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Abstract—Complex scientific workflows can process large
amounts of data using thousands of tasks. The turnaround times
of these workflows are often affected by various latencies such as
the resource discovery, scheduling and data access latencies for
the individual workflow processes or actors. Minimizing these
latencies will improve the overall execution time of a workflow and
thus lead to a more efficient and robust processing environment.
In this paper, we propose a pilot job concept that has intelligent
data reuse and job execution strategies to minimize the scheduling,
queuing, execution and data access latencies. The results have
shown that significant improvements in the overall turnaround
time of a workflow can be achieved with this approach. The
proposed approach has been evaluated, first using the CMS Tier0
data processing workflow, and then simulating the workflows to
evaluate its effectiveness in a controlled environment.

Index Terms—Data cache, grid, latency, pilot jobs, workflows.

1. INTRODUCTION

CIENTIFIC experiments such as the CMS experiment
S [1] at CERN, Geneva, produce large amounts of data,
which are then processed by a variety of applications and
analyzed by users around the world. Various forms of scientific
analyses, data reconstructions and data derivations (called data
processing) are performed on the scientific data. These data
processing tasks are defined as workflows (collection of tasks
and dependencies) associated to a dataset (collection of data
files). Each workflow processes thousands of files, executes
tasks/steps (known as jobs) and takes care of the dependencies
between these tasks. An example of such a workflow is the
CMS TierO workflow [2], which processes CMS data at CERN.
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Fig. 1. Job life cycle in a grid environment.

The turnaround time of these workflows depends upon the
number of files being processed, the number and nature of the
tasks within the workflow and the level of parallelism that can
be achieved. Parallelism is achieved if a task execution can be
split into multiple jobs. A job is a workflow task that runs on
a given data.

The turnaround time of a workflow, running on a single
machine, is simply the sum of the execution times of individual
tasks in that workflow. It would take an enormous amount of
time to execute a complete workflow on a single machine due
to the size of the datasets used within high energy physics. The
problem is further compounded if a number of users submit
multiple data processing jobs, each in turn consuming multiple
datasets, in order to achieve desired results. Workflow jobs,
whose requirements have been met and have no dependencies,
can run in parallel in a distributed environment. Therefore, tasks
in scientific workflows are preferably executed on distributed
resources to reduce the overall execution time and to enable
users to achieve rapid throughput.

A highly distributed environment such as the Worldwide LHC
Computing Grid (WLCG) [3] has been deployed for the anal-
ysis of data from the Large Hadron Collider (LHC). In this dis-
tributed environment each workflow job would face scheduling
and data access latencies during its lifecycle (see Fig. 1). The
WLCQG is a global collaboration of more than 170 computing
centers in 34 countries that combines the computing resources
of more than 100000 processors. The mission of the WLCG
project is to build and maintain data storage and an analysis in-
frastructure for the entire high energy physics community that
will use the data from the LHC at CERN. At full operation in-
tensity, the LHC will produce roughly 15 petabytes (15 million
gigabytes) of data annually that thousands of scientists around
the world will access and analyze.
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Fig. 2. Multiple jobs accessing an SE.

Grid scheduling latency is the cumulative time spent in dis-
covering resources in a Grid for scheduling and the waiting time
that is spent in the queues of meta and local schedulers before
a job can start execution on a so-called worker node (WN). A
worker node is an execution resource at a site. Here the data ac-
cess latencies are mainly caused by the network bandwidth lim-
itations, the load on a storage element (SE) and the time spent in
accessing a storage media such as a tape drive [4]. These laten-
cies can affect the turnaround time of the workflow and in some
cases can exceed the overall execution time of a job. An experi-
mental study [5] has shown that it takes almost five minutes (on
average) for a job, in the EGEE Grid [6], to start its execution
from the time it was submitted. One can understand the extent
of delays if there are thousands of jobs being submitted and ex-
ecuted in a Grid infrastructure such as the WLCG. Minimizing
these latencies is a major research challenge in order to offer a
high quality of service that users expect from production Grids.

With the current data storage hierarchy of the WLCG, each
site maintains one or multiple dedicated machines called SEs
to store data. Each job can access the data from a given SE.
The jobs in the CMS Tier0 workflow (detailed in Section III)
stream data directly from chunks of the data available on the
SE. These jobs process this data, without downloading the en-
tire dataset on the local hard disk of a worker node. This mecha-
nism (see Fig. 2) creates an additional burden on the SE if every
CPU-bound job remotely accesses small chunks of the data pe-
riodically leading to a high frequency of I/O requests. An SE has
to keep the files open, as they are being read, for longer periods
of time and this can add to the latency being faced by the other
data requests.

Storage systems such as CASTOR [7] can store petabytes of
data; however, such systems are vulnerable to performance is-
sues in terms of high access latencies and this becomes worse
with increasing loads. This leads to longer data access times and
thus affects the overall execution time of the workflow. In order
to reduce these data access and scheduling latencies and to im-
prove the workflow turnaround time, this paper proposes to use a
pull-based scheduling system and to establish data caches on the
worker nodes. This can be achieved by managing the resources
of a worker node by using a customized resource management
software component.

To demonstrate this work, the proposed approach makes use
of a global scheduler and the concept of a pilot job. A pilot job

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 3, JUNE 2011

is a job that is responsible for setting up the required execution
environment and for managing the execution of a real job. A real
job is a job that is part of a user workflow and that waits in the
global scheduler queue. In this paper, the term real job and job
will be used interchangeably. Both these jobs follow different
submission and scheduling mechanisms. A pilot job follows the
traditional grid submission mechanism; however, a job will by-
pass it because a pilot job downloads it from a global scheduler
queue for execution. With the help of this approach, a pilot job
can assist the job in finding all or some of its required files in
the cache maintained on the worker nodes. A job can start its
execution as soon as it has been scheduled to a pilot job, thus
reducing the queuing and scheduling delays. The job will first
look for its input files in the cache and will read the data from
the local cache, provided the cache holds the required data; oth-
erwise, the job will contact the given SE for the data. Once a
job has completed its execution, a pilot job immediately noti-
fies its completion status to the scheduling and monitoring com-
ponents, thus minimizing the delays that otherwise exist in re-
trieving and notifying the job completion status. This approach
is further explained in Section IV.

This paper is organized as follows. Section II discusses the
state of the art in the research domain. Section III briefly outlines
the Tier0 workflow specification and execution system being
used at CMS-CERN. This workflow is being taken as a case
study to demonstrate that the proposed approach is effective in
improving the data access, queuing, scheduling and execution
latencies in real scientific computing environments. Section IV
provides details of the proposed architecture and justifies its se-
lection in solving the problem. Section V provides a description
of the results which show that the proposed solution has been
quite effective in reducing the turnaround times of large work-
flows. Section VI concludes this paper with possible directions
for future work.

II. RELATED WORK

Numerous efforts have been made to reduce data access la-
tencies in intensive data processing applications. The replica
management service [8] of the Globus toolkit uses data repli-
cation in order to optimize the performance of a data analysis
process. The data replication is done at the site level; however,
it cannot solve the latency issues resulting from a large number
of open file pointers on the SE and a large number of I/O re-
quests. Intelligent Cache Management (ICM) [9] uses the con-
cept of a local data cache to optimize query performance but it
replicates and stores the data on a regional basis. None of these
approaches exploits the resources at worker nodes for the pur-
pose of data caching. Peer-to-peer (P2P) approaches [10] have
been using end node capabilities for data storage; most notably,
BitTorrent [11] and super-peer approaches such as KaZaa [12]
use end node capabilities for data discovery and data transfer.
The BitTorrent approach works on the so-called fair share basis.
Data providers have to supply data for consumption by con-
sumers in the outside world, which puts additional burden on
the network usage and could also be against the security poli-
cies of the Grid sites. Taylor [13] proposes a framework that
uses the concept of super peers to create an application-specific
or workflow-specific data cache overlay. This approach makes
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use of AlChemist’s built-in flexibility to support a P2P infra-
structure on top of the WSPeer API for communication with its
peers. However, this approach is dependent upon the AIChemist
framework and the WSPeer API to create data cache overlays on
dedicated data nodes, whereas we have proposed to create data
cache on every worker node inside a cluster to optimally use
the available resources in the Grid infrastructures. There have
been various approaches [14] to schedule job taking into ac-
count the location of the data needed by a job to minimize the
data transfer, and thus the job execution time.

In addition to these efforts, research has been carried out to
minimize job submission and output retrieval latencies by using
the concept of pilot jobs in Grids. Grid projects such as PanDA
[15], DiRAC [16] and AliEn (Alice Environment) [17] use this
approach to schedule and execute jobs. All these projects use
the pilot jobs to reduce the job submission latency by pulling
a job from a global job queue and thus provide a fault-tolerant
job execution mechanism. However, these systems do not use
a pilot job infrastructure to reduce the data access latencies. A
project in CMS, GlideInWMS [18], makes use of grid resources
as part of its Condor pool. It uses Condor [19] glidein which
acts as a pilot job on a worker node. It takes the leverage of the
Condor infrastructure to enable communication with different
Condor daemons. Since these glideins are often running behind
a firewall, it uses a workaround called Condor’s Generic Con-
nection Brokering (GCB) [20] which helps the global sched-
uling daemons to contact these glideins and to push the actual
jobs directly to them. However, this approach has led to scal-
ability problems [21]. Moreover, it does not support the data
cache mechanism on worker nodes to reduce data access laten-
cies.

The work done by Shankar er al. [22] is closely related to the
work being reported in this paper. Their approach makes use
of a dedicated cache space on the worker nodes in an execu-
tion cluster for the data caching purpose. They accomplish this
with the help of condor-DAGMan, which makes it specific to
the Condor environment only. Its scheduling process involves
prior planning of the resources for a given DAG; however, in
environments such as CMS, jobs are generally data driven and
are not completely known until they have been created. More-
over, the scheduling is performed within a single site and hence
is not suitable for heterogeneous environments like the WLCG
Grid.

III. CASE STUDY

The CMS experiment at CERN uses a multi-tier distributed
architecture [23] where CERN is the Tier0. Using a four-tiered
architecture (from CERN’s central computer as the TierO to
small Tier3 analysis clusters), CERN distributes LHC data and
computations across resources worldwide to achieve aggregate
computational power unprecedented in high energy physics
data analysis research. The TierO reformats, writes out primary
datasets, stores this raw data, generated from the output of
the CMS Detector, performs an initial data reconstruction and
distributes the processed data to Tierls. In data reconstruction
phase, the raw data from the detector is converted to FEVT
[2] format that is then used in analysis by the physicist. In this
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Fig. 3. Tier0 workflow for CMS at CERN.

paper we concentrate on the Tier0 workflows and their data
access patterns; however, the approach being discussed in this
paper should be of wider usability, especially for other CMS
data intensive workflows that we intend to demonstrate in the
future. For the initial data reconstruction, a Tier0 workflow is
used, which is also a sample workflow to evaluate and bench-
mark the proposed system. This workflow consists of three
main steps: 1) Repacker, 2) PromptReco and 3) AlcaReco. The
Repacker jobs reformat the binary data from CMS detector and
split the output into different primary datasets based on physics
information. The PromptReco jobs take this output as their
input and perform an initial reconstruction into usable sets of
physics data such as the particle trajectories and the properties
of the candidate particles. The AlcaReco jobs perform a much
higher selectivity of the data produced by the PromptReco jobs
and also carry out some processing on this smaller subset. This
output is used to align and calibrate the CMS detector. Fig. 3
shows the CMS Tier0 workflow.

In each step, several jobs are created. The number of jobs in
each step depends on the number of physics events (or filtered
particle collisions of interest) in the input files. A physics event
in the CMS experiment is a collision of protons that gives birth
to elementary particles [24]. Currently each job has to process
around 5000 CMS physics events. Each job produces a rela-
tively small output dataset compared to its input dataset. It is
inefficient to store and transfer smaller files to a tape-based cen-
tral storage system because the process encounters delays and
latencies in transferring a file to and from the tape drives. There-
fore, each step has a special job called the Merge job, which gets
the output from multiple jobs and merges them. Only the merged
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files should, ideally, be transferred to the central storage system
in the first instance.

The creation and execution of all the workflow steps is data
driven. The workflow starts execution whenever a new file is
available that requires some kind of processing. The unnamed
oval process in Fig. 3 triggers the first step by creating the
Repacker jobs. The subsequent jobs are created according to
the system policies, workflow rules and data availability. There
are two main characteristics of this workflow. Multiple jobs
are dependent on a single input file, and a single job, which is
the Merge job, is dependent on multiple smaller files produced
by earlier jobs in the workflow. This workflow is created
and executed by a ProdAgent [25]: a workflow management
system used in CMS. ProdAgent is a component-based system
driven by an asynchronous and persistent messaging system
for communication among these components. ProdAgent is
responsible for creating, submitting and then monitoring the
jobs in a CMS workflow. In the existing setup, all jobs within
a Tier0 workflow are queued up in the global scheduler of
ProdAgent. The global scheduler can schedule the jobs on the
available sites in the Grid using the configured submission
mechanism such as gLite [26] and Condor-G [27]. The Tier0
instance uses local LSF [28] submission.

Once a job has been scheduled by the meta-scheduler, it is
sent to a local scheduler such as LSF, PBS [29] or Condor which
runs on a particular site. A job has to wait in the local sched-
uler’s queue before it is scheduled to a worker node. After ar-
riving on the worker node, the data dependent jobs have to wait
again before their required datasets come online on the given SE
for streaming. Once the job can access the data, it reads data in
chunks and performs its processing. After completing the pro-
cessing of its data, the job stages back the output to a given SE. It
then faces further delays until a monitoring component knows
that a job has been finished and it has staged back its output.
The latency in retrieving the job completion information delays
the submission of a dependent job, thus increasing the work-
flow turnaround time. In the current execution environment, as
shown earlier in Fig. 1, each job has to face the scheduling, mon-
itoring and data access latencies. These latencies affect the exe-
cution time of an individual job, which, in turn, affects the turn-
around time of the whole workflow. Moreover, the TierQ oper-
ations have revealed that the data access latencies are severely
affected by an overloaded SE.

The CMS TierQ is a latency critical system, where disk
buffers fill up if data from the detector are not processed in
a timely manner, and calibration constants derived promptly
are used to reconstruct the new data. For instance, data in an
Express stream [2] is expected to be processed within ~1-2
hours. Therefore, reducing aforementioned latencies is very
important to improving the turnaround time of the workflow.

IV. PROPOSED ARCHITECTURE

In order to optimize the execution of the CMS data processing
workflow, we propose to use a pull-paradigm driven by pilot
jobs and to establish data caches on the execution resources.
This approach will help in avoiding scheduling, monitoring and
data access latencies for the real jobs. As a consequence of this
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approach, there will be fewer job failures that may appear due
to incorrect job execution environments. The approach will also
be used to create data caches on the worker nodes.

The pilot job concept provides three main advantages. Firstly,
jobs do not face scheduling and monitoring latencies since the
pilot jobs will pull them directly from the global scheduling
queue and notify job completion as soon as a job has been
finished. Secondly, the pilot job will manage the available re-
sources on the worker node for data caching, which will help
in avoiding data access latencies. Thirdly, the pilot jobs will
ensure that an execution environment is appropriate for a job
before executing it. Furthermore, the pilot jobs act as a layer
on top of the local batch system such as Condor and LSF and
therefore it ignores the local schedulers and makes use of the
meta-scheduler policies for making scheduling decisions. This
not only reduces the queuing times that can be quite high in
local schedulers, but it will also reduce the job failures. As a
result of this, jobs are only sent to a site if they are requested
by a pilot job running on the site and it has the required execu-
tion environment. Moreover, this approach makes the decision
making process distributed, cooperative and fault tolerant. With
this approach, there will potentially be a single scheduler in the
Grid for the jobs since they will bypass the local schedulers run-
ning on the sites. The meta-scheduler in association with the
pilot jobs will make cooperative scheduling decisions to reduce
job failures and minimize queuing and execution latencies. This
proposed approach dynamically matches jobs to the pilot jobs
and thus makes the scheduling decisions that are required for ef-
ficient cache and resource usage. The overview of the proposed
architecture is shown in Fig. 4.

The JobCreator component of the ProdAgent system will
create the jobs from the workflow and queue them in the
TaskQueue (TQ). The TaskQueue, a central job queue for
ProdAgent jobs, will hold all the jobs of the workflow that are
waiting to be scheduled for execution. The TaskQueue will
schedule them upon receiving job requests from the pilot jobs.
The TaskQueue is also responsible for registering new pilot jobs
and maintaining the information about them. An architecture
of the pilot job and the TaskQueue is given in Fig. 5.

The number of pilot jobs that should be submitted to a site is
subject to the number of jobs that are waiting in the TaskQueue
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Fig. 5. Detailed architecture of PilotJob and TaskQueue.

for that particular site. Currently, each pilot job is capable of run-
ning a single job at any point in time. Since the Grid sites are
shared among multiple Virtual Organizations (VOs), we cannot
load them with pilot jobs that will not have work to do. Two
configurable thresholds are used to avoid this problem. These
thresholds are called minPilots and maxPilots, which put a limit
on the minimum and maximum number of pilot jobs for a site.
Each site has its own values for these thresholds that are pro-
vided by the site policy. The PilotMonitor component, which
is responsible for monitoring the state of submitted pilots, cal-
culates the required number of the additional pilot jobs within
these thresholds and then requests the PilotManager component
to submit them. Section I'V-A details the algorithm used in the
PilotMonitor to calculate the required number of pilot jobs.
Upon receiving the request from the PilotMonitor, the Pilot-
Manager component prepares the required number of pilot jobs
with configurable parameters and submits them. The pilot jobs
are submitted using the underlying submission system such as
LSF, Condor or gLite for grid submission. Once a pilot job has
been scheduled on a worker node within an execution cluster, it
will perform initial environment checks and register itself with
the TaskQueue. In the registration phase, the TaskQueue assigns
a unique id, PilotID, to each pilot job to identify it during its
subsequent requests. Once the environment has been setup and
the registration process has been completed, the pilot job is then
ready to contact the TaskQueue to get the job. However, if there
is something missing in the environment that is required for ex-
ecuting a job, the pilot job announces the error and terminates
itself; hence no job would be executed. This helps in having
fewer job failures that occur due to an improper execution en-
vironment which is one of the major reasons for job failures in
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Grids [30]. The pilot job approach being proposed in this paper
will help in reducing such failures.

After the successful environment check, the pilot job contacts
a given TaskQueue URL and requests for a job. Section V gives a
brief account of the cache-aware scheduling that the TaskQueue
performs upon receiving the pilot job request. Once a job has
started its execution, it looks for the physical location of its input
files. The pilot job maintains a mapping file called Trivial File
Catalog (TFC) to discover the input files. This is an XML file
which maintains the rules to convert a Logical File Name (LFN)
into a Physical File Name (PFN) to locate a file. The TFC first
looks into the pilot job’s cache area for the required files. It pro-
vides a pointer to the input file residing on an SE if the required
file is not available in the cache.

The pilot job mechanism using the job pull-paradigm does
not pose security concerns for the grid resources. Sites are nor-
mally reluctant to open ports to allow the outside world to make
connections with their internal resources. The pilot jobs act as
clients for the TaskQueue and pulls jobs into the site preventing
opening any additional ports.

A. PilotMonitor Algorithm

The PilotMonitor component keeps track of the submitted
pilot jobs and the jobs that are queued in the TaskQueue. The
pilot jobs that are submitted to a site can be in one of three states
(inactive, idle, busy) during their lifecycles. The inactive state is
applied to those pilot jobs which are not running and have been
waiting in the site scheduler. A pilot job will be monitored as
idle if it is running on a WN but could not get a job from the
TaskQueue. A busy pilot job means that it has acquired a job
and this is in execution.

The PilotMonitor algorithm uses three important thresholds
to calculate the required number of pilot jobs for a site. These
thresholds are the maximum and minimum number of pilots to
be submitted to a site and the minimum number of idle pilots.
These thresholds are represented as minPilots, maxPilots, and
minldlePilots, respectively. This algorithm makes sure that the
required number of the pilot jobs should not exceed the maxPi-
lots threshold and also they should not be less than minPilots.
The last threshold, minldlePilots, may be useful for sites like
Tier0, where it may be desirable to always keep some idle pilots
that are ready to accept a job. This minimizes the delay caused
by the pilot job submission and also reduces the submission time
for the jobs that are submitted for the first time. All these thresh-
olds are configurable, according to the site policy.

The PilotMonitor runs this algorithm periodically for every
known site in its list. The algorithm is summarized as follows.

PilotMonitor algorithm

1. Recall thresholds and previously submitted pilots for site

2. Set: available slots = maxPilots threshold —
submitted pilots

3. If (available slots <= 0)

4. Then: Do not continue (do not submit more pilots)
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5. Query TaskQueue about tasks that can run on this site
6. For each group of enqueued tasks:
7. If (enqueued tasks < inactive pilots)

8. Then: mark inactive pilots as active, mark tasks as
covered

9. Else: If (available slots > number of tasks)

10. Then: send more pilots, mark tasks as covered
11. if (idle pilots < minIdlePilots):

12.  Then: send more pilots

13. if (submitted pilots < minPilots):

14. Then: send more pilots

This calculation is then passed to the PilotManager compo-
nent which submits the pilot jobs to a given site.

B. Cache Replacement Algorithms

On a worker node, each pilot job will have limited space
available for caching so an efficient caching replacement algo-
rithm is required for managing the cache on worker nodes. There
are many caching algorithms [31] that can perform this task
including the traditional algorithms such as First-In-First-Out
(FIFO), Least Recently Used (LRU), and Least Frequently Used
(LFU). The traditional algorithms offer low overhead as they
need minimal information, such as reference count and last ac-
cess time, for their cache replacement policies. Here reference
count means the number of times a file has been accessed in
the past and the last access time means the time at which a file
was last accessed. Some improvements have been made in these
classical algorithms namely LFU-x, LFU-again, LRU-K [32],
and LCB-K [33]. These improved algorithms such as LFU-x
remove the cache pollution problem faced by LFU. The LCB-K
and other cost sensitive cache algorithms [31] consider the cost
of data removal from the cache. However, these improved al-
gorithms store extra information to deal with issues that occur
with the traditional algorithms.

The nature of the CMS TierO workflow favors the LRU algo-
rithm because once a step has been completed and its output has
been merged, the smaller files are no longer required in the fol-
lowing steps. These smaller files are only required by the jobs
that were generated at the same level in the workflow hierarchy.
The jobs in the following steps use the data from the merged
output that has been produced from the smaller files in a pre-
vious step. Moreover, the jobs in the CMS workflow do not
directly interact with the pilot job’s caching component for a
cache lookup because they use the TFC to locate the physical
location of a file. For these reasons, it is somewhat difficult for
the cache component to maintain a reference time history or the
reference count, used by the LFU, for each file in its cache. Con-
sequently, for our prototype implementation, we have used LRU
because of its simplicity and its compatibility with the CMS
workflows.
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C. Data Caching Policy

A pilot job running on a worker node can control resources for
the time it is allowed to run. Each job, running within the pilot
job, will consume some input files and generate some output
files. Apart from executing a job, the other important task of a
pilot job is to maintain these data files in its cache. The caching
policy must adhere to the requirements and constraints detailed
in the following paragraphs.

Each running pilot job will be given a certain amount of disk
space. The pilot job uses this space to download jobs and main-
tain output files. This space will become the pilot job’s cache
area. This space is configurable at the site level and this is de-
cided by the site administrator. In CMS, each job is given a 10
GB space on the disk. Each pilot job will also get at least 10
GB space that acts as the maximum allowed space for the data
storage. Since the jobs are executed within the pilot job space,
as shown in Fig. 5, we will always need a minimum space avail-
able at any given time. This minimum space is used by the real
job to temporarily store its output that has been produced from
the job execution. Let us call this required minimum space a
Minrhreshotd- The total space that can be utilized for caching
data can be given as

CaC}LeSize = MaxSpace - MinThreshold-

This ensures that we always use the maximum allowed space
for caching purpose by always keeping the minimum available
space for the job execution.

Let us say we have a set F of “n” cache files {f1,2,f3...fn},
each having the sizes {S1, 52, S3. .. Sn}, respectively, such that
their collective sum is less than or equal to cache size

Z Si < Cachegize.

i=1

For example, a job produces a new file X which is required
to be placed in the data cache. The file X would become part
of the cache if the required space is available. If the remaining
space in the cache is insufficient to accommodate this new file,
then we need to remove some files from the cache. The LRU
algorithm should remove files from the cache such that the sum
of the removed files matches the following criterion:

Z Si1 > RequiredSize

i=1

where RequiredSize is the size of the new file for which the
cache replacement algorithm will create space in the cache.

D. Cache Sharing Among Pilots on Same Worker Node

On execution if resources are available at TierQ) at CERN,
multiple jobs can run in parallel on a single WorkerNode (WN).
Therefore, it is possible that multiple pilot jobs may land on
the same WN. The usage of the cached data will become more
effective if these pilot jobs can share their cached data. Since
the cached data is available and accessible locally, there will
be low data access latencies if the jobs can access the shared
cache. The cache sharing concept becomes even more helpful
in the scenario when Pilotl is running a job which needs a file
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available in the cache of Pilot2 that is running on the same WN.
A job does not need to access an SE if pilots can locate and then
share this cached data. This will also increase the cache hit rate.

We propose an approach that is called cache-per-host to es-
tablish cache sharing among the pilot jobs running on the same
WN. Here we assume that the pilot jobs share the same file
system on a WN. In the case of CMS, all the pilot jobs run
under the same user id or the users belong to the same group;
therefore, they can access each other’s directories. When a pilot
job arrives on a WN and registers itself with the TaskQueue,
the TaskQueue sends back the list of other available pilot jobs
on that WN and their cache locations in response to this reg-
ister request. The pilot job will then save this list and poll the
given locations for new cache files. A Unix hard link to a newly
found file is created into the pilot’s own cache area and the file
is placed into the cache by using the LRU algorithm that has
been discussed previously. In this way, the file remains in the
system even if the original owner of that file deletes it. A file is
removed from the system only if its last link is deleted. At this
point, a pilot job that prompted the file delete operation will no-
tify the TaskQueue about this. In cache-per-host, the total space
available to a pilot job on a worker node for data caching is dy-
namic. It is calculated as a function of the number of pilot jobs
on that worker node, the maximum space allowed to each pilot
job and the Minrpreshota- The following equation shows this
model where num _pilotjobs is the number of pilot jobs on that
worker node:

Cachesize = Mazspace X num_pilotjobs — Minrpreshold-

Since the pilots can shut themselves down or new pilots can
arrive on the same WN at random, a mechanism is required
to update the running pilot jobs about the other available pilot
jobs on a particular WN. This is achieved by making use of
the “Heartbeat” message, which a pilot job regularly exchanges
with the TaskQueue. This message informs the TaskQueue that
apilot job is alive. In response, the TaskQueue provides the pilot
with an updated list of other pilot jobs on the same WN. In this
way, each pilot job updates itself about every other pilot job run-
ning on the same WN. When a pilot job polls the given pilot
jobs’ locations if that location is not accessible, then the pilot
job removes that entry from its list and that particular pilot job
is assumed to be dead. Each pilot job will update its list of the
pilot jobs after each “Heartbeat” message.

E. Cache-Aware Task Scheduling

Each job placed in the TaskQueue provides its requirements,
such as its preferred site and input files. When a pilot job sub-
mitted to a worker node starts execution, it will contact the
TaskQueue to get a job that meets its requirements. The request
to the TaskQueue includes its PilotID, Host, SE, Time-to-Live
(TTL) and cached files. In this request, PilotID is the id assigned
to each pilot job during its registration with the TaskQueue, Host
is the name of the worker node where the pilot job is running,
SE is the name of the storage element accessible to the pilot job
in that particular site and the cached files are the files available
in the pilot job’s cache. The TTL is the remaining life of a pilot
job. In the current implementation for the Tier(, the pilot jobs
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can run forever because resources are dedicated to Tier0O opera-
tions. But this information will be configurable in future imple-
mentations and will be added into the job scheduling process.

The TaskQueue performs the job scheduling by comparing
job requirements against the pilot job information. The sched-
uling algorithm must schedule a job to a pilot job whose
maximum requirements meet the information provided by the
pilot job. The caching information is used to match job data
dependencies against the files maintained by the pilot job. The
TaskQueue schedules a job to a pilot job that has the maximum
number of jobs required files in its cache. A job, arriving on
a pilot job that holds some of the required files in its cache,
will face less data latency since it can find some or all of its
required files in the pilot job’s cache. The job without any
specific requirement can be scheduled onto any pilot job.

In order to provide improved job scheduling and to use cache
more effectively, we implemented a waitForData policy along-
side the above-mentioned scheduling model. According to this
policy, when a pilot requests a job but cannot match the data de-
pendencies of a job, the TaskQueue would not schedule the job
to the pilot if there are other idle pilots holding the required data.
The TaskQueue would wait for these idle pilots to eventually re-
quest a job. In this way, the scheduling process encourages the
maximum number of reads from the cache. However, if there are
no other pilots that hold the required data or they are not idle,
the TaskQueue will schedule the job to a pilot that does not have
the required files instead of keeping the job for an unknown pe-
riod of time, because, as a last resort, a job can always access
data from an SE.

V. EXPERIMENTAL RESULTS

A series of experiments have been conducted at CERN’s
Tier0O infrastructure. For these experiments, a test bed has been
used that comprises a cluster of ten machines, each of which is
capable of running four jobs in parallel. We used a dedicated
resource in TierO as an SE to avoid any external influence on the
SE. The CMS Tier0 reconstruction workflow is used as a sample
workflow in these experiments. This workflow generates a total
of 172 jobs, requires 83.41 Giga bytes (GB) of input data,
and produces 112 GB of output data. Several iterations of the
complete Tier0 workflow have been executed with the existing
system, i.e., ProdAgent and with the new developed prototype
based on pilot jobs and cache. These experiments have been
repeated several times. The figures show the measured average
values and the error bars represent the standard deviation of the
mean. The results in Fig. 6 show that the workflow turnaround
time has been reduced by 4% when using the proposed system.

This reduction in the turnaround time is mainly due to the re-
duction in job submission and job status notification times since
the pilot-based approach reduces the job scheduling latencies
(explained in the discussion of Fig. 7). The reduction is small
because, given the size of the test-bed, most of the jobs had to
be queued in LSF, and thus the job submission delays were not
reduced. Moreover, in these tests, it was not possible to measure
the behavior of the proposed system against different parameters
such as job failure rates, queuing times and data access latencies.
This is mainly due to the fact that there was no additional load
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Fig. 7. Number of jobs from W3 workflow submitted and running over time
using different submission systems.

on the SE as it is only being used for data access operations in
these experiments.

It was not practically feasible to artificially alter the access
conditions on the SE that has been used in the Tier( experiments.
Therefore, a variety of simulation experiments were conducted
at CIEMAT (in Madrid, Spain), which is a CMS Tier2 site, to
evaluate the impact of the pilot jobs and their data caching pat-
terns. In these experiments, 120 con-current pilot jobs were ex-
ecuted. This number is not far (i.e., the same order of magni-
tude) from the number of pilots a production CMS site would
run. Also note that for the case of multi-site setups, the cache
of the pilot jobs at each site behave independently of the others
because there are no inter-site job dependencies.

For the simulated experiments, a simulation engine has been
implemented to emulate the ProdAgent and the data driven be-
havior of CMS workflows by using a concept called “steps”. A
workflow is divided in such a way that jobs in the next step de-
pend on the output produced in a previous step. Three types of
workflows, generating the jobs in two steps, i.e., step0 and step 1,
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have been used in these experiments. These three types of work-
flows display three different characteristics of data intensive sci-
entific workflows in general and the CMS Tier0 workflow in
particular. As mentioned in Section I'V, the jobs can display var-
ious types of data dependencies. It can be a one-to-one (serial
chain) dependency, or many-to-one dependency where one job
(the merge job) consumes the files produced by two or more jobs
in the previous step, or one-to-many dependency where multiple
jobs (splitting jobs) can consume the files produced by a single
job.

The serial chain workflow (abbreviated as W1) demonstrates
a one-to-one dependency. In this workflow (W1), 80 jobs that
produce 80 files as their outputs are created in step0. This is
followed by another 80 jobs in stepl that are dependent on the
output produced in stepQ. This workflow represents a one-to-one
dependency between the jobs in the workflow. In the second
workflow (W2), 40 jobs are created in stepQ that produce 40 files
and are followed by 80 jobs in stepl. In the second workflow,
two jobs in stepl are dependent on a single file produced by
a job in step0. This workflow represents a splitting workflow
where more jobs consume the data that has been produced by
fewer jobs in the previous steps. In the third workflow (W3),
80 jobs in stepO produce 80 files and are followed by 40 jobs
in stepl. This is an example of a merging workflow where two
or more than two jobs are merged in the subsequent steps of a
workflow. Each job in these workflows produces a file of size
700 Mega bytes (MB). In each workflow, the jobs in step0 are
first generated and scheduled, and then the jobs in stepl, which
depend on the data produced by the jobs in step0, are generated
and enqueued in the TaskQueue.

In order to study the effect of the proposed approach on dif-
ferent type of workflows under different SE conditions (given
in Table 1), two different parameters, the delay factor and the
failure rate, are used for these experiments. The delay factor is
a delay that a job bears in accessing an SE. It is used to simu-
late the delays, which occur due to the load on an SE, in reading
and writing processes. A higher delay factor means longer times
are being taken in reading and writing to the SE. The values for
delay factor used for these simulations are 0.01, 0.15, and 0.50
and are represented as d1, d2, and d3, respectively. Each indi-
vidual job may experience slightly different delays due to mul-
tiple uncontrollable factors such as the exact time when each
job reads or the latency caused by a disk server in which each of
the accessed files is located. We have modeled this by randomly
selecting job delays from a Gaussian distribution using the se-
lected delay factor for the workflow. The other factor, failure
rate, is used to simulate the probability of failure in reading or
writing data to an SE which eventually means failure of a job;
hence, it may have a negative effect on the workflow execution.
The values for failure rate used are 0, 0.03, and 0.1 and are repre-
sented as f1, 2, and 3, respectively. A higher failure rate means
higher chances of failure in reading and writing data from and
to a data source.

Different combinations of these two factors give us different
load conditions on an SE. The d1fl, d2f2, and d3f3 combina-
tions represent Low, Moderate, and High loads on an SE, re-
spectively. The Low load on an SE means that there are not too
many read and write requests to the SE; therefore, jobs would
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TABLE 1
COMBINATION OF DELAYS AND FAILURE FACTORS
Combination | Delay Failure | Load on SE/SE
factor factor condition
difl d1=0.01 f1=0 Low/Normal
d2f2 d2=0.15 f2=0.03 | Moderate/Medium
d3f3 d3=0.50 3=0.1 High/Worse

not face long data access delays. The Moderate load on an SE
means that there are a reasonable number of read and write re-
quests to the SE and jobs might face slight delays in reading or
writing files. The High load means that there are a huge number
of requests pending for reading and writing the data to the SE;
consequently, the jobs will face longer delays and a higher prob-
ability of failure. Table I summarizes these combinations.

A third factor that can influence the experiments is the
caching scheme used in an experiment. The effect of the data
caching on such environments (such as in CMS) is more promi-
nent since this can significantly influence the overall execution
time. Different cache schemes such as cache-per-host (C1),
single-pilot-cache (C2) and cache-per-host without waitFor-
Data logic (C3) have been used in these experiments. In the
single-pilot-cache, the pilot jobs running on a WN do not share
their cache data with each other. In the cache-per-host, the
pilot jobs on a WN can discover and share cache data with
each other. For C1 and C2, waitForData logic (as discussed
in Section IV-E) is active in task scheduling process. In the
following figures except Fig. 12, the C1 cache scheme has been
used.

In order to study the effect in workflow latency in job sub-
mission and scheduling, three different job submission mech-
anisms have been used in these experiments which are 1) di-
rect submission (noTQ), 2) job submission with already run-
ning pilot jobs and 3) job submission by submitting the pilot
jobs on demand using the PilotMonitor. In the first submission
mechanism, the TaskQueue and the pilot jobs are not used. The
jobs are submitted directly to the Grid using the gLite software.
In the second submission mechanism, 120 predefined pilot jobs
are already running before the new jobs are enqueued into the
TaskQueue. In this case, the pilot jobs are ready to acquire new
jobs and execute them. In the third submission mechanism, the
pilot jobs are submitted on demand using the PilotMonitor al-
gorithm explained in Section IV-A.

The following paragraphs detail the results of the experi-
ments that have been performed using the experimental setup
discussed in the previous paragraphs. In order to measure these
results, simulated experiments have been repeated several times
and the figures present the measured average values and the
standard deviation of the mean is shown as error bars. The plot
in Fig. 7 shows the number of running jobs over time for a
W3 workflow where the jobs were submitted using the three
submission mechanisms. There is an initial job submission
delay for the direct (without the pilot jobs and the TaskQueue)
and PilotMonitor-based job submission. This delay is due to
the scheduling latencies introduced by gLite, and pilot jobs
have to wait in a local scheduler’s queue before they can run
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and request the jobs. However, this is not the case when the
pilot jobs are already running, and thus there are no submission
delays as the pilots are already waiting for the jobs. There are
no queuing delays for the jobs since the pilots pull them as far
as they can to meet the jobs’ requirements.

The results show a decrease in queuing times for the jobs and
scheduling latencies when a pilot-based system is used in com-
parison to the direct submission. In the direct submission mech-
anism, there is also a huge delay between the time step(Q jobs
complete their execution and the jobs in stepl are submitted
(group of running jobs as shown on the right side of the plot).
This is due to the latency introduced by gLite in notifying the
job completion. On the contrary, there are almost no such delays
between these steps with the pilot-based approach. The knees in
Fig. 7, for the pilot-based approach, are due to the delays in the
submission of step1 jobs after the jobs in stepO have been com-
pleted. Fig. 7 shows how job submission, scheduling and job no-
tification delays can be reduced using the pilot-based approach.
The reduction in these delays is more than 60% for the Pilot-
Monitor-based job submission and it is more than 75% when
pre-allocated pilots have been used.

Fig. 8 shows the effect of stage-in delays on job execution
times. The stage-in time in these experiments is the time a job
spends in accessing and reading a file from an SE for processing.
In CMS, files are read and processed directly from the SE and
these files are not downloaded to a worker node. The plot shows
that the system with the pilot cache provides much better data
access times, especially under worse SE conditions (d3f3) as a
smaller number of requests are sent to the SE, with an increasing
number of datasets being available in the local caches. In the
normal SE condition (d1f1), the cache does not offer signifi-
cant advantage (less than 1% improvement) over the no-cache
approach as the SE has low latencies and can serve the data re-
quests almost as fast as is expected from the pilot cache. There
is a minimal effect of higher delays and higher failure rates, i.e.,
d2f2, d3f1, and d3f3 on the stage-in time for the cache-based
system because only a few files are read from the SE (from 10 to
13 seconds). On the contrary, with an increase in the delay and
the failure rate, the stage-in time significantly increases (from
10 to 450 seconds) for the no-cache approach because all the
files are read from the SE. It is important to note here that by
using the cache, I/O requests to SE are decreased; therefore, its
use may also minimize the deterioration of the SE conditions in
the first place.

From Fig. 8, it is clear that the pilot cache mechanism pos-
itively affects the execution time of a job by reducing the data
access latencies. Considering the mean deviations, the average
reduction in job execution time is in the range 17% to 18% for
d3f1 and 18% to 20% for d3f3 case. Since the jobs are inter-de-
pendent in a workflow, this result should also reduce the turn-
around time of a complete workflow as shown in Fig. 9.

From this figure, it is clear that, except for d1fl, the cache
approach provides better workflow turnaround time than the
no-cache approach. The average reduction in turnaround time
is 17% to 20% for d3fl and 16% to 27% for d3f3. An inter-
esting fact to note here is that an increase in the failure rate has
a more prominent effect on the turnaround time compared to an
increase in the delay factor. This is due to the fact that a failure
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inreading or writing data to an SE causes a job to fail which trig-
gers the resubmission of a job, and causes an additional delay of
resubmission and re-execution of a job. We know that a job, in
a workflow, cannot be ready for execution until its predecessor
job has been completed. Since the failure of one job delays the
start of its dependent job, it increases the turnaround time of a
workflow.

In the case of the cache-based approach for W1, jobs mostly
read the required files from the cache which reduces the data
access latencies and the failures during the stage-in time. How-
ever, the failures at stage-out (writing data back to an SE) can
lead to long workflow turnaround times. As a result, the turn-
around time of W1 under d3f1 (highest delay, low failure rate)
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and no-cache under high load conditions (d3f3) at SE.

condition for both the approaches, the cache and the no-cache,
is less than d2f2 and d3f3.

Figs. 10 and 11 show the same behavior as discussed in Figs. 8
and 9 but with different workflows under worse SE conditions
(d3f3). We can see that the cache mechanism performs much
better (18% to 20% time reduction) for a workflow where the
jobs show one-to-one dependency, i.e., the W1 workflow, be-
cause the jobs from stepl can be efficiently scheduled to the
pilot jobs that hold the results of the jobs from step0.

For the workflows W2 and W3, the cache hit rate is less than
the one in W1 because the jobs from stepl may be forced to
read from two different pilots (in case of W3) or two jobs in
different pilots may read from a single pilot that is holding the
data (in case of W2). On average, for all the three workflows, the



HASHAM et al.: CMS WORKFLOW EXECUTION USING INTELLIGENT JOB SCHEDULING AND DATA ACCESS STRATEGIES

100— : : : : : : : —

Ratio of cache/total reads (%)

Cl c2 c3 cl C2 G3 Cxl C‘2 C3
Cl = per-host, C2 = per-pilot, C3 = waitForData=False

Fig. 12. Cache hit ratio for different cache configurations and workflow types.

system with the pilot cache behaves better than the one without
it. The cache system shows 11% to 13% reduction in workflow
turnaround time for W2, and 7% to 9% for W3. However, the
cache hits can be further increased in case of W2 and W3 if a
system with a global cache is used. The global cache means that
the pilot jobs can share their data across WNs in a site.

Fig. 11 depicts the cache impact on the turnaround times of
different workflows under worse SE conditions. Even if there
is a greater dispersion of measurements in the case of d3f3, it
seems safe to say that the pilots with data cache help in im-
proving the workflow execution time when the storage resources
are in the stressed conditions. The reduction in the workflow
turnaround time is 16% to 27% for W1, 4% to 17% for W2, and
1% to 16% for W3.

In this paper, we have discussed the single pilot cache (per-
pilot cache) and the cache sharing (cache-per-host) among the
pilot jobs on a worker node. A caching scheme is measured on
the basis of its responsiveness to the data access needs, mostly
measured in terms of the cache hit ratio and the byte ratio. The
cache hit ratio is the percentage of the data accesses that were
found in the cache.

The illustration in Fig. 12 depicts the cache hit ratio for dif-
ferent caching combinations and different types of workflows.
For the serial chain workflow (W1), the single pilot cache and
the share cache with the waitForData policy, as explained in
Section IV-E, yield hit rates above 99% because the jobs have
a one-to-one data dependency and they are scheduled to those
pilot jobs that are holding the required files in their caches.
When the waitForData policy is not in use, the cache hit rate
is severely reduced to 23% because the TaskQueue does not
wait for the pilot jobs with the required data to request the job.
Consequently, a job is scheduled to a pilot job that may not be
holding the required files in its cache; thus, it may reduce the
cache hitratio. In the absence of a global cache, the waitForData
approach appears to be fundamental to achieve a good cache hit
ratio because it emphasizes more on data availability in the job
scheduling process to increase the probability of cache hit.
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In Fig. 12, we can see that the efficacy of the cache-per-host
(C1) reaches to a 74% hit ratio for the splitting workflow (W2)
whereas both cache-per-host and single pilot cache (C2) pro-
duce same 50% hit ratio for the merging workflow (W3). As we
know, the stepO jobs can be scheduled to any pilot job because
they do not have any data dependencies. Therefore, the outputs
produced by these jobs are available randomly among all the
pilot jobs. For W2, each step0 job produces two output files and
each stepl job requires a single file as its input. In case of the
single-pilot-cache, we may achieve 50% cache hits at the most.
However, in case of the cache-per-host, the reason for a better
cache hit ratio is due to the possibility that two jobs might be
scheduled to two pilot jobs on the same WN where the required
data was produced by a step0 job. Due to the cache sharing, the
jobs can discover files available in some other pilot’s cache, thus
increasing the cache hit ratio.

In the case of W3, each job in step1 requires at least two input
files produced by two different stepO jobs, which were executed
by two different pilot jobs. It may be possible that those pilot
jobs are running either on two different WNs or on the same
WN. In any case, with the single-pilot-cache, 50% cache hits
might be achievable. Since the pilots cannot share caches, each
merge job can find at least one file from the pilot’s cache. How-
ever, in the case of the cache-per-host, it might be possible that
multiple required files are held by multiple pilot jobs running
on the same WN (if the corresponding stepO jobs were exe-
cuted on this WN). In this case, the scheduling mechanism may
schedule the merge job to a pilot running on this WN. How-
ever, since the files produced by the stepO jobs are available
randomly among the pilot jobs, the probability of finding two
required files on the same WN is very low, and therefore, the
cache hits ratio for the cache-per-host is only slightly higher
than the single-pilot-cache for W3.

VI. CONCLUSIONS

In this paper, we have proposed a pilot job with data cache
approach to improve workflow scheduling and execution times
for the CMS Tier0 analysis workflows. We have tested this
framework using the Tier0 workflow on a dedicated setup at
the CMS TierO infrastructure and at CIEMAT through simu-
lated experiments. The workflow execution performed at TierQ
shows that the proposed system is able to successfully run a
real CMS workflow, offering a small performance improvement
in the case of a completely unloaded SE. We believe that the
proposed caching strategy should be especially useful in cases
of an overloaded SE and high data access times. In order to
understand the efficacy of the proposed system, we devised the
simulations where we can simulate the load on the SE.

First of all, using the pilot-based job submission, it has been
seen that the delays incurred by the traditional gLite submission
system can be reduced by a factor of 60% to 75%. Further, the
impact of data caching on the workflow execution time has been
analyzed for three types of workflows. It has been noticed that
cache provides negligible improvement in turnaround time if the
SE is not overloaded. As mentioned earlier, the main use case
of the data caching strategy is a scenario when the load on an
SE is high, resulting in significant data access latencies and I/O
errors. The caching strategy provides better results when such
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conditions are applied. It provides 27% reduction in turnaround
time of a chain workflow, and provides 16% reduction in turn-
around time of a merge workflow under worse SE conditions.
The proposed caching strategy is helpful in protecting the SE
from becoming overloaded by reducing load on them, and thus
decreasing the need to over-provision these resources.

In order to improve the cache usability, shared per-host cache
and a policy to reserve tasks for pilots holding required data
(waitForData policy) have been introduced. Job scheduling al-
gorithm using waitForData results in a 99% cache hit rate for the
chaining workflow; however, it is reduced to 23% when wait-
ForData policy is not applied. In the case of splitting workflow,
the presence of per-host cache also helps improving the cache
hit ratio: it rises from 50% to 74%.

From these results, it can be concluded that pull-based job
scheduling improves the turnaround time of a workflow by re-
ducing the scheduling latencies faced by a job in Grid. It has
also been observed that our caching strategy also contributes to
improve the workflow turnaround time by reducing the data ac-
cess latencies when the SE is under high load.
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