
ORIGINAL RESEARCH

Context-aware service utilisation in the clouds and energy
conservation

Saad Liaquat Kiani • Ashiq Anjum •

Nick Antonopoulos • Michael Knappmeyer

Received: 30 November 2011 / Accepted: 24 April 2012 / Published online: 13 May 2012

� Springer-Verlag 2012

Abstract Ubiquitous computing environments are char-

acterised by smart, interconnected artefacts embedded in

our physical world that provide useful services to human

inhabitants unobtrusively. Mobile devices are becoming

the primary tools for human interaction with these

embedded artefacts and for the utilisation of services

available in smart computing environments such as clouds.

Advancements in the capabilities of mobile devices allow a

number of user and environment related context consumers

to be hosted on these devices. Without a coordinating

component, these context consumers and providers are a

potential burden on device resources; specifically the effect

of uncoordinated computation and communication with

cloud-enabled services can negatively impact battery life.

Therefore energy conservation is a major concern in real-

ising the collaboration and utilisation of mobile device

based context-aware applications and cloud based services.

This paper presents the concept of a context-brokering

component to aid in coordination and communication of

context information between mobile devices and services

deployed in a cloud infrastructure. A prototype context

broker is experimentally analysed for effects on energy

conservation when accessing and coordinating with cloud

services on a smart device, with results signifying reduc-

tion in energy consumption.

Keywords Ubiquitous computing � Context provisioning �
Context broker � Energy conservation

1 Introduction

Ubiquitous computing is characterised by pervasively

connected devices that unobtrusively become part of our

daily experiences. These computing devices are not just

personal computers but include wearable sensors, mobile

devices and environmental sensors that project a digital

snapshot of the environment, its inhabitants and their

activities. Information services based on these intercon-

nected digital artefacts have the potential to enhance our

experiences and interactions with the digital world. The

role of mobile devices has undergone marked transforma-

tion in the last decade, from the initial role of a mobile

phone to the modern role of an information acquisition,

processing and communication device. These additional

roles are enabled by integration of various sensors into the

device including GPS receivers, microphones, cameras,

magnetometers, RFID readers, proximity and motion

detectors in the form of gyroscopes and accelerometers.

Combined with the increasing mobility of modern users,

availability of various communication technologies (e.g.

Bluetooth, GPRS, Wi-Fi) and the presence of numerous

digital artefacts embedded in the environment, mobile

devices are increasingly becoming the primary tools of

interaction for inhabitants of the digital world.

In order to enhance our digital experiences and exploit

useful services, e.g. those deployed by a cloud based ser-

vice provider, context-aware applications on our mobile

Neither the entire paper nor any part of its content has been published

or has been accepted for publication elsewhere. It has not been

submitted to any other journal.

S. L. Kiani (&)

University of the West of England, Bristol, UK

e-mail: saad2.liaquat@uwe.ac.uk

A. Anjum � N. Antonopoulos

University of Derby, Derby, UK

M. Knappmeyer

University of Applied Sciences Osnabrück, Osnabrück, Germany

123

J Ambient Intell Human Comput (2014) 5:111–131

DOI 10.1007/s12652-012-0131-1

devices can take advantage of the availability of informa-

tion and the ability to interact with surrounding devices and

embedded digital artefacts. Context-consuming applications

utilise the knowledge created by context providers (e.g.

services or applications in the cloud) accessible over com-

munication interfaces. Examples of information acquisition

carried out by context providers include interfacing with

wearable sensors, location and proximity detection and

gathering parameters for user activity recognition. Context

consumers such as navigation software can use the infor-

mation gathered by the providers to deliver a useful service to

the user. Even with the continuing increase in processing

power and computing resources of mobile devices there is

still reliance on services external to the device and on-device

applications are mostly restricted to context acquisition and

consumption. In addition to the sharing of context informa-

tion between local context providers and consumers, sig-

nificant context communication takes place between the

device based applications and those deployed in the cloud

based network infrastructure. These include network ser-

vices that depend on information collected at the user device

(e.g. location, proximity) and device based applications that

depend on context providers hosted in the cloud (e.g. weather

service, online calendars, environmental sensors). The tra-

ditional user oriented network services, specifically those in

the domain of telecom networks, are evolving towards the

‘platform/software as a service’ model of cloud computing

due to reasons of economics, performance and overall effi-

ciency for service providers (e.g. Vodafone Group 2010;

Apple Inc. 2011). This utilisation of information about the

user and his environment acquired from the device, network/

cloud services and digital artefacts embedded in the envi-

ronment is the focus of the domain of context-awareness with

cloud-based computing.

Technological advancements, social trends and increased

utility and adoption of mobile devices mean that context-

awareness will be an important element in the next wave of

the mobile-device centric cloud services ecosystem. These

emerging trends and technologies will provide improved and

increased service provisioning mechanisms but the problem

remains that the communication and computation of context

on smart mobile devices will lead to considerably more

energy consumption than that used up in current usage sce-

narios. This is plausible because network communication

and CPU processing in smart phones take up most of the

energy resources under typical usage (around 80 % on

average according to (Anand et al. 2007, p. 1989). This is a

primary bottleneck to the wide scale adoption of the cloud-

based services in the smart devices, which are being con-

sidered as the future platform to consume and produce

contextual information. While there are a number of areas

where energy conservation approaches can be incorporated

(network transmission power, CPU scaling, etc.), from the

viewpoint of designers of context-aware cloud systems it is

imperative that the system design incorporates energy util-

isation aspects of software performance. Because of the user

centric nature of context-aware applications and the role of

mobile devices as the facade of context-aware interaction,

this work targets the optimisation of context communication

and coordination between the mobile devices and the cloud

services in order to conserve energy in mobile devices.

In context-aware systems, context consumers and pro-

viders for mobile devices are part of a complex distributed

software system working towards a common goal of

unobtrusively enhancing the user experience and interac-

tion. The scale, mobility and heterogeneity of devices and

users involved in such an environment create challenges in

coordination and communication of context across dis-

tributed software components in the cloud. The complexity

of coordination increases with the increase in inter-

dependence between actions of individual components,

severity of global constraints faced by the system and the

amount of information required by individual components

to carry out their tasks. Without the presence of a coordi-

nation environment, each device based consumer and

provider has to manage communication and coordination

with external services in the cloud individually, resulting in

repetition of functionality that incurs a cost in terms of

development time and resource usage on the device. While

the broader work that forms the basis of the results reported

in this paper is targeted towards improving coordination

and communication between context consumers and pro-

viders, it is the energy consumption related benefits

achieved through this approach that are the primary focus

of this paper.

The computation power and memory (storage) capacity

in mobile devices has continually increased, reducing in

cost at the same time, but growth in battery capacity has

not followed a similar trend. For example, the lithium-ion

battery holds only a slightly greater energy, approx.

100–250 Wh/kg (calculated from specifications provided

by Panasonic 2011), than much older lead-acid batteries

(30–40 Wh/kg). Andersson et al. (2006) observe that the

development in battery capacity has not followed Moore’s

law in terms of its evolution. They highlight that while

processor capacity continues to follow Moore’s law and

double every 18 months, battery capacity has only

increased 80 % in the past 10 years (cf. Andersson et al.

2006, p. 156). Because of this limiting factor, even though

modern mobile devices can do more, they can do so for

only a limited time before the battery runs out of energy.

The critical factor of limited energy in mobile devices

requires optimised utilisation of resources in aspects of

computation, display, interaction and communication with

the cloud services. These optimisation mechanisms include

on-demand CPU frequency scaling, turning displays off

112 S.L. Kiani et al.

123

during calls, and variable transmission power for network

communications. In addition to these hardware-oriented

measures for conserving energy, software life-cycles are

designed to optimise the utilisation of resources. Our work

builds upon this software-oriented approach where life-

cycles of device based and cloud hosted applications and

services are managed in a manner that results in energy

conservation. We have targeted the applications/services

that deal with the acquisition, processing and dissemination

of contextual information between the smart devices and

cloud services and have devised a context-brokering sys-

tem to facilitate the execution of their collective functions.

This paper describes a context brokering system that

facilitates coordination and communication of context

information (user and environment related context)

between context consumers and providers hosted on the

device and in the cloud infrastructure. We analyse the

effect of introducing a mobile device based Context Broker

in our Context Provisioning Architecture on energy con-

sumption on mobile devices by performing a series of

experiments. Before describing the experiments it is

essential to describe the Context Provisioning Architecture

in which the mobile device and cloud/network based

Context Brokers operate. After discussing the related work

in the next section, the functional description of the broker

based Context Provisioning Architecture is presented in

Sect. 3. Thereafter, evaluation of the Mobile Context

Broker from the aspect of energy conservation is described

in Sects. 5 and 6, followed by the conclusion in the Sect. 7.

2 Background and related work

We are able to utilise situational and environmental context

in our lives due to a common understanding of the world

and oft-recurring situations in it (Winograd 2001). The

effectiveness of context utilisation is dependent on creating

this common understanding. Clarke and Cooper (2000)

argue that shared context has to be created to facilitate

collaboration in networks, communities and organisations.

The established significance of context in human-human

interaction is the primary driver for adopting context

awareness in human-computer interaction. However,

computers cannot take full advantage of context during

human-computer interaction due to the limited sensory

input available to the machines and a very limited under-

standing of the world model, as humans perceive it. By

increasing the level of contextual understanding in com-

puters, we can increase the richness of communication in

human-computer interaction and make it possible to pro-

duce more useful computational services (Dey and Abowd

2000). This idea that computers can sense and react to

stimuli from users’ environment is labelled as context-

aware computing.

A sizeable number of applications, toolkits and mid-

dleware frameworks have been developed to showcase

acquisition, processing and distribution of context data in

ubiquitous computing environments. The Context Toolkit

(Dey et al. 1999) offers standard libraries and reusable

components to assist in the development of context-aware

applications. The Context Broker Architecture (CoBrA)

(Chen 2004) supports context- aware applications in smart

spaces. The PACE (Henricksen et al. 2005) middleware

offers functionalities for context gathering, context man-

agement and context dissemination. The Service-Oriented

Context-Aware Middleware (SOCAM) (Gu et al. 2004)

project provides architecture for building and rapidly pro-

totyping context-aware mobile services. An example of a

centralised middleware approach designed for context-

aware mobile applications is the Context-Awareness Sub-

Structure (CASS) (Fahy and Clarke 2004). These are typ-

ical examples of middleware solutions and context-aware

systems that have been proposed in the last decade. A

common theme in these systems is the reliance on a central

component or server to collect, manage and distribute

context information to interested applications or services

and the role of mobile devices (and hosted applications) as

more than mere consumers of context is not adequately

considered. Moreover, context providing and consuming

components are tightly coupled and demonstrations of the

systems are limited to a specific knowledge domain, e.g.

tourist guides and meeting room scenarios. Recent devel-

opments in this domain have attempted at decoupling

consumers and providers of context information by

employing a context broker, e.g. MobiLife (Kernchen et al.

2006) and Context Casting (Knappmeyer et al. 2009;

Moltchanov et al. 2010).

The concept of brokering is formalised as an archi-

tectural design pattern, known as the Broker Pattern

(Buschmann et al. 2007), that can be used to structure

distributed software systems with decoupled components

that interact by remote service invocations or message

passing (cf. Buschmann et al. 2007, p. 99). The use of

brokers in information distribution systems is well estab-

lished, e.g. in CORBA (OMG 2008) and Web Services

Brokered Notification (Huang and Gannon 2006). In the

domain of context-aware computing, broker-based archi-

tectures have been developed for collecting, processing

and distributing user and environmental context. In con-

trast to centralised context brokers demonstrated in these

approaches, this work extends the concept and utilises a

federation of context brokers for dissemination of context

information between cloud based distributed consumers

and providers.

Context-aware service utilisation in the clouds and energy conservation 113

123

Despite a number of context-aware systems in existence,

energy consumption and conservation on mobile devices

involved in context acquisition and utilisation has not been

adequately addressed. Earlier systems were developed with

the aim of demonstrating various functions of context-

aware systems, e.g. context acquisition, management,

representation, reasoning, and their prototype nature did

not consider energy constraints. Moreover, the role of

mobile devices in most context-aware systems has been

limited to consuming context information in the form of a

single executing application on the device. However, as

discussed in the preceding section, the role of mobile

devices is becoming more central to our interaction with

the digital world and their increased capabilities allow

concurrent execution of a number of context consuming

and producing applications and services. More energy is

utilised on the device in this evolving role and hence

adoption of energy conservation techniques in mobile

device based context consumers and providers becomes

even more important.

In general the area of energy conservation on smart

mobile devices has garnered significant interest from

researchers and equipment manufacturers. Various energy

conservation measures are embedded in the design of

mobile devices, e.g. dimming of the display screen when

not in use, turning off the display during calls, switching

off secondary radios (Bluetooth) during low battery con-

ditions. Takeno et al. (2003) studied the patterns of energy

consumption in consumer mobile phones along with the

charging and discharging life cycles of consumer mobile

devices. They attempted to predict the lifetime of a Lith-

ium-ion battery considering deterioration in capacity and

showed that the charge state and the number of recharges

influence the battery capacity during storage. Ravi et al.

(2008) have proposed the CABMAN system for battery

management on mobile phones that warns the user when it

detects that the phone battery can run out before the next

charging opportunity is encountered. CABMAN system is

based on a context-aware algorithm that monitors device

usage, location and battery charging pattern to predict

when the next charging opportunity will be available, how

much call-time will be required by the user in the interim,

and how long the battery will last if the current set of

applications continues to execute. Mahmud et al. (2004)

have carried out a comprehensive study on energy con-

sumption in multi-interface mobile devices and proposed a

model for predicting energy consumption during various

types of data exchanges. Gupta and Mohapatra (2007)

provide a detailed anatomy of the energy consumption by

various components of Wi-Fi based phones and emphasise

the adoptions of an adaptive scanning algorithm, which

results in considerable energy savings. Kassinen et al.

(2009) investigate how long a mobile peer in a P2P

network is able to function in a UMTS or WLAN access

network, and how the different parameter settings affect the

battery life. They conclude that a realistic example of a

useful improvement could be a connectivity management

system that switches from UMTS to WLAN when possible,

to lengthen the average battery life of mobile peers. Sim-

ilarly, Rahmati and Zhong (2007) highlight the challenges

of energy costs of network interfaces in mobile devices in

their field-study and propose to leverage the complemen-

tary strength of Wi-Fi and cellular networks by choosing

wireless interfaces for data transfers based on network

condition estimation. They show that an ideal selection

policy can more than double the battery lifetime of a

commercial mobile phone, and the improvement varies

with data transfer patterns and Wi-Fi availability. Bala-

subramanian et al. (2009) reiterate the notion that energy

availability in mobile phones is a precious resource and

attempt to model relative energy consumption character-

istics of 3G, GSM and Wi-Fi. They identify a significant

tail energy overhead in 3G and GSM and develop a mea-

surement driven model of energy consumption of network

activity for each technology. Based on this model they

have also developed TailEnder, a protocol that minimises

energy usage by prefetching data while meeting delay-

tolerance deadlines specified by users.

Several schemes have been proposed to improve energy

utilisation by optimising the device’s air interface. Yang

(2007) investigates the power saving mechanism of UMTS

and proposes an adaptive algorithm to enhance UMTS

energy consumption performance. Another version of this

algorithm for bursty traffic patterns is provided in (Yang

et al. 2007). In addition to these optimisations aimed at

energy conservation on the device side, conservation on the

network side has also been notably addressed, e.g. using

dynamic network planning to reduce the number of active

access devices in the core network when they are under-

utilised (Chiaraviglio et al. 2009).

In the specific domain of context-aware systems, it is

only recently that attention has been paid towards analys-

ing the impact of context-aware applications on energy

consumption. Bernal et al. (2010) have proposed a mech-

anism for reducing the context data publishing costs from

mobile devices by adapting context publishing behaviour

according to device conditions (signal strength, sensors

status etc.). Similarly Kang et al. (2008) emphasise that the

major challenge in providing users with proactive services

lies in continuously acquiring user and environment con-

text from sensors due to the imposition of heavy workloads

on mobile devices and energy consumption in performing

this task. They attempt to address this challenge in their

context-monitoring framework for sensor-rich and resource

limited mobile environments, titled SeeMon. The energy

efficiency in SeeMon is based on optimal selection of the

114 S.L. Kiani et al.

123

Essential Sensor Set (ESS) that can satisfy a context query.

Crk et al. (2008) propose a range of user-interaction-aware

mechanisms that utilise a novel approach of monitoring a

user’s interaction with applications through the capture and

classification of mouse events to effect considerable

improvements in energy savings and delay reductions of

the Wi-Fi network interface. Devlic et al. (2008) empha-

sise the need to retrieve context information from outside

the device via network interfaces and evaluate the use of

Bluetooth and Wi-Fi interfaces for this purpose. They

conclude that multicasting over Wi-Fi consumes less

energy than Bluetooth and that it is more energy efficient to

distribute context knowledge to other devices than having

each device learn or acquire this information itself. Zhuang

et al. (2010) analyse the issue of energy efficient location

sensing on smart phones and identify four critical factors

that affect energy efficiency of location sensing with GPS

sensors. These factors include static use of location sensing

mechanisms, absence of power-efficient sensors, lack of

sensing cooperation among multiple location based appli-

cations and unawareness of the battery state. They present

an adaptive location-sensing framework for Android-based

smart phones; an evaluation of the results shows significant

reduction in the GPS usage and improvement in battery

life. The efforts discussed in these lines showcase the fairly

recent trend recognising the importance of energy conser-

vation in context-aware systems.

The preceding paragraphs have shown that there are

various approaches that are being targeted for reduction in

energy consumption. However, most of the efforts in the

domain of context- awareness deal with particular appli-

cations (location sensing, Wi-Fi usage, etc.) whereas our

study focuses on emerging scenarios where a compara-

tively larger number of context consuming and producing

applications are deployed in a cloud and consumed by

mobile device based applications. With recent advance-

ments in the capabilities of mobile devices and the sur-

rounding digital ecosystem, we can safely expect an

increase in the amount of contextual information acquired,

requested and published from the mobile devices. In the

light of this trend we aim to investigate the energy con-

servation benefits of the brokering approach used in the

Context Provisioning Architecture during communication

of contextual information between cloud services and

mobile devices. The following section provides a descrip-

tion of the Context Provisioning Architecture, including the

functional design of the Context Broker.

3 Context provisioning architecture

The Context Provisioning Architecture is based on the

producer (provider)-consumer model in which cloud

services take the roles of context providers or context

consumers. These basic entities are interconnected by

means of a context broker that provides routing, event

management, and query resolution and lookup services.

The following paragraphs describe these three main com-

ponents of the architecture.

Context Consumer: A Context Consumer (CxC) is a

component (e.g. a context based application) that uses

context data. A CxC can retrieve context information by

sending a subscription to the Context Broker (CxB) or a

direct on-demand query and context information is

delivered when and if it is available.

Context Provider: The Context Provider (CxP) compo-

nent provides context information. A CxP gathers data

from a collection of sensors, network/cloud services or

other relevant sources. A CxP may use various aggre-

gation and reasoning mechanisms to infer context from

raw sensor, network or other source data. A CxP

provides context data only further to a specific invoca-

tion or subscription and is usually specialised in a

particular context domain (e.g. location).

Context Broker: A Context Broker (CxB) is the main

coordinating component of the architecture. It works as a

facilitator between other architectural components. Pri-

marily the CxB has to control context flow among all

attached components, which it achieves by allowing

CxCs to subscribe to context information and CxP s to

deliver notifications.

A depiction of the core system components described

above is presented in Fig. 1, emphasising the comple-

mentary provision of synchronous and asynchronous con-

text related communication facilities. A number of useful

applications have been developed based on this architec-

ture. Further details on this architecture and industrial trials

are described in (Moltchanov et al. 2008; Zafar et al. 2009;

Knappmeyer et al. 2011).

Query

Subscription

N
ot

ifi
ca

tio
n

R
es

po
ns

e

CxP
 Looku

p

Asynchronous

Synchronous

synchronous

Synchronous

Fig. 1 Functional components of the Context Provisioning

Architecture

Context-aware service utilisation in the clouds and energy conservation 115

123

The following example elaborates the working of the

Context Provisioning Architecture. Consider a cloud ser-

vice hosted by a telecom operator that builds multicast

groups based on user location for the efficient delivery of

multimedia content to its mobile users. Such a service can

query user interests and preferences from a user profile

provider and location from GPS based location providers

being executed on user devices. The type of content may

further be customised based on a user’s current activity,

which can be acquired from an activity context provider

being executed partly on the user device and partly on a

server deployed in the cloud infrastructure. The activity

context provider can use the on-board accelerometers,

noise and light sensors, and running applications on the

device to estimate the current activity context of the user

(e.g. Choudhury et al. 2008; Fábián et al. 2008). The pro-

vider-consumer interaction is depicted in Fig. 2.

Building on this complex scenario, it can be deduced

that a number of context providers and consumers on the

user device will be interacting with a context broker on the

cloud side network (NCxB) for acquisition and provision of

context data within the context aware system and beyond

(e.g. third party services). If each device level context

provider and consumer were to handle broker-bound

communication itself, not only will the computation cost

increase but also will the development cost for new pro-

viders and consumers. Given the inherent mobility and

somewhat intermittent connectivity of mobile devices,

each provider and consumer may have to carry out extra

life-cycle management tasks as well. To mitigate the

effects of these issues, a device based broker is utilised in

this architecture that works in federation with the context

brokers deployed in the cloud infrastructure. This Mobile

Context Broker (MCxB) executes on the user mobile device

and facilitates the device level context providers and con-

sumers in retrieving from and providing context to cloud

infrastructure components through a publish/subscribe

mechanism.

3.1 Mobile broker

The Mobile Context Broker (MCxB) is a software compo-

nent designed to execute on a mobile device as a back-

ground service that brokers context exchange between

consumers and providers, hosted both on the device and the

cloud infrastructure. Context providers and consumers

register their presence and requirements during execution

to this broker and do not have to lookup each other indi-

vidually. Moreover, during periods of disconnected oper-

ation, which is still common in mobile devices and

networks, the consumers and providers do not have to

monitor device connectivity individually; this task is del-

egated to the MCxB. Polling and waiting for events or

context information to become available by consumer

components is improved by applying the publish/subscribe

communication paradigm and using the broker as an event

service that manages notifications and subscriptions. These

functions provided by the broker save valuable computa-

tion cycles and consequently reduce energy consumption.

Figure 3 shows the addition of a device based broker in the

scenario discussed earlier (cp. Fig. 2). The design, func-

tional architecture and the coordination model that enable

these advantages of our broker based architecture are pre-

sented in the following paragraphs.

The design of the broker component is based on the set

of functions it provides to the context consumers and

providers. These functions are listed below:

Registration and Lookup: Each consumer and provider

registers with a broker by specifying its communication

end point and the type of context it provides or requires.

This function in turn enables the brokering function in

Context Broker

User Profile
Provider

Content Delivery
Service
Group

Formation
(Consumer)

Other Context
Providers

Activity
Provider

Device
Location
Provider

Context
Consumer

App.

Context
Consumer

App.

R
eg

is
te

r

Find Providers

Find Providers

Register

Fig. 2 Complex broker based

consumer-provider interaction:

demonstrating the use of a

context broker to lookup

required context providers and

consumers

116 S.L. Kiani et al.

123

which the mobile broker can direct a consumer request-

ing a particular type of context to the correct provider(s).

Subscription: A consumer subscribes with the broker

specifying the type and instance of context it requires

and the duration for which the subscription remains

valid. The broker can forward the subscription to the

appropriate provider or filter context produced by a

provider in order to satisfy the subscription.

Notification and Dissemination: The broker, on avail-

ability of subscription satisfying context, notifies the

consumer of the availability or the context is directly

communicated to the consumer.

Caching: The broker can cache recently produced

context in order to exploit the principle of locality of

reference, as done routinely in internet communications,

to improve overall performance.

Querying: The broker provides a query resolution

service via which context consumers can request the

broker to fetch context from the providers. The querying

function is equivalent to a one-off subscription, valid

only once irrespective of whether it results in meaningful

response from the provider or unavailability of

information.

Bulk Query and Response Management: The Mobile

Context Broker can operate in bulk query mode for low

priority queries in which it forwards queries and

responses towards the cloud in bulk. This store and

forward bulk mode is useful not only in saving network

communication but is also utilised to manage queries

and responses during periods of disconnected operation.

Federation: The distributed brokers (device based

MCxBs and network level NCxBs deployed in the cloud

infrastructure) collectively form an overlay network of

brokers that manage local clients (consumers and

providers). This federation of context brokers is

achieved with a coordination model that is based on

routing of subscriptions and notifications across distrib-

uted brokers, discovery and lookup functions and is

described in detail in Sect. 3.2.1.

The MCxB offers these functions to device based context

providers (MCxPs) and consumers (MCxCs) by exposing

well defined interfaces. Externally, network based clients

(NCxPs and NCxCs) can communicate directly with the

mobile broker but device mobility causes changes in

communication end points and hinders reachability of the

MCxB (and hence its clients). This issue can be addressed

by updating all external clients whenever the communi-

cation end point of the MCxB changes due to mobility. An

improved approach is to communicate with the external

(w.r.t. the device) providers and consumers via a network

level broker (NCxB). Our prototype implementation uses

the latter approach by federating the mobile and network

level brokers together into an overlay network of brokers.

Clients of a broker only communicate with the local broker

and queries, subscriptions and notifications are routed

between brokers using a publish/subscribe communication

paradigm. This model is described later in Sect. 3.2.1, a

detailed theoretical model is also provided in our earlier

work (Kiani et al. 2010a).

3.2 Context model and exchange mechanisms

The data model specifies the format of the communication

and coordination that takes place between context con-

sumers, providers and the brokers. While the information

content is dependent on the domain and types of con-

sumers and providers, a particular sub-set needs to be

Context
Broker

User Profile
Provider

Content Delivery
Service
Group

Formation
(Consumer)

Other Context
Providers

Activity
Provider

Device
Location
Provider

Context
Consumer

App.

Context
Consumer

App.

R
eg

is
te

r

Find Providers

Find Providers

Register

Mobile
Broker

Fig. 3 Functional architecture of the Context Provisioning Architecture with mobile broker component

Context-aware service utilisation in the clouds and energy conservation 117

123

specified in order to utilise the brokering functions

defined above. Clients of a broker are described using

name-value attribute pairs and this description is used for

registration with the broker. Subscription and notification

further require that the acquired context be annotated with

meta-information that allows categorisation and matching

of context into specific instances that can be compared

with subscriptions and queries. Korpipää et al. (2003)

present some guidelines for designing information models

that include properties of simplicity, flexibility, extensi-

bility, generalizability and expressiveness. XML schema

and ontology based information modelling approaches

provide good coverage of these properties to varying

degrees. In our architecture, an XML based schema for

coordination and communication of context information,

titled ContextML, is used. ContextML specifies the model

for context information, context subscription/notification

and control messages as well. The following paragraphs

describe the core elements of ContextML. A detailed

description is provided in our earlier work (Knappmeyer

et al. 2010).

Entity: Every exchange of context data is associated with

a specific entity, which can be a complex group of more

than one entity. An entity is the subject of interest (e.g.

user or group of users) which context data refers to and it

is composed of two parts: a type and an identifier. The

type refers to the category of entities, e.g. username (for

human users), IMEI (for mobile devices), SIP URI (for

SIP accounts), room (for a sensed room) and group (for

groups of other entities, e.g. usernames or IMEI

numbers). The entity identifier specifies a particular

instance in a set of entities belonging to the same type.

Every human user of the system can be related to many

entities in addition to the obvious type username,

therefore a component that provides identity resolution

is necessary. A User Profile CxP is provided in the

Context Provisioning Architecture to perform this

function.

Scope: Specific context information in ContextML is

defined as scope and is a set of closely related context

parameters. Every context parameter has a name and

belongs to a certain scope. Using scope as the context

exchange unit is useful because parameters in that scope

are always requested, updated, provided and stored at the

same time; it means that data creation and update within

a scope are always atomic and that context data in a

scope are always consistent. Scopes can be atomic or

aggregated in a union of different atomic context scopes.

Examples of context scopes of varying degree of

complexity include location, weather, activity, situation,

cellular, and WiFi network identification. Figure 4

illustrates the entity-scope association.

3.2.1 Context data representation

Whenever a CxC requests or subscribes to a specific con-

text scope, it receives a response encoded in the Contex-

tML schema element ctxEl when context is available.

ctxEl contains information about where the context has

been detected and encoded (CxP), which entity it is related

to (entity), what scope it belongs to, and the actual context

data in the dataPart element. A graphical description of

this element, along with ContextML schema elements of

context subscriptions (cxtSubscr) and notifications

(cxtPublish) is given in Fig. 5. The elements par,

parS and parA (Fig. 5) are simple constructs to store

name-value pairs and attributed collections (arrays and

structures) respectively. Every scope instance (context

information) is tagged with a specific timestamp (time of

context detection) and an expiry time. The expiry tag states

the validity period of the scope after which the information

is considered invalid.

3.2.2 Context data exchange

Exchange of context between the context providers and

consumers can take place via the following mechanisms:

Asynchronous Event-based Query: This mechanism

allows a context consumer to utilise an event-based

publish/subscribe function in the broker for context

queries and responses. In addition, a subscription can

specify if the response is to be routed back via context

brokers or is a direct call back to the subscribing

consumer. A direct call back is suitable for non-mobile

context consumers but makes the directly notified

context data non-cacheable at the broker. Figure 5c

shows the ContextML schema of a context subscription.

The context subscription by consumers is complemented

by context notifications from the context providers. On

availability of information that matches a certain

subscription, a context provider generates a context

notification (Fig. 5d). The notification is routed to the

subscriber CxC either directly or via context broker

depending on the type of subscription. The subscriptions

Fig. 4 Entity–scope relationship, an entity can have many context

scopes associated with it. Each scope instance has a validity period

118 S.L. Kiani et al.

123

and notifications between clients of multiple brokers are

managed through a coordination model that is described

later in Sect. 3.2.1. The experimental evaluation dis-

cussed in Sect. 5 uses only this asynchronous form of the

context query model.

Synchronous Direct Invocation: Context consumers can

formulate a simple context query for a particular context

scope by invoking the context provider over HTTP and

by encoding the request parameters in the HTTP URL

directly. The Lookup function in the broker is used by

the consumers to find the communication endpoint of the

relevant context provider, after which the query and

response takes place between consumers and providers

directly without any participation of the broker.

Proxy Query and Subscription: A facility for context

query and subscription provided by the broker is the

proxy query mechanism. The proxy query service in

the broker queries the required providers on behalf of the

consumers when the requested context scope in the

query or subscription is dependent on other scopes.

Instead of requiring the context consumers to query each

dependent scope, the broker satisfies the scope depen-

dencies by querying for the dependent scopes when it

receives a query about a context scope that is dependent

on other scopes, e.g. weather context of a user is

dependent on the location scope. This mechanism is

especially useful for resource constraint context con-

sumers (e.g. context-aware applications executing on

mobile phones) and becomes efficient if the broker is

equipped with a local context cache that stores context

data until its expiration.

3.3 Coordination model

A real world deployment of a broker based context aware

system may incorporate context providers and consumers

that are geographically distributed. To reduce manage-

ment and communication overheads, it is desirable to

have multiple brokers in the system divided into admin-

istrative, network, geographic, contextual or load based

domains. Context providers and consumers may be con-

figured to interact only with their nearest, relevant or most

convenient broker. This setup, however, demands inter-

broker federation so that providers and consumers

attached to different brokers can interact seamlessly. To

achieve this, a simple event system can be implemented

by an overlay network of distributed brokers for relaying

subscriptions and notifications. Our system model for an

overlay network of brokers working in a federation is

based on the model presented by Muhl et al. (2006) and

has been extended for context subscription/notification

with the use of client advertisements. The conceptual

development of this model is presented in the following

sections.

3.3.1 System model

The system model consists of a set of cooperating brokers

that are arranged in a topology that is restricted to be

acyclic. Each broker Bi manages a mutually exclusive set

of local clients LBi
¼ fj1; j2; . . .; jng and LBi

� K where

K is the set of all clients in the system. The clients here

refer to CxCs and CxPs. Each broker Bi is connected to a

(a) (b) (c)

(d)

Fig. 5 A subset of Context ML schema elements: a representation of

context information in ContextML format (ctxEl). b ContextML

scope definition schema specifying the input parameters required to

query this scope, entity types for which this scope is valid and

dependency on other scopes. c ContextML subscription schema

element (ctxSubscr) and d ContextML notification schema

containing ctxEl. For brevity, only essential attributes of the

elements are shown

Context-aware service utilisation in the clouds and energy conservation 119

123

set of neighbouring brokers NBi
¼ fgi1; gi2; . . .; ging and

NBi
� B where B is the set of all brokers in the system.

3.3.2 Subscriptions

A subscription r contains a stateless logical expression that

is applied to a notification m, i.e. rðmÞ �! ðtrue; falseÞ: A

subscription can be given as a logical expression that

consists of predicates that are combined by boolean or

logical operators (and, or, not, [, =, etc). Such operators

can be used to impose constraints while defining sub-

scriptions (e.g. attribute name=‘‘weatherCondition’’).

Consider an attributed subscription that imposes a con-

straint on the value of a single attribute, e.g. age[25. The

subscription constraint can be defined as:

ci ¼ ðni; opi;CiÞ ð1Þ

where ni is the attribute name, opi is a test operator and Ci

is a set of constants that may be empty. The name ni

determines which attribute the constraint applies to. If a

notification does not contain attribute named ni then ci

evaluates to false. A notification matches r if r (m) eval-

uates to true. The set of matching notifications N(r) is

defined as {m|r (m) = true}.

3.3.3 Notifications

The broker exposes two interfaces namely pub(Notifica-

tionm) and sub(Subscriptionr) that allow the clients to

publish or subscribe to events. The broker uses a

notify(Notification m) message itself to deliver notifications

to local clients. Moreover, it uses a message for-

ward(Notification m) to forward notifications to neigh-

bouring brokers (brokers who have clients subscribed for

the current notification).

3.3.4 Client registration tables

Each broker Bi maintains a client registration table RBi
;

which contains entries about its registered clients. A

client ji registers with a broker by providing an adver-

tisement that contains a unique identifier Ij and infor-

mation about its communication endpoint URLj. In case

the client is a CxP, the advertisement also contains the

context scope served by the client. Neighbouring brokers

exchange client registration tables amongst each other at

regular intervals DXR: Out-of-turn triggering of the client

registration table update at a broker can occur when a

new client registers with the broker so that the avail-

ability of a new client is immediately disseminated in the

system.

3.3.5 Subscription tables

Each broker Bi maintains a subscriptions table TBi
; which

contains entries about subscriptions related to its clients.

Each entry in TBi
is a pair ðr;DÞ consisting of a sub-

scription r and a destination client D 2 j [NB: Hence

each broker maintains subscription entries only for its local

clients and neighbouring brokers and not of the whole

system entities. When a client jj issues a subscription rk to

the broker Bi that it is registered with, Bi adds an entry

ðrk; jjÞ to its subscriptions table TBi
: Using the client

registration table RBi
; it determines which broker Bs can

satisfy the subscription and updates Bs with the new sub-

scription entry. Bs adds the entry ðrk; jjÞ to its subscription

table TBs
:

In the following sections, we describe how this model

operates for one and two brokers in the system, the general

case of n number of brokers can be referenced from our

earlier work Kiani et al. (2010a). It is assumed in the fol-

lowing discussions that the clients have already registered

with their respective brokers and, in the case of two bro-

kers, the brokers have already exchanged client registration

tables, i.e. the brokers know which client/broker can satisfy

a subscription pertaining to a particular scope.

3.4 A single broker case

The local client j1 of broker B1 subscribes with the broker

with subscription r1 using the sub(Subscription r1) broker

interface (Fig. 6). The broker saves this subscription in its

subscription table and then determines that the local client

j2 is capable of producing information that can satisfy the

subscription. Broker B1 forwards the subscription r1 to the

local client j2. j2 monitors its produced data in case it

matches any of the subscriptions it has received via the

broker. If and when subscription r1 is satisfied, j2 produces

a notification m1 and sends it to the broker via the

pub(Notification m1) broker interface. The broker consults

its subscription table TB1
and notifies the client that has the

relevant subscription entry, in this case j1.

κ2

κ1

Β1

ΤΒ1

σ1,κ1()1. sub σ1()

2. pub ν1()

3. notify ν1()3 f

ν1 ∈ Ν σ1()

Fig. 6 Single broker coordination scenario

120 S.L. Kiani et al.

123

3.5 A case of two brokers

Consider this case with the help of Fig. 7 where the local

client j1 of broker B1 subscribes with subscription r1. B1

saves the entry (r1, j1) in its routing table TB1
which was

initially empty. It then sends the following message (table

exchange) to its neighbouring broker B2:

subTableUpdateðB1; r1Þ ð2Þ
This causes the broker B2 to update its routing table with

the entry (r1,B1). Broker B2 has two registered clients j2

and j3. B2 forwards r1 to j2 considering it to be a source of

matching notifications for this subscription by consulting

its client registration table RB2
and evaluating the scope

entries in client advertisements. E.g. if the subscription is

regarding weather updates of a certain area, then only a

CxP that produces weather related context may be for-

warded the subscription information; it may not be relevant

to forward a weather related subscription to a client that

produces context about proximity of a group of users.

When j2 produces information that satisfies r1, it sends a

notification m1 to B2 along with the information that this

notification satisfies the subscription r1, i.e. r1ðm1Þ !
true: B2 analyses its subscription table TB2

and finds entry

(r1,B1) and therefore forwards the notification m1 to B1:

forwardðB1; m1Þ ð3Þ

j1 is a local client of B1. Therefore B1 uses the notify(m1)

procedure to notify the client with the notification m1.

Consider an additional subscription r2 received from the

local client j3 of B2, which is also satisfiable by j2. In this

case, the subscription routing table TB_2 will contain an

additional entry (r2,j3). Assuming that the notification m1

produced by j2 evaluates to true for both r1 and r2, B2 will

calculate the set of matching destinations as:

CB2
ðm1Þ ¼ fB1; j3g ð4Þ

for the notification m1. For the local client j3, B2 will

invoke notify(j3,m1) locally. The other match B1 is a remote

broker and B2 will invoke 3. For the local client j1 of B1,

B1 will then invoke notify(j 1,m 1) locally.

This section described the coordination model via which

brokers facilitate their local clients in exchanging context

subscriptions an notifications across the overlay network of

context brokers. The brokers discussed in this coordination

model can be network level brokers, deployed on hosts in

the network or cloud infrastructure, or mobile brokers

operating on user devices. In the following section, we

describe the design elements in the Context Provisioning

Architecture that effect energy consumption on mobile

devices. Thereafter, we describe an experiment and asso-

ciated results that signify the benefits of the Mobile Con-

text Broker in energy conservation on mobile devices with

a number of context consumers and providers.

4 Design elements effecting energy consumption

The design of the Context Provisioning Architecture, spe-

cifically the MCxB component and associated coordination

model, leverages several benefits in the area of energy

conservation. These benefits are possible due to the fol-

lowing aspects of the design:

Non-blocking context query and response: Due to the

asynchronous coordination model, consumers and pro-

viders on the mobile device are not blocked while

waiting for their subscriptions and notifications to reach

other providers and consumers (whether in the cloud or

on the device). These components can continue perform-

ing other tasks or can wait without being blocked (idle

state), which results in lesser overall execution load on

the device, thus conserving energy.

Light-weight Consumers and Providers: Consumers and

providers are only required to communicate with one local

component (mobile broker) and are not concerned with

communicating to a variable number of local and remote

components. Their functional tasks are therefore limited

and simplified by the coordination and communication

facilities offered by the MCxB. Reducing this functional

complexity of components results in light-weight context

consumers and providers on the mobile device that use

lesser computation power and thus conserve energy.

Avoidance of Repetitive Tasks: Various tasks that are

otherwise repetitive, e.g. subscription routing, notifica-

tion forwarding and, network connectivity monitoring,

are delegated to the MCxB in this design and this aspect

serves as another factor in conserving energy.

κ2

κ1

κ3

Β1

ΤΒ1

σ1,κ1()

1. sub σ1()

3. pub ν1()

5. notify ν1()i

ν1 ∈ Ν σ1()

2. tableUpdate B1,σ1()
ν1 ∈ Ν σ 2()

Β2

σ1, B1()
σ 2,κ3() ΤΒ2

4. forward B1,ν1()

4. notify ν1()4.
1. sub σ 2()

Fig. 7 Two broker coordination scenario

Context-aware service utilisation in the clouds and energy conservation 121

123

Bulk-mode Communication: The bulk query mode of the

MCxB reduces over-all network communication and

potentially conserves energy. This mode is specifically

evaluated in one of the experiments and the results are

described in Sect. 5.

Local Cache: The MCxB maintains a cache of recently

produced and received context notifications. Depending

on the cache-hit rate, the caching facility reduces not

only the overall context related traffic but also saves

computation cycles by not invoking a context provider to

satisfy a subscription.

In the reference implementation of the Context Provi-

sioning Architecture all cloud based context brokers pro-

vide RESTful HTTP communication interfaces to their

clients. The provisioning of these communication facilities

is mirrored in the MCxB implementation. But there is a

significant difference between the manner in which clients

of a MCxB interact with it when compared to the case of

network context brokers, i.e. the clients of the MCxB exe-

cute on the same computing device as their local broker in

contrast to the network based clients of the context brokers

deployed in the cloud infrastructure, which are more likely

to be executing on computing systems separate from that of

the broker, e.g. desktops. This situation provides the

opportunity to exploit native Inter-Process Communication

(IPC) facility that are available on our reference mobile

device platform, i.e. Android (Butler 2011). But such a

provision raises the possibility of incompatibility between

device based consumers and providers using native IPC

and rest of the system that utilises a standardised distrib-

uted communication protocol, i.e. HTTP. This issue is

inherently resolved in our design as the device platform

native communication mechanism is only used between the

device based clients and the Mobile Context Broker and

any external communication always takes place over

standardised communication protocols (HTTP).

Our primary reason for providing native IPC based

communication facility for device based components is

efficiency. The efficient exchange of messages or process-

ing of inter-process calls can be achieved by using a

communication mechanism that is lightweight and uses

least resources (e.g. the creation of threads to process

individual requests, allocation of buffers in the memory).

Our analysis has revealed that on our reference imple-

mentation platform (Android SDK), native IPC calls

between two processes take an order of magnitude less

time to complete than HTTP and TCP/IP socket based

calls. Figure 8 illustrates the results of our analysis during

which a number of calls are made between two processes

on an Android based device using different communication

mechanisms (HTTP, TCP sockets and IPC). A fixed Con-

textML encoded request and response message was

exchanged between the two processes and the completion

time of each call was recorded.

The results show that IPC calls complete at least three

times faster than calls over TCP/IP sockets and at least 15

times faster than HTTP call. We have also performed

comparative analysis on devices with different hardware

configurations and concluded that the differences observed

in the case of the first device are also observed in other

devices (Kiani et al. 2011). For example, Fig. 9 shows the

results of the same experiment on an HTC Wildfire phone,

which has a less capable CPU than the device used in the

earlier experiment. The differences in performance of IPC,

HTTP and socket based communication mainly arise due to

their different semantics and the number of implicit I/O

operations i.e. I/O operations not requested explicitly by

the process using the facility, e.g. creation and allocation of

memory buffers and creation of separate threads to process

an invocation or request. The semantics of IPC, TCP/IP

sockets and HTTP are largely standardised and do not

differ by much between different versions of the Android

SDK, e.g. results of the same experiment on a Google

Nexus phone based on Android SDK version 2.1 only

differ by a maximum ± 2 % from those of the same phone

based on Android SDK version 2.3.

The results of this experiment show that there is sig-

nificant difference in the time taken by different commu-

nication mechanisms to exchange the same piece of data.

The improvement offered by the native IPC mechanism is

sufficient to warrant the provision of a separate local

communication mechanism for components executing on

the mobile device. Communication with cloud based bro-

kers continues to take place over HTTP interfaces. This

observation, i.e. the efficiency of IPC based communica-

tion over HTTP in our setup, is exploited in our

Number of calls

A
ve

ra
ge

 ti
m

e
ta

ke
n

pe
r

ca
ll

(m
se

c)

Nexus One
IPC vs HTTP vs Sockets Performance

100 250 500 750 1000

1
10

20
40

60
70

HTTP
Socket
IPC

Fig. 8 The mean completion time of calls between two processes

executing on an Android based Google Nexus One device using

different communication technologies

122 S.L. Kiani et al.

123

architecture and the implications will be discussed further

in Sect. 6.4.

The practical impacts of the design elements and the

evaluation carried out to analyse the effect of the Mobile

Context Broker on energy consumption on a mobile device

are discussed in the following section.

5 Energy consumption evaluation

We have used the concept of the Context Broker presented

in the preceding section for the coordination and dissemi-

nation of user and environmental contextual information.

Context information acquired at the mobile device by

context providers or requested by the mobile device based

context consumers from external context providers is bro-

kered via this component. The following paragraphs dis-

cuss the prototype MCxB from an implementation

standpoint and present the scenario used to determine the

benefits of employing such a broker for context coordina-

tion and communication between mobile devices and cloud

services.

5.1 Mobile context broker prototype

The prototype Mobile Context Broker is developed on the

Android platform (http://www.android.com) and executes

as a background service. Various mobile device based

context-consuming applications that have been developed

include context-based content providers (news, entertain-

ment, etc.), location based gameplay and context-based

shopping recommendation applications. Mobile device

based context providers include location, proximity activity

providers. Various context providers are deployed in the

cloud side network and include a weather provider, a user

profile and preferences provider, etc. In addition the mobile

device acts as a gateway for nearby environment and

wearable sensors for dissemination of their sensed infor-

mation). Development is underway to use Bluetooth

enabled, wearable air quality sensors for participatory

sensing and using the MCxB to disseminate collected air

quality information.

On the network side, the context broker NCxB is based

on JavaEE technology and exposes RESTful HTTP inter-

faces to context consumers and providers. All communi-

cation between the brokers and their clients takes place

over HTTP with ContextML encoded messages, subscrip-

tions and notifications. The choice of these standardised

technologies provides interoperability and allows for

interaction between brokers and clients executing on het-

erogeneous hardware. A significant feature of the broker is

the caching facility. No matter what type of context

information, it remains valid for a certain amount of time,

e.g. weather, user activity, and user preferences. We utilise

this temporal property of context information by annotating

a validity period in context meta-data. A broker uses this

validity period to cache recently retrieved information. We

have reported an empirical study on advantages of caching

facility in a context broker in our earlier work Kiani et al.

(2010b), which establishes significant improvements in the

query response time and reduction of network bound

traffic.

5.2 Experiment scenario

In order to experimentally analyse the benefits of using a

context broker on a smart mobile device, a scenario is

designed to monitor various parameters with and without

the use of the MCxB. Ten context consumers and five

context providers are deployed on the mobile device.

Similarly, five context consumers and five context pro-

viders are deployed in the network simulating the cloud

infrastructure. For simplicity each context provider pro-

vides a unique type of context and each context consumer

is only interested in one type of context available at one of

the context providers. All queries and responses are in the

form of subscriptions and notifications. Table 1 lists the

parameters used in the setup.

Two experiments have been carried out, one with the

device based broker (MCxB) and the second without it.

NCxB was deployed with five context consumers and five

context providers with scopes shown in Table 1. When the

MCxB is available on the device, device context consumers

and providers register with the local mobile broker. The

MCxB itself discovers and exchanges registration infor-

mation with the cloud broker NCxB. All subscriptions and

notifications are exchanged via the context brokers and not

Number of calls

A
ve

ra
ge

 ti
m

e
ta

ke
n

pe
r

ca
ll

(m
se

c)
HTC Wildfire

IPC vs HTTP vs Sockets Performance

100 250 500 750 1000

1
10

20
40

60
70

HTTP
Socket
IPC

Fig. 9 The mean completion time of calls between two processes

executing on an Android based HTC Wildfire device using different

communication technologies

Context-aware service utilisation in the clouds and energy conservation 123

123

http://www.android.com

directly between consumers and providers. In the experi-

ment scenario where the MCxB is absent, device based

consumers and providers register with and use the remote

network context broker NCxB. Each context consumer

sends subscriptions concerning a scope of at most one

context provider, i.e. context queries that are dependent on

more than one scope are not used in the experiment. The

experiment deployment structure is shown in Fig. 10.

The rate at which the consumers query (send subscrip-

tions) for context is determined by an exponential distri-

bution. The process of the arrival of a new query can be

seen as a Poisson process in which events (queries) occur

continuously and independently of each other with an

average inter-arrival time of k. This process is analogous to

page view requests to websites, a well-modelled Poisson

process (cf. van Gelder et al. 2002). The exponential dis-

tribution defines the time between events (queries/sub-

scriptions in this case) in the Poisson process. In these

experiments, k = 50 is chosen based on earlier findings

(Kiani et al. 2010b) that showed that faster rate of requests

than this does not affect the query satisfaction performance

of the system.

In this experiment set, all subscriptions are one time

subscriptions, i.e. there is no need to send consecutive

notifications. Providers respond to subscriptions with

emulated context after a period of d = UniformRan-

dom(100, 2, 000) milliseconds to emulate delayed

responses/processing time. This range is based on observed

numbers from real world deployment of context providers

and takes into consideration database/storage access times,

processing, reasoning and encoding contextual data into a

ContextML notification. The spread of various scopes in all

queries is selected to be nearly uniformly distributed, i.e.

the experiments cater for the scenarios where the scopes

are evenly distributed in all queries. The effect of context

scope distributions that are biased towards a subset of

scopes on query satisfaction times is discussed in (Kiani

et al. 2010a, b).

Each experiment is repeated on the same set of hardware

(mobile device and cloud server) and WiFi interface is used

on the server and mobile device within a single WLAN for

minimising the effects of unpredictable network round-trip

times. The mobile device used in the experiments is an

Android version 2.2.1 based Nexus One smart phone (

http://www.google.com/phone/detail/nexus-one). Power-

Tutor (Zhang et al. 2010) is used for calculating the energy

used by individual applications (broker, consumers and

providers) on the device. PowerTutor is an application for

Google phones that displays the power consumed by major

system components such as CPU, network interface, dis-

play, etc. and different applications. This application

allows software developers to see the impact of design

changes on power efficiency. PowerTutor calculates the

phone’s breakdown of power usage with an average of 1 %

error over 10-s intervals while the worst case error over

10 s is 2.5 % (cf. Zhang et al. 2010, p. 8). In these

experiments only the energy used by an application in

utilising the CPU and WiFi is considered when calculating

Table 1 Experiment setup parameters

Parameter Value

Mobile device

Number of

consumers

10

Consumer ID Scope of interest ID

MCxC_1 devScope_1

MCxC_2 devScope_2

MCxC_3 devScope_3

MCxC_4 devScope_4

MCxC_5 devScope_5

MCxC_6 networkScope_1

MCxC_7 networkScope_2

MCxC_8 networkScope_3

MCxC_9 networkScope_4

MCxC_10 networkScope_5

Number of

providers

5

Provider

ID

Scope ID Response

Size

(bytes)

Validity

(sec)

MCxP_1 devScope_1 750 30

MCxP_2 devScope_2 1000 60

MCxP_3 devScope_3 1500 200

MCxP_4 devScope_4 2000 350

MCxP_5 devScope_5 5000 900

Number of

brokers

1

Network/Cloud Infrastructure

Number of

consumers

5

onsumer I Scope of Interest ID

NCxC_1 devScope_1

NCxC_2 devScope_2

NCxC_3 devScope_3

NCxC_4 devScope_4

NCxC_5 devScope_5

5

Number of

providers

Provider

ID

Scope ID Response

Size

(bytes)

Validity

(seconds)

NCxP_1 networkScope_1 750 30

NCxP_2 networkScope_2 1000 60

NCxP_3 networkScope_3 1500 200

NCxP_4 networkScope_4 2000 350

NCxP_5 networkScope_5 5000 900

Number of

brokers

1

124 S.L. Kiani et al.

123

http://www.google.com/phone/detail/nexus-one

its energy consumption signature. All results in the fol-

lowing section are mean values of five repetitions of each

experiment iteration. Comparison of results from individ-

ual iterations show variations within ± 3 %.

6 Results

The purpose of the experiment is to investigate the effects

of using a broker for the coordination and dissemination of

contextual information collected at, or required by, the

mobile device and cloud services. The following para-

graphs discuss the results of the experiments described in

the previous section.

6.1 Effect on energy consumption

Figure 11 shows the comparison of the energy consump-

tion on the mobile device with and without utilising a

mobile broker. The experiment is repeated with 100, 1,000,

2,000 and 5,000 queries exchanged between the device and

cloud based services. All queries are satisfied with a valid

response from the appropriate context provider. In this case

network availability is 100 %, i.e. no disconnection takes

place during the experiment. The results show that the use

of the MCxB only results in energy conservation after a

certain threshold of number of queries. Initially, for a small

number of queries, the extra broker process results in

increase in energy usage at the device. With the increase in

number of queries over time, the caching feature of the

MCxB saves significant energy by satisfying a portion of

queries locally from cache instead of initiating network

communication. The cache hit rate in these experiments

varied from 17–20 %. This hit rate is marginally less than

that of around 35 % reported in our earlier work (Kiani

et al. 2010a, b). The reason for this is that the experiments

in that study are based on a network broker with greater

resources, greater cache size, a larger number of providers

and consumers registered with it and a larger number of

context related entities (usernames, IMEI numbers, etc.)

MCxP_1
MCxP_2
MCxP_3
MCxP_4
MCxP_5

NCxC_1

NCxC_2

NCxC_3

NCxC_4
NCxC_5

Network
Broker

MCxC_1

MCxC_2

MCxC_3

MCxC_4
MCxC_5

MCxC_6

MCxC_7

MCxC_8

MCxC_9
MCxC_10

NCxP_1
NCxP_2
NCxP_3
NCxP_4
NCxP_5

Mobile
Broker

MCxP_1
MCxP_2
MCxP_3
MCxP_4
MCxP_5

NCxC_1

NCxC_2

NCxC_3

NCxC_4
NCxC_5

Network
Broker

MCxC_1

MCxC_2

MCxC_3

MCxC_4
MCxC_5

MCxC_6

MCxC_7

MCxC_8

MCxC_9
MCxC_10

NCxP_1
NCxP_2
NCxP_3
NCxP_4
NCxP_5

Fig. 10 Deployment structure

of the experiments. Arrows

show the interest of CxCs in

particular CxPs

Number of context queries

M
ea

n
en

er
gy

 c
on

su
m

pt
io

n
pe

r
qu

er
y

(J
) Mean energy consumption per context

 query (100% network

100 1000 2000 3000 4000 5000

0.15

0.25

0.35

0.45

0.55 MCxP+MCxC
MCxP+MCxC+MBroker

Fig. 11 Energy consumption at the device with increasing queries

and 100 % network availability

Context-aware service utilisation in the clouds and energy conservation 125

123

present in the system. A perceived downside of cache

utilisation in contextual data dissemination is that cached

context is usually older than context that could have been

retrieved directly from a context provider. We have dis-

cussed the age of contextual data with respect to caching in

our earlier work (Kiani et al. 2010b, pg. 10).

6.2 Varying network availability: effect on energy

consumption

The benefits of utilising a broker become pronounced during

scenarios where network connectivity is intermittent. The

charts in Fig. 12 shows energy conservation in scenarios

where network availability varies from 100 to 50 %. This

experiment is carried out with 1,000 queries each from cloud

and device based context consumers. This number of queries

is selected because energy consumption with and without the

MCxB with 1,000 queries and full network availability is

similar (cf. Fig. 11). Because consumers and providers reg-

istered with the MCxB do not need to monitor network con-

nectivity during periods of network unavailability, a portion

of their execution cost is saved. The MCxB, which is

responsible for routing queries and responses to and from the

network for its local clients, manages the network commu-

nication and, combined with the local caching facility, it

provides significant energy conservation. The mean energy

consumption per context query reduces with decreasing

network availability in case of the MCxB based setup.

6.3 Bulk mode MCxB: effect on energy consumption

During this experiment, the Mobile Context Broker is

operated in bulk query mode, i.e. the MCxB forwards

subscription queries to the network in sets of five queries.

To operate in this mode, the MCxB examines the optional

priority field in each subscription and if the priority is set to

low then the query is added to the bulk queue, which is

only processed upon reaching a bulk limit (five in this

experiment). A bulk queue is maintained for a maximum

duration c where c is one half of the time remaining in

expiration of the subscription with the earliest expiry time.

The half limit is chosen so as to leave adequate time for

response to reach the subscribing consumer. The duration c
is re-evaluated on addition of each low priority subscrip-

tion to the bulk queue. A bulk queue is immediately pro-

cessed either when c is reached or number of queries reach

the pre-defined bulk limit.

Figure 13 shows the energy consumed at the device

under 100 % network availability in comparison to the

earlier experiment. While the MCxB operating in bulk

mode still consumes less energy overall than non-broker

scenario, the energy consumption increases in comparison

to the case where the MCxB processes each subscription

immediately. Any advantages of bulk query forwarding are

offset by the increase in the duration for which the system

has to operate in order to fully process all the queries. In

addition, when queries are being processed in bulk, the

mobile broker’s cache takes longer to populate and cache

hit ratio drops consequently (to 11.5 % on average). A drop

in the cache-hit ratio signifies an increase in network bound

traffic as compared to the scenario where the MCxB pro-

cesses subscriptions immediately. Moreover, this experi-

ment is performed with all subscriptions set to low priority

and hence the results shown in Fig. 13 signify the maxi-

mum benefit that can be garnered from bulk queries and

lower percentage of bulk queries did not yield any more

gains in energy conservation at the device.

6.4 Effect of IPC on energy conservation

Based on the observation in which we noted the mean time

taken to complete a call using IPC is less than that of HTTP

Network availability

M
ea

n
en

er
gy

 c
on

su
m

pt
io

n
pe

r
qu

er
y

(J
)

Mean energy consumption, varying network
 availability

100% 90% 80% 70% 60% 50%

0.27

0.3

0.33

0.35 MCxP+MCxC
MCxP+MCxC+MBroker

Fig. 12 Energy consumption at the device during different levels of

network availability

Number of context queries

M
ea

n
en

er
gy

 c
on

su
m

pt
io

n
pe

r
co

nt
ex

t q
ue

ry
 (

J)

Mean energy consumption, Mobile Broker
 bulk mode

100 1000 2000 3000 4000 5000

0.15

0.25

0.35

0.45

0.55

MCxP+MCxC
MCxP+MCxC+MBroker
MCxP+MCxC+MBroker (Bulk)

Fig. 13 Energy consumption at the device with broker operating in

bulk query mode

126 S.L. Kiani et al.

123

(cp. Figs. 8, 9), we hypothesise that mean energy con-

sumed per call also varies across different communication

mechanisms. In order to verify this hypothesis, we record

the energy consumed by different communication mecha-

nisms while exchanging ContextML encoded messages

between two processes executing on the same device. The

results of this experiment, which is carried out on a Google

Nexus One phone, are recorded in Table 2. The ‘client’ and

‘server’ data columns in Table 2 show the energy con-

sumed by the components making the call and responding

to it, respectively, while their sum is shown in the

encompassing data column as well. The mean energy

consumption measurements during 500, 1,000, 2,000 and

3,000 request-reply calls using different communication

mechanisms are plotted in Fig. 14.

The results show that IPC is significantly less energy

consuming than HTTP and sockets based communication

mechanisms, specifically on average IPCs call consume

almost 12 times less energy than a Socket based call and

nearly 46 times less energy than an HTTP based call. One

of the main factors for this divide is that IPC facilities are

provided natively on the Android platform while creation

of sockets, HTTP servers and related thread management

has to be done by the developer (as carried out in our

experimental setup), resulting in additional processing

steps, creation of memory buffers, etc.

A notable observation in Table 2 is that different ratio of

energy consumed by the server and client processes in the

request-reply calls (plotted in Fig. 15a, b, c). In case of IPC

and sockets, a slight majority (*60 % and *57 %

respectively) of the energy consumption is due to the server

process while in case of HTTP it is almost equally dis-

tributed. The communication semantics in HTTP commu-

nication are analogous to the those of sockets based

communication, i.e. the server process spawns a new thread

to handle communication with a connecting client. But the

communicated data in Socket based communication, in our

experiments and in general, is usually a byte stream of

primitive and basic data types (int, double, char,

String, etc.), whereas in case of HTTP communication

any data exchanged between client and server is further

packaged into HTTP protocol specific packets. This

packing and unpacking of data is an overhead that does

provide the benefit of standardisation and interoperability,

but renders HTTP communication more computationally

and I/O intensive than sockets. Both client and server

processes have to carry out an identical set of operations

for communicating over HTTP, with spawning of a new

thread to handle incoming request the extra step carried out

by the server process. Due to these factors the server and

client processes in HTTP communication consume an

identical share of total energy but the overall energy con-

sumption is much greater (see Fig. 14) than sockets and

IPC based communication in these experiments.

The preceding discussion and results reinforce the usage

of IPC based communication between consumers, provid-

ers and the prototype Mobile Context Broker in the Context

Provisioning Architecture. Figures 16 and 17 show the

extended results obtained by repeating the experiment

scenario described in Sect. 5.2 and using IPC for device

based consumers–mobile broker–providers interaction.

Table 2 Total energy consumption on an Android Nexus One device - IPC vs HTTP vs Sockets calls

Number of Calls Total Energy - IPC (J) Total Energy - HTTP (J) Total Energy - Sockets (J)

Server Client Server Client Server Client

500 0.092 0.034 4.08 4.52 1.32 0.998

0.126 8.6 2.318

1000 0.147 0.116 8.03 8.79 2.87 1.76

0.263 16.82 4.63

2000 0.554 0.311 15.65 17.15 4.82 3.52

0.865 32.8 8.34

3000 0.603 0.482 27.33 22.57 7.456 6.145

1.085 49.9 13.601

Number of calls

M
ea

n
en

er
gy

 c
on

su
m

ed
 p

er
 c

al
l (

m
J) Energy Consumption IPC vs HTTP vs Sockets

500 1000 2000 3000

1

5

10

15

20

HTTP
Socket
IPC

Fig. 14 Mean energy consumption/call on Android Nexus One

device—IPC vs. HTTP vs. sockets

Context-aware service utilisation in the clouds and energy conservation 127

123

It is evident that using IPC as the communication

mechanism between device based context consumers,

providers and the broker further reduces the mean energy

consumption per context query. These energy conserva-

tion benefits of the Mobile Context Broker based inter-

action on the device are pronounced in scenarios with full

network availability (Fig. 16a), varying network connec-

tivity conditions (Fig. 16b) and when the broker operates

in the bulk mode (Fig. 17). In addition to intrinsic dif-

ferences in the operating mechanisms that influence the

resource utilisation by IPC and HTTP based communi-

cation, one of the major factors that influences the overall

reduction in energy consumption is that IPC calls take less

time to complete on average. Hence the components on

mobile devices that utilise IPC spend less waiting time

and are able to carry out their application life cycles more

efficiently.

59.7%

40.3%

Server
Client

51%

49%

Server
Client 57%

43%

Server
Client

(a) (b) (c)

Fig. 15 Ratio of energy

consumed by client and server

process during IPC/HTTP/

Socket calls. a IPC calls client-

server energy consumption

ratio, b HTTP calls client-server

energy consumption ratio,

c socket calls client-server

energy consumption ratio

Number of context queriesM
ea

n
en

er
gy

co
ns

um
pt

io
n

pe
r

co
nt

ex
tq

ue
ry

(J
)

Mean energy consumption per query
 (100% network)

100 1000 2000 3000 4000 5000

0.15

0.25

0.35

0.45

0.55 MCxP+MCxC
MCxP+MCxC+MBroker
MCxP+MCxC+MBroker(IPC)

Network availabilityM
ea

n
en

er
gy

co
ns

um
pt

io
n

pe
r

co
nt

ex
tq

ue
ry

(J
)

Mean energy consumption,
 varying network

100% 90% 80% 70% 60% 50%

0.2

0.24

0.27

0.3

0.33

0.35 MCxP+MCxC
MCxP+MCxC+MBroker
MCxP+MCxC+MBroker(IPC)

(a) (b)

Fig. 16 Extended results of the experiment with full and varying

network availability. IPC is used as the communication mechanism

between device based components. a Energy consumption at the

device with increasing number of queries during 100 % network

availability scenario. b Energy consumption at the device during

different levels of network availability (1,000 context requests)

Number of context queries

M
ea

n
en

er
gy

co
ns

um
pt

io
n

pe
r

co
nt

ex
tq

ue
ry

(J
)

Mean energy consumption, Mobile Broker bulk mode

100 1000 2000 3000 4000 5000

0.15

0.25

0.35

0.45

0.55 MCxP+MCxC
MCxP+MCxC+MBroker
MCxP+MCxC+MBroker (Bulk)
MCxP+MCxC+MBroker(Bulk+IPC)

Fig. 17 Extended results of the experiment with MCxB in bulk mode

operation. IPC is used as the communication mechanism between

device based components

128 S.L. Kiani et al.

123

7 Conclusion and future work

We can conclude from the experimental results discussed

in this section that the Mobile Context Broker reduces the

overall energy consumption by context consumers/provid-

ers during the execution of their context communication

functions. The results demonstrate that for longer durations

of operations, the mean energy consumption per context

query is reduced. Furthermore, the Mobile Context Broker

also assists in conserving energy during periods of dis-

connected operation although device based context con-

sumers and providers can be developed to limit wasteful

execution cycles during network unavailability, that incurs

a cost in terms of development effort. Based on the results

presented in this section, we expect the full utility of the

Mobile Context Broker in scenarios where there are a

number of context consuming/providing applications and

services executing on smart mobile devices and collabo-

rating with cloud-based context services. The evolving

technological trends do point towards realisation of such

scenarios in the near future.

The Mobile Context Broker is a new approach that can

accommodate the evolving role of smart mobile devices in

context awareness functions while remaining conscious of

the critical resource that is the energy reserves available on

such devices. The advent of cloud computing and emer-

gence of cloud based service provision of information

services will provide new avenues of growth in the types of

context-awareness related services that are available to

consumers. While the cloud infrastructure provides a

number of benefits to the server side infrastructure, it does

not directly benefit energy conservation on mobile devices

that interact with services hosted in the cloud. The archi-

tecture presented in this paper and the Mobile Context

Broker component is a novel solution for reducing the

impact of context-awareness related functions carried out

at a mobile device on energy consumption.

The experiments presented in this work are designed to

capture a snapshot of a typical use scenario with a limited

number of context consumers and providers on the mobile

device and in the cloud infrastructure. In the absence of any

established benchmarks for evaluation of energy con-

sumption and energy conservation strategies for context-

aware service utilisation, this work presents a novel anal-

ysis of these issues. The tool utilised in our experiments for

recording energy conservation (PowerTutor) has an aver-

age error rate of 1 % (over 10 s interval) and worst-case

error of 2.5 % (over a 10 s interval). The accuracy of the

reported results, along with the repetition of experiments

that establishes the significance of communication opti-

misation and energy consumption on devices with varying

hardware capabilities, provides a solid foundation for

drawing statistical and logical conclusions from the results.

The results have shown that the Mobile Context Broker

helps in reducing energy consumption during the utilisation

of context-awareness related services. Specifically, the

mean energy cost per context query and response is

reduced. The energy cost of acquiring sensor data and

processing context is not considered in these experiments

as such costs depend on the type of context and the sensor

data acquisition mechanism. This study has focussed on

determining only the effect of the Mobile Context Broker

on communication and coordination of context between

mobile devices, i.e. a smartphone and a cloud infrastruc-

ture. The factors that aid in improvement in energy con-

sumption include reduction in the amount of network

bound communication due to the broker’s caching facility

and reducing execution cost of consumers and providers

during periods of network unavailability.

The analysis environment utilised in our experiments is

limited to one mobile device and a strictly defined set of

parameters. In future the scope of these experiments will

be expanded to include a diverse set of devices, networks

and complex query patterns in order to infer more gen-

eralised results. Furthermore, we will endeavour to deploy

the Context Provisioning Architecture in a realistic cloud

based setting and analyse context exchange between

consumers and providers deployed in the cloud infra-

structure, network and mobile devices. Such an environ-

ment will provide a holistic understanding of the gains

afforded by the energy conservation technique described

in this work.

We conclude by summarising that the Mobile Context

Broker in the Context Provisioning Architecture presents a

novel approach for context communication across mobile

devices and network/cloud based services, incorporates the

issue of energy conservation in its design and provides the

developers of context-aware systems a new approach

towards energy-awareness in context-aware systems.

References

Anand A, Manikopoulos C, Jones Q, Borcea C (2007) A quantitative

analysis of power consumption for location-aware applications

on smart phones. In: IEEE international symposium on industrial

electronics (ISIE), pp 1986–1991

Andersson C, Freeman D, James I, Johnston A, Ljung S (2006)

Mobile media and applications, from concept to cash. Wiley

Online Library. ISBN 0470017473

Apple Inc (2011) Apple to unveil next generation software at keynote

address on monday. Press release. http://www.apple.com/pr/

library/2011/05/31wwdc.html. Accessed 08 June 2011

Balasubramanian N, Balasubramanian A, Venkataramani A (2009)

Energy consumption in mobile phones: a measurement study and

implications for network applications. In: Proceedings of the 9th

ACM SIGCOMM conference on internet measurement confer-

ence. ACM, pp 280–293

Context-aware service utilisation in the clouds and energy conservation 129

123

http://www.apple.com/pr/library/2011/05/31wwdc.html
http://www.apple.com/pr/library/2011/05/31wwdc.html

Bernal JFM, Ardito L, Morisio M, Falcarin P (2010) Towards an

efficient context-aware system: problems and suggestions to

reduce energy consumption in mobile devices. In: 9th interna-

tional conference on mobile business and 9th global mobility

roundtable (ICMB-GMR). IEEE, pp 510–514

Buschmann F, Henney K, Schmidt DC (2007) Pattern-oriented

software architecture: on patterns and pattern languages. Wiley,

Chichester. ISBN 0471486485

Butler M (2011) Android: changing the mobile landscape. IEEE

Pervasive Comput 10:4–7. ISSN 1536-1268

Chen H (2004) An intelligent broker architecture for pervasive

context-aware systems. PhD thesis, University of Maryland,

Baltimore County

Chiaraviglio L, Ciullo D, Meo M, Marsan MA (2009) Energy-

efficient management of UMTS access networks. In: 21st

international teletraffic congress. IEEE, pp 1–8

Choudhury T, Borriello G, Consolvo S, Haehnel D, Harrison B,

Hemingway B, Hightower J et al (2008) The mobile sensing

platform: an embedded activity recognition system. IEEE

Pervasive Comput 7(2):32–41. ISSN 1536–1268

Clarke P, Cooper M (2000) Knowledge management and collabora-

tion. In: Proceedings of practical aspects of knowledge manage-

ment (PAKM). Basel, Switzerland

Crk I, Bi M, Gniady C (2008) Interaction-aware energy management

for wireless network cards. In: Proceedings of the ACM

SIGMETRICS international conference on measurement and

modeling of computer systems. SIGMETRICS ’08, New York,

NY, USA. ACM, pp. 371–382

Devlic A, Graf A, Barone P, Mamelli A, Karapantelakis A (2008)

Evaluation of context distribution methods via bluetooth and

WLAN: insights gained while examining battery power con-

sumption. In: Proceedings of the international conference on

mobile and ubiquitous systems: computing, networking and

services (MobiQuitous). Dublin, Ireland

Dey AK, Abowd GD (2000) Towards a better understanding of

context and context-awareness. In: CHI workshop on the what,

who, where, when, and how of context-awareness, vol 4, pp 1–6

Dey AK, Abowd GD, Salber D, Masayasu (1999) An architecture to

support context-aware applications. In: 12th annual ACM

symposium on user interface software and technology

Fábián Á,Gy}orbı́ró N, Hományi G (2008) Activity recognition system

for mobile phones using the MotionBand device. In: Proceedings

of the 1st international conference on MOBILe wireless

MiddleWARE, operating systems, and applications. ICST

(Institute for Computer Sciences, Social-Informatics and Tele-

communications Engineering), pp 1–5

Fahy P, Clarke S (2004) CASS—middleware for mobile context-

aware applications. In: Workshop on context awareness, Mobi-

Sys, pp 304–308

Gu T, Pung HK, Zhang DQ (2004) A middleware for building

context-aware mobile services. In: Proceedings of IEEE vehic-

ular technology conference (VTC)

Gupta A, Mohapatra P (2007) Energy consumption and conservation

in WiFi based phones: a measurement-based study. In: 4th

annual IEEE communications society conference on sensor,

mesh and ad hoc communications and networks, SECON ’07.

IEEE, pp. 122–131. ISBN 1424412684

Henricksen K, Indulska J, McFadden T, Balasubramaniam S (2005)

Middleware for distributed context-aware systems. In: On the

move to meaningful internet systems 2005: CoopIS, DOA, and

ODBASE, pp 846–863

Huang Y, Gannon D (2006) A comparative study of web services-

based event notification specifications. In: Proceedings of the

2006 international conference workshops on parallel processing.

IEEE Computer Society, pp 7–14. ISBN 0769526373

Kang S, Lee J, Jang H, Lee H, Lee Y, Park S, Park T, Song J (2008)

Seemon: Ccalable and energy-efficient context monitoring

framework for sensor-rich mobile environments. In: Proceeding

of the 6th international conference on mobile systems, applica-

tions, and services. ACM, pp 267–280

Kassinen O, Harjula E, Korhonen J, Ylianttila M (2009) Battery life

of mobile peers with UMTS and WLAN in a Kademlia-based

P2P overlay. In: IEEE 20th international symposium on

personal, indoor and mobile radio communications. IEEE,

pp 662–665

Kernchen R, Bonnefoy D, Battestini A, Mrohs B, Wagner M,

Klemettinen M (2006) Context-awareness in MobiLife. In:

Proceedings of the 15th IST mobile summit. Mykonos, Greece.

IST Mobile Summit

Kiani S, Moltchanov B, Knappmeyer M, Baker N (2011) Analysis of the

energy conservation aspects of a mobile context broker. In: Balandin

S, Koucheryavy Y, Hu H (eds) Smart spaces and next generation

wired/wireless networking. Lecture notes in computer science, vol

6869. Springer, Berlin, pp 26–37. ISBN 978-3-642-22874-2

Kiani SL, Knappmeyer M, Baker N, Moltchanov B (2010a) A federated

broker architecture for large scale context dissemination. In:

Proceedings of the 10th international conference on scalable

computing and communications, 2nd international symposium on

advanced topics on scalable computing. Bradford, UK

Kiani SL, Knappmeyer M, Reetz ES, Baker N (2010b) Effect of

caching in a broker based context provisioning system. In:

Lukowitz P, Kortuem G, Kunze K (eds) Proceedings of the 5th

European conference on smart sensing and context (EuroSSC

2010). Lecture notes in computer science. LNCS, vol 6446.

Springer, Heidelberg, pp 108–121

Knappmeyer M, Brettschneider D, Kiani SL (2011) Context source: a

smartphone application for serving context to a generic context

provisioning system. In: Proceedings of the second workshop on

context-systems design, evaluation and optimisation in conjunc-

tion with the 24th international conference on architecture of

computing systems (ARCS). IEEE

Knappmeyer M, Kiani SL, Frá C, Moltchanov B, Baker N (2010) A

light-weight context representation and context management

schema. In: Proceedings of IEEE international symposium on

wireless pervasive computing

Knappmeyer M, Tönjes R, Baker N (2009) Modular and extendible

context provisioning for evolving mobile applications and

services. In: 18th ICT mobile summit

Korpipää P, Kela J, Malm EJ (2003) Managing context information in

mobile devices. IEEE Pervasive Comput 2(3):42–51

Mahmud K, Inoue M, Murakami H, Hasegawa M, Morikawa H

(2004) Measurement and usage of power consumption param-

eters of wireless interfaces in energy-aware multi-service mobile

terminals. In: 15th IEEE international symposium on personal,

indoor and mobile radio communications (PIMRC), vol 2. IEEE,

pp. 1090–1094. ISBN 0780385233

Moltchanov B, Knappmeyer M, Licciardi CA, Baker N (2008)

Context-aware content sharing and casting. In: International

conference on intelligence in next generation networks (ICIN).

Bordeaux, France

Moltchanov B, Zafar M, Baker N (2010) Distributed context

management: architecture and commercial trials. In: Proceedings

of ICT mobile summit 2010

Muhl G, Fiege L, Pietzuch P (2006) Distributed event-based systems.

Springer Verlag, Berlin

OMG (2008) Common object request broker architecture, version 3.1.

http://www.omg.org/spec/CORBA/3.1

Panasonic (2011) Panasonic rechargeable Li-ion OEM battery products.

http://www.panasonic.com/industrial/batteries-oem/oem/lithium-

ion.aspx

130 S.L. Kiani et al.

123

http://www.omg.org/spec/CORBA/3.1
http://www.panasonic.com/industrial/batteries-oem/oem/lithium-ion.aspx
http://www.panasonic.com/industrial/batteries-oem/oem/lithium-ion.aspx

Rahmati A, Zhong L (2007) Context-for-wireless: context-sensitive

energy-efficient wireless data transfer. In: Proceedings of the 5th

international conference on mobile systems, applications and

services. ACM, pp 165–178

Ravi N, Scott J, Han L, Iftode L (2008) Context-aware battery

management for mobile phones. In: Sixth annual IEEE interna-

tional conference on pervasive computing and communications.

IEEE, pp 224–233

Takeno K, Ichimura M, Takano K, Yamaki J (2003) Methods of

energy conservation and management for commercial Li-ion

battery packs of mobile phones. In: The 25th international

telecommunications energy conference (INTELEC). IEEE,

pp 310–316. ISBN 4885521963

van Gelder P, Beijer G, Berger M (2002) Data mining III.

Management information systems, vol 6. Statistical Analysis of

Pageviews on Web Sites. WIT Press Publishing, p 1032

Vodafone Group (2010) Connecting to the cloud: business advantage

from cloud services. Whitepaper, 2010. http://www.vodafone.

com/content/dam/vodafone/about/what/white_papers/connecting_

tothecloud.pdf. Accessed 09 June 2011

Winograd T (2001) Architectures for context. Human-Comput

Interact 16(2):401–419. ISSN 0737–0024

Yang SR (2007) Dynamic power saving mechanism for 3G UMTS

system. Mobile Netw Appl 12(1):5–14. ISSN 1383-469X

Yang SR, Yan SY, Hung HN (2007) Modeling UMTS power saving

with bursty packet data traffic. IEEE Trans Mobile Comput,

pp 1398–1409. ISSN 1536–1233

Zafar M, Baker N, Moltchanov B, Goncalves JM, Liaquat S,

Knappmeyer M (2009) Context management architecture for

future internet services. In: ICT mobile summit 2009. Santander,

Spain

Zhang L, Tiwana B, Qian Z, Wang Z, Dick RP, Mao ZM, Yang L (2010)

Accurate online power estimation and automatic battery behavior

based power model generation for smartphones. In: Proceedings of

the 8TH IEEE/ACM/IFIP international conference on hardware/

software codesign and system synthesis, CODES/ISSS ’10, New

York, NY, USA. ACM, pp 105–114. ISBN 978-1-60558-905-3.

http://doi.acm.org/10.1145/1878961.1878982

Zhuang Z, Kim KH, Singh JP (2010) Improving energy efficiency of

location sensing on smartphones. In: Proceedings of the 8th

international conference on mobile systems, applications, and

services. ACM, pp 315–330

Context-aware service utilisation in the clouds and energy conservation 131

123

http://www.vodafone.com/content/dam/vodafone/about/what/white_papers/connecting_tothecloud.pdf
http://www.vodafone.com/content/dam/vodafone/about/what/white_papers/connecting_tothecloud.pdf
http://www.vodafone.com/content/dam/vodafone/about/what/white_papers/connecting_tothecloud.pdf
http://doi.acm.org/10.1145/1878961.1878982

	Context-aware service utilisation in the clouds and energy conservation
	Abstract
	Introduction
	Background and related work
	Context provisioning architecture
	Mobile broker
	Context model and exchange mechanisms
	Context data representation
	Context data exchange

	Coordination model
	System model
	Subscriptions
	Notifications
	Client registration tables
	Subscription tables

	A single broker case
	A case of two brokers

	Design elements effecting energy consumption
	Energy consumption evaluation
	Mobile context broker prototype
	Experiment scenario

	Results
	Effect on energy consumption
	Varying network availability: effect on energy consumption
	Bulk mode MCxB: effect on energy consumption
	Effect of IPC on energy conservation

	Conclusion and future work
	References

