2011, pp. 13–18. [Online].
Available: http://doi.acm.org/10.1145/1999732.1999736

[7] P. Korpipää, J. Kela, and E. J. Malm, “Managing context
information in mobile devices,” IEEE Pervasive Computing,
vol. 2, no. 3, pp. 42–51, 2003.

[8] E. R. Harold, Processing XML with Java: A Guide to SAX,
DOM, JDOM, JAXP, and TrAX. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2002.

[9] J. Clark and S. DeRose, “XML path language (XPath) version
1.0,” W3C Recommendation, vol. 16, 1999.

[10] P. Wadler, “Two semantics for XPath,” Bell Labs, Tech. Rep.,
2000.

[11] M. Zafar, N. Baker, B. Moltchanov, S. L. João
Miguel Goncalves, and M. Knappmeyer, “Context
management architecture for future internet services,”
in ICT Mobile Summit 2009, Santander, Spain, June 2009.

[12] M. Knappmeyer, R. Tönjes, and N. Baker, “Modular and ex-
tendible context provisioning for evolving mobile applications
and services,” 2009.

[13] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones,” in Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis, ser. CODES/ISSS ’10. New York,
NY, USA: ACM, 2010, pp. 105–114. [Online]. Available:
http://doi.acm.org/10.1145/1878961.1878982

148

