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Abstract—Results from the research and development of a Data
Intensive and Network Aware (DIANA) scheduling engine, to be
used primarily for data intensive sciences such as physics anal-
ysis, are described. In Grid analyses, tasks can involve thousands
of computing, data handling, and network resources. The central
problem in the scheduling of these resources is the coordinated
management of computation and data at multiple locations and
not just data replication or movement. However, this can prove to
be a rather costly operation and efficient scheduling can be a chal-
lenge if compute and data resources are mapped without consid-
ering network costs. We have implemented an adaptive algorithm
within the so-called DIANA Scheduler which takes into account
data location and size, network performance and computation ca-
pability in order to enable efficient global scheduling. DIANA is a
performance-aware and economy-guided Meta Scheduler. It iter-
atively allocates each job to the site that is most likely to produce
the best performance as well as optimizing the global queue for any
remaining jobs. Therefore, it is equally suitable whether a single
job is being submitted or bulk scheduling is being performed. Re-
sults indicate that considerable performance improvements can be
gained by adopting the DIANA scheduling approach.

Index Terms—Bulk scheduling, data-intensive and net-
work-aware (DIANA) scheduler, network-aware scheduling
decisions, priority-driven multiqueue feedback algorithm.

I. INTRODUCTION

I N scientific environments such as High-Energy Physics
(HEP), hundreds of end-users may individually or col-

lectively submit thousands of jobs that access subsets of the
petabytes of HEP data distributed over the world and this type
of job submission is known as bulk submission. Given the
large number of jobs that can result from splitting the bulk
submitted jobs and the amount of data being used by these jobs,
it is possible to submit the job clusters to some scheduler as a
unique entity, with subsequent optimization in the handling of
the input datasets. In this process, known as bulk scheduling,
jobs can compete for scarce compute and storage resources and
this can distribute the load disproportionately among available
Grid nodes.

Previous approaches have been based on so-called greedy al-
gorithms where a job is submitted to a “best” resource without
assessing the global cost of this action. However, this can lead
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to a skewing in the distribution of resources and can result in
large queues, reduced performance and throughput degradation
for the remainder of the jobs. In contrast, the familiar batch-
system model for job execution is somewhat different in that
the user is faced with long response times and a low level of in-
fluence which can be ineffective for bulk scheduling. Most ex-
isting schedulers normally deal individually with jobs, cannot
handle the frequency of the (potentially millions of) jobs and
cannot treat clusters of jobs as atomic units such as is required
in bulk job scheduling. They also do not take into account net-
work aware characteristics which are an important factor in the
scheduling optimization of data intensive jobs. Contemporary
schedulers cannot reorganize and scale according to evolving
load conditions and in addition exporting and migrating jobs
to least loaded resources is also non-trivial. In this paper, we
present for the first time a DIANA scheduling system which not
only allocates best available resources to a job but also checks
the global state of jobs and resources so that the strategic output
of the Grid is maximized and no single user or job can undergo
starvation. This scheduling system can efficiently exploit the
distributed resources in that it is able to cope with the foreseen
job submission frequency and is able to handle bulk job sched-
uling. In addition, it takes into account network characteristics
and data location and supports prioritization and multiqueuing
mechanisms.

In this paper, we introduce the DIANA Scheduling system
and in particular its usage in scheduling bulk jobs. Section II
introduces a case study and Section III describes related work in
data-intensive and network-aware bulk scheduling. Section IV
explains the theoretical details of the scheduling decisions and
Section V presents the scheduling algorithm. From Section VI
onward we discuss the process for tackling bulk jobs. Section
VII illustrates the features of the bulk-scheduling algorithm
and Section VIII the algorithm to handle bulk job scheduling.
Section IX describes the job migration algorithm and Section
X provides details of the queue management scheme. Finally,
Section XI describes our results. We show that a priority-driven
multiqueue feedback based approach is the most feasible
strategy to facilitate bulk scheduling.

II. COMPACT MUON SOLENOID (CMS) DATA ANALYSIS:
A CASE STUDY

We present a typical CMS physics analysis case to introduce
the requirements, context and the problem domain that has been
addressed in the DIANA system. CMS Physics analysis [1] is
a collaborative process, in which versions of event feature ex-
traction algorithms and event selection functions are iteratively
refined until their physics effects are well understood. A typical
physics job in an analysis effort might be “run this version of
the system to identify Higgs events, and create a plot of partic-
ular parameters that have been selected to determine the charac-
teristics of this version.” The physicist normally runs the com-
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plete analysis in parallel by submitting hundreds or thousands
of jobs accessing different data files. A job generally consists
of many subjobs [2] and some large jobs might even contain
tens of thousands of subjobs which can start and run in parallel.
Each subjob consists of the running of a single CMS executable,
with a run-time from seconds up to hours. The process may be
multithreaded, but in general the threads will only use the CPU
power of a single CPU. Subjobs do not communicate with each
other directly using an interprocess communication layer (such
as MPI). Instead all data is passed, asynchronously, via datasets.
Consequently, if the data are concentrated on a single service,
then this places a large burden on that service and the network
to that service and this necessitates a special scheduling mech-
anism. A subjob generally has one or more datasets as its input,
and will generally create or update at least one dataset to store its
output. Within a job there is always an acyclic data flow arrange-
ment between subjobs, regardless of how complex the subjob
may be. This arrangement can be described as a data flow graph
in which datasets and subjobs appear alternately. The data flow
arrangement inside a job is known to the Grid components, in
particular to the Grid Schedulers and execution services, so that
they can correctly schedule and sequence subjob execution and
data movement within a job.

Once the user has submitted the job to the Grid, the Grid
Scheduler transforms the decomposed job description into a
scheduled job description, which is then passed to the Grid-wide
execution service. Often, the bulk of the CMS job output re-
mains inside the Grid, as a new or updated dataset. However,
one or more subjobs in a CMS Grid job might also deliver output
(normally in the form of files) directly to the physics analysis
tool that started the job; output delivery is asynchronous and
should be supported by a Grid service. Presented here are the
estimates [3] for the typical number of jobs from users and their
computation and data related requirements which should be sup-
ported by the CMS Grid.

• Number of simultaneously active users: 100 (1000)
• Number of jobs submitted per day: 250 (10 000)
• Number of jobs being processed in parallel: 50 (1000)
• Job turnaround time: 30 s (for tiny jobs)—1 mo (for huge

jobs) (0.2 s—5 mo)
• Number of datasets that serve as input to a subjob: 0–10

(0–50)
• Average number of datasets accessed by a job: 250 000

(10 )
• Average size of the dataset accessed by a job: 30 GB

(1–3 TB)
Note that the parameters above have a wide range of values,

so that simple averages are not very meaningful in the absence
of variances. For each parameter, the first value given is the ex-
pected value that needs to be supported as a minimum by the
Grid system to be useful to CMS. The second value, in paren-
theses, is the expected value that is needed to support max-
imum levels of usage by individual physicists. Given these sta-
tistics about workloads, it is clearly challenging to intelligently
schedule tasks and to optimize resource usage over the Grid.
This has led us to consider a bulk scheduling approach since
simple eager or lazy scheduling models are not sufficient for
tackling such distributed analysis scenarios.

III. RELATED WORK

Much work has been carried out in the domain of Grid sched-
uling however research in bulk scheduling for the Grid domain
is relatively sparse. The European Data Grid (EDG) Project
has created a resource broker under its workload management
system based on an extended and derived version of Condor [4].
Although the problem of bulk scheduling has begun to be ad-
dressed (for example through the idea of shared sandboxes in the
most recent versions of gLite from the EGEE project [5]), the
approach taken is only one of priority and policy control rather
than addressing real co-allocation and co-scheduling issues for
the bulk jobs. In the adaptive scheduling scheme [6] for data-in-
tensive applications, Shi et al. calculate the data transfer cost
for job scheduling. They consider a deadline based scheduling
approach for data-intensive applications and bulk scheduling is
not covered. The Stork project [7] claims that data placement ac-
tivities are equally important to computational jobs in the Grid
so that data-intensive jobs can be automatically queued, sched-
uled, monitored, managed, and even check-pointed as is done
in the Condor project for computation jobs. Condor and Stork
when combined handle both compute and data scheduling and
cover a number of scheduling scenarios and policies however
bulk scheduling functionality is not considered.

Thain et al. [8] describe a system that links jobs and data to-
gether by binding execution and storage sites into I/O communi-
ties. The communities then participate in the wide-area system
and the Class Ad framework is used to express relationships be-
tween stake holders in communities; however again policy is-
sues are not discussed. Their approach does cover co-alloca-
tion and co-scheduling problems but does not deal with bulk
scheduling and how this can be managed through reservation,
priority or policy. Basney et al. [9] define an execution frame-
work linking CPU and data resources in the Grid in order to
run applications on the CPUs which require access to specific
datasets however they face similar problems in their approach
to those discussed for Stork.

The Maui Cluster Scheduler [10] considers all the jobs on
a machine as a single queue and schedules them based on a
priority calculation. This approach assigns weights to the var-
ious objectives so that an overall value or priority can be asso-
ciated with each potential scheduling decision, but it only deals
with the compute jobs in a local environment. The data aware
approach of the MyGrid [11] project schedules the jobs close
to the data they require. However this traditional approach is
not cost effective given the amount of available bandwidth in
today’s networks. The approach also results in long job queues
and adds undesired load on the site when they could be moved
to other less loaded sites. The GridWay Scheduler [12] provides
dynamic scheduling and opportunistic migration but its infor-
mation collection and propagation mechanism is not robust and
in addition it has not as yet been exposed to bulk scheduling
of jobs. The Gang scheduling [13] approach provides some sort
of bulk scheduling by allocating similar tasks to a single loca-
tion but it is tailored towards parallel applications working in a
cluster whereas we are considering the Meta-Scheduling of the
data-intensive jobs submitted in bulk.
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IV. DIANA SCHEDULING

In this section, we discuss the scheduling strategy of moving
data to jobs (or both to a third location) and compare with the
strategy of existing schedulers which always move the job to
the data. One important drawback of existing schedulers is that
network bottlenecks and execution or queuing delays can be
produced in job scheduling. Data-intensive applications often
analyze large amounts of data which can be replicated over ge-
ographically distributed sites. If the data are not replicated to the
site where the job is intended to be executed, the data will need
to be fetched from remote sites. This data transfer from other
sites can degrade the overall performance of job execution. If a
computing job runs remotely, the output data produced needs to
be transferred to the user for local analysis. To provide improve-
ments in the overall job execution time and to maximize Grid
throughput, we need to align and co-schedule the computation
and the data (the input as well as the output) in such a way that
we can reduce the overall computation and data transfer costs.
We may even decide to send both the data and the executables
to a third location depending on the capabilities and character-
istics of the available resources.

We not only need to use the network characteristics while
aligning data and computations, but we also need to optimize
the task queues of the (Meta-)Scheduler on the basis of this
correlation since network characteristics can play an important
role in the matchmaking process and on Grid scheduling op-
timization. Thus, a more complex scheduling algorithm is re-
quired that should consider the job execution, data transfer and
their correlation with various network parameters on multiple
sites. There are three core elements of the scheduling problem
which can influence scheduling decisions and which need to be
tackled: data location, network capacity/quality and available
computation cycles.

First we calculate the network cost. Network Losses are de-
pendent on path conditions [14] and, therefore

The second important cost which needs to be part of the sched-
uling algorithm is the computation cost. Paper [15] describes a
mathematical formula to compute the processing time or com-
pute cost of a job

where Qi is the length of the waiting queue, Pi is the computing
capability of the site i and SiteLoad is the current load on that
site. W5, W6, and W7 are weights which can be assigned de-
pending upon the importance of the queue and the processing
capability. The third most important cost aspect in data-inten-
sive scheduling is the data transfer cost

Here we take three different costs for data transfer. The input
data transfer cost is the most significant since most jobs take
large amounts of input data which again depends on the network
cost. Higher network cost will increase the data transfer cost
and vice versa. Once we have calculated the cost of each stake
holder, the total cost is simply a combination of these individual
costs, thus:

The main optimization problem that we want to solve is to calcu-
late the cost of data transfers between sites (DTC), to minimize
the network traffic cost between the sites (NTC) and to mini-
mize the computation cost of a job within a site. This total cost
covers all aspects of the job scheduling and gives a single value
for each associated cost, thus optimizing the Meta-Scheduling
decisions.

In DIANA, we do not use independent Meta-Schedulers but
instead use a set of Meta-Schedulers that work in a peer-to-peer
(P2P) manner. As shown in Fig. 1, each site has a Meta-Sched-
uler that can communicate with all other Meta-Schedulers on
other sites. The Scheduler is able to discover other Schedulers
with the help of a discovery mechanism [16]. We do not re-
place the local Schedulers, rather we have added a layer over
each local Scheduler so that these local Schedulers can talk di-
rectly to each other instead of getting directions from a central
global/Meta-Scheduler. In the DIANA architecture, each local
Scheduler has a local queue plus a global queue which is man-
aged by the DIANA layer. This leads to a self organizing be-
havior which was missing in the client server architecture.

V. THE SCHEDULING ALGORITHM

Our Scheduler deals with both computational jobs as well
as data-intensive jobs. In the DIANA Scheduling scheme, the
Scheduler consults its peers, collects information about the
peers including network, computation and data transfer costs
and selects the site having minimum cost. To schedule com-
putational jobs, this algorithm selects resources which provide
most computational capability. The same is the case with
data-intensive jobs. To schedule data-intensive jobs, we need
to determine those resources where data can be transferred cost
effectively. Since we have calculated the different costs, we
can bring these costs under a scheduling algorithm as described
below.

In the case of a computational job, more computational re-
sources are required and the algorithm should schedule a job on
the site where the computational cost is a minimum. At the same
time, we have to transfer the job’s files so we need to ensure that
the job can be transferred as quickly as possible. Therefore, the
Scheduler will select the site with minimum computational cost
and minimum transfer cost. In the case of a data-intensive job,
our preferences will change. In this case, our job has more data
and less computation and we need to determine the site where
data can be transferred most quickly and at the same time, where
computational cost is also a minimum (or up to some acceptable
level). The algorithm keeps on scheduling until all jobs are sub-
mitted. After every job we calculate the cost to submit the next
job. The algorithm is as follows:



ANJUM et al.: DIANA SCHEDULER 3821

Fig. 1. Communication between instances of Schedulers.

If the job is compute intensive then

computationCost[]
getAllSitesComputationCost();

arrageSites[] SortSites(computationCost);
//it will sort array in ascending order

for to arrangeSite.length

site arrangeSite[i]

if (site is Alive) send the job to this
site

end loop

end if

Else if the job is data intensive then

dataTransferCost[] =
getAllSitesDataTransferCost();

arrageSites[] SortSites (dataTransferCost);
//it will sort array in ascending order

for to arrangeSite.length

site arrangeSite[i]

if (site is Alive) send the job to this site

end loop

end else-if

Else if (job is data intensive and compute intensive)

computationCost[]
getAllSitesComputationCost()

dataTransferCost[]
getAllSitesDataTransferCost()

NetworkCost[] getAllSitesNetworkCost()

// since length of computationCost and
dataTransferCost array is same. So we can use any
of them

siteTotalCost [] new
Array[computationCost.length]

for to computationCost.length

siteTotalCost [i] computationCost[i]
dataTransferCost[i]

NetworkCost[i]

end loop

sites [] SortSites(siteTotalCost)//ascending order

for to sites.length

site sites[i]

if (site is alive) schedule the job to this site

end loop

end else-if

VI. PRIORITY AND BULK SCHEDULING

We describe here characteristics which can help us in cre-
ating an optimized scheduling algorithm. Clearly, we want the
jobs to be executed in the minimum possible time. One mea-
sure of work is the number of jobs completed per unit time
i.e., the throughput. The interval from the time of submission
to completion is termed the turnaround time and has significant
bearing on performance indicators. Turnaround time is the sum
of the periods spent waiting to access memory, waiting in the
ready queue, executing the CPU and performing input/output.
The waiting time is the sum of the periods spent waiting in the
ready queue.

In an interactive system, turnaround time may not be the best
criterion. Another measure is the time from the submission of
a request until the first response has been provided. This mea-
sure, called the response time, is the time it takes to start re-
sponding but not the time that it takes to output that response.
In the proposed DIANA algorithm, we aim to minimize the ex-
ecution time, turnaround time, waiting and response time and to
maximize the throughput.

A. Priority-Based Scheduling

The proposed scheduling algorithm is termed a priority algo-
rithm. A priority is associated with each process and the CPU
is allocated to the process with the highest priority. Equal pri-
ority processes are scheduled on a first come first served (FCFS)
basis. We discuss scheduling in terms of high priority and low
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Fig. 2. Multilevel feedback queues.

priority. Priorities can be defined either internally or externally.
Internally defined priorities use some measurable quantities to
compute the priority of a process. For example, time limits,
memory requirements, the number of open files and the ratio of
I/O to CPU time can be used in computing priorities. External
priorities are set by criteria that are external to the scheduling
system such as the importance of the process. Priority sched-
uling can be either pre-emptive or non pre-emptive.

The bulk scheduling algorithm described here is not a pre-
emptive one; it simply places the new job at the head of the
ready queue and does not abort the running job. Due to the in-
teractive nature of most of the jobs, we follow a non pre-emptive
mode of scheduling and execution. Since most jobs are data in-
tensive, this makes it increasingly important to consider the non
pre-emptive mode as a primary approach. A “Round Robin” ap-
proach inside queues is not feasible in this case since most of the
analysis jobs are interactive and the user is eagerly awaiting the
output. Any delay in the output may lead to a dissatisfied user
and we need to provide resources until the output can be seen.
This approach also leads to the conclusion that the pre-emptive
approach is not feasible for interactive jobs but can be consid-
ered for batch jobs. In this algorithm we consider only the inter-
active jobs used for a Grid-enabled analysis.

B. Multilevel Queue Scheduling

Due to the different quality of service requirements by the
community of scientific analysis users, jobs can be classified
into different groups. For example, a common division is made
between interactive jobs and batch jobs. These two types of
jobs have different response-time requirements, and so might
have different scheduling needs. In addition, interactive jobs
may have priority over batch jobs. A multilevel queue-sched-
uling algorithm partitions the ready queue into multiple separate
queues.

In a multilevel queue-scheduling algorithm, jobs are perma-
nently assigned to a queue on entry to the system. Jobs do not

move between queues and this can create starvation if the jobs
running are long duration jobs. We have employed multilevel
feedback queue scheduling as shown in Fig. 2 since it allows
a job to move between queues. The idea is to separate pro-
cesses with different requirements and priorities. If a job uses
too much CPU time or is very data intensive, it will be moved
to a higher-priority queue. Similarly, a job that waits too long in
a lower-priority queue may be moved to a higher-priority queue.

VII. BULK SCHEDULING ALGORITHM CHARACTERISTICS

We propose a multilevel feedback queue and priority-driven
scheduling algorithm for bulk scheduling and its salient fea-
tures are now briefly discussed. High priority jobs are executed
first and the priority of jobs starts decreasing if the number of
jobs from a user/site increases beyond a certain threshold. The
priority becomes less than all the jobs in the queue if the job
frequency is very high. A priority scheduling algorithm may
leave some low priority processes waiting indefinitely for the
CPU and we use an aging technique to overcome this starvation
problem. Starvation of the resources is controlled by controlling
the priority of the jobs. If no other job is available in the queue
then all jobs from the user/site will be executed as high priority
jobs. We do not employ quotas and accounting since this re-
stricts the users to a particular limit. Instead, we use priorities to
schedule bulk jobs and to control the frequency, as well as the
queue on this basis. Similarly, we do not follow the budget and
deadline method of economy-based scheduling since the Grid is
dynamic and volatile and the deadline method is feasible only
for static types of environment.

All of the bulk jobs in a single burst will be submitted at a
single site. If data and computing capacity is available at more
than one site, we can consider job splitting and partitioning.
Queue length, data location, load, and network characteristics
are key parameters for making scheduling decisions for a site.
The priority of the burst or bulk of jobs is always the same since
each batch of jobs has the same execution requirements.
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Job migration between priority queues is a key point of the
algorithm. Jobs can move between low priority to high priority
queues depending upon the number of jobs from each user and
the time passed in a particular low priority queue. Although
migration of jobs between queues is supported within a single
queue, we use the FCFS algorithm. Before jobs are placed in-
side the queue for execution, the algorithm arranges the jobs
using the shortest job first (SJF) algorithm. We use the number
of processors required as a criterion to decide between short or
long execution times. Fewer processors required means job ex-
ecution time is shorter and the job priority should be set higher.
All shorter jobs are executed before longer jobs; this reduces the
average execution time of jobs.

Priorities can be of three types: user, quota, and system cen-
tric. We employ a system centric policy (embedded inside the
Scheduler) since otherwise users can manipulate the scheduling
process. In this manner a uniform approach will be set by the
Scheduler for all users and a similar priority will be applied to
all stake holders. Knowing the job arrival rates and execution
capacity, we can compute utilization, average queue length, av-
erage wait time and so on. As an example, let N be the average
queue length (excluding the jobs being serviced), let W be the
average waiting time in the queue, and let R be the average ar-
rival rate for new jobs in the queue. Then, we expect that during
the time W that a job waits, new jobs will arrive in the
queue. If the system is in a steady state, then the number of jobs
leaving the queue must be equal to the number of jobs that ar-
rive, hence

This equation, known as Little’s Formula [17], is valid for
any scheduling algorithm and arrival distribution. When a site
is assigned too many jobs, it can try to send a number of them
to other sites, which have more free resources or are processing
fewer jobs. In this case, the jobs move from one site to another
based on the criteria described in Section IX. Once a job has
been submitted on a remote site, the site at which it arrives will
not attempt to schedule it again on another remote site (thus
avoiding the situation in which a job cycles from one site to
another). To each site we submit a number of jobs and a job
reads an amount of data from a local database server, and then
processes the data. If a site becomes loaded and jobs need to be
scheduled on a remote site, the cost of their execution increases
since the database server is no longer at the same site. If the
amount of data to be transferred is too large or the speed of the
network connections is too low, it might be better not to schedule
jobs to remote sites but to schedule them for local execution.

In bulk scheduling there is a time threshold and a job
threshold. If the number of jobs submitted from a particular
user increases beyond the job threshold then the priority of the
jobs submitted above the threshold number is decreased and
jobs are migrated to a lower priority queue. In other words,
with an increasing number of jobs, the priority of jobs from a
particular user starts to decrease. Moreover, a time threshold is
included to reduce the aging affect. With the passage of time,
the priority of jobs in the lower priority queues is increased so
that it can also have a chance of being executed after a certain
wait time. In other words, the more time a job has to wait the

Fig. 3. Priority with Time and Job Frequency.

more its priority continues to increase. This is illustrated in
Fig. 3.

VIII. BULK SCHEDULING ALGORITHM

We take each bulk submission of jobs from a user as a single
group. Each group is taken as a single job by the Meta-Sched-
uler which is scheduled by the DIANA algorithm of Section IV.
If this group is too large to be handled by a site, it is divided into
subgroups, each having a sizeable number of jobs which can be
handled by any number of the sites in the Virtual Organization
(VO). The VO administrator sets the size of the subgroups which
are created if the size of the group is very large and cannot be
accommodated by any single site. This size varies from one VO
to another. We assume that jobs are divided into equal but rela-
tively smaller subgroups. The size of the subgroup is again set
by the VO administrator. The size of the group is specified in
the job description language file.

First, the Scheduler checks whether the size of the group can
be handled by a single site or not. Even if there is a site which
can handle the whole group, it still checks whether it is cost ef-
fective to place this group on that particular site or whether it
is more cost effective to divide the group into subgroups and
submit the resulting subgroups to different sites. While placing
the group or its subgroups, the DIANA scheduling algorithm is
used and each group/subgroup is treated as a single job for the
Meta-Scheduler. If the whole group is scheduled to a single site
then the whole result is returned to the location which was spec-
ified by the user. In the case of subgroups, all the data from the
subgroup execution sites is aggregated to a user specified loca-
tion. No two groups from a single user or from different users
can become part of a single group during the scheduling. Each
group from each user maintains its identity and is treated inde-
pendently by the Scheduler. The pseudocode of the algorithm is
as follows:

Set the size of group filed in the jdl.

Set the group division factor

Submit the bulk Job in groups

Get list of sites

Check the queue size and computing capacity of each site
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Fig. 4. Job groups and execution improvements.

Check the data location and data requirements of the group

Match the site capacity against the bulk job group

Use the DIANA scheduling approach to select a site

If whole group can be accommodated by the site

Submit the group to that site

Aggregate the output of all jobs in the
group

return the results to the user’s specified
location

else

Divide the group into subgroups using
the group division

factor

Find the matching sites for the
subgroups

Submit each group to different site
using DIANA scheduling

technique

Aggregate the out put of all the
subgroups

return the results to the user’s specified
location

As an example, the user submits 10 000 jobs in a bulk job. Let
us suppose, there are four sites A, B, C, and D having 100, 200,
400, and 600 CPUs, respectively. We assume that the network
and data conditions of all four sites are the same. Since these are
bulk jobs, they have similar characteristics and we assume that
each job in the group takes 1 hour to get processed. Using the
algorithm stated above, we can have three possibilities. Either
to submit all the jobs on a single site, to divide the jobs into two
best sites (in our case C and D) or to divide the jobs into four
sites. The table in Fig. 4 gives the times taken in each process.

From the table in Fig. 4 we can see that by dividing the jobs
into a number of groups, the Scheduler has clearly optimized the
job executions times. Smaller job groups mean greater optimiza-
tion. Moreover shorter jobs get higher priorities as discussed
earlier and therefore there are greater chances of their earlier ex-
ecution and this further optimizes the scheduling process. This
also gives the advantage of including smaller sites into the exe-
cution process which otherwise will remain underutilized.

There can also be a job execution limit on a site so that a user
cannot execute more than a fixed number of jobs. This concept

of small groups will clearly also help to optimize the scheduling
process. Furthermore there are certain large sites where, at a
single point in time, all the processors might not be available
and all the remaining available computing capability can be uti-
lized by assembling small groups. This will reduce the queue as
well as the load on the large sites and will also provide room for
the high priority jobs to be executed. However this does not nec-
essarily mean that just computing power is taken into account as
a submission criterion. Each group of jobs is submitted using the
DIANA scheduling algorithm which ensures that only the site
which has the least overall cost for its execution is selected for a
group or a single job. We also described earlier that SJF execu-
tion reduces the average execution times of all the jobs and this
principle is also applicable here. In the case of larger groups,
the waiting times for jobs will be longer and this will affect the
overall execution time. Small groups will spend less time in the
queue by getting higher priorities and, therefore, overall execu-
tion time will be further reduced.

IX. JOB MIGRATION ALGORITHM

To illustrate job migration let us take an example scenario
where a user submits a job to the Scheduler and the Scheduler
puts the job into the queue. If the queue management algorithm
(see Section VII) of the Scheduler decides that this job should
remain in the queue, it may have to wait a considerable time
before it gets serviced or before it is migrated to some other
site. In this case, the queue management module will ask the
scheduling module to migrate the job. The important point to
note here is that we want the job to be scheduled at the site
where it can be serviced earliest. Therefore, our peer selection
criterion is based on two things: the minimum queue length and
the minimum cost to place this job on the remote site.

The Scheduler will communicate with its peers and ask about
their current queue length and the number of jobs with priorities
greater than the current job’s priority. The site with minimum
queue length and minimum total cost is considered as the best
site to where the job can be migrated. The algorithm will work
as follows:

Sites[] GetPeerList()

int count Sites.length // total no of sites

int queueLength [] Sites.length

int job_priority getCurrentJobPriority(job); int jobsAhead[]
new

int[ count ]

for ( to count )

jobsAhead [i] getJobsAhead(Sites[i],
job_priority)

end for

int minJobs jobsAhead[1];

`` '';

//find the peer with minimum jobsAhead

for( to count)
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if(minJobs jobsAhead[j])

minJobs jobsAhead[j];

peer Sites[j];

end for

if (peer’s jobsAhead localsite’s jobsAhead) then

increase the job’s priority

migrate the job to that site

else

keep the job on local site

First, the scheduler will get the information about the avail-
able peers from the discovery or information service. Then, it
will communicate with each peer and collect the peer’s queue
length, total cost, and the number of jobs “ahead” of the cur-
rent job’s priority. After this, it will find out the site with the
minimum queue length and minimum jobs ahead. If the number
of jobs and total cost of the remote site is more than the local
cost, then this job is scheduled to the local site. In that case, the
other sites are already congested and there is no need to migrate
the job. Therefore, that job will remain in the local queue and
will be served when it gets the execution slot on the local site.
Otherwise, the job is moved to a remote site subject to the cost
mechanism. This decision is made on the principle that this job
as a result will get quicker execution since the targeted site has
overall least cost and least queue when compared to other sites.

This policy is not just all-to-all communication. The nodes
are divided into SubGrids, each SubGrid having its own “Root-
Grid.” Roughly each site has one RootGrid and may have one
or more SubGrids. The Meta-Scheduler works at the RootGrid
(Master node) level in this approach and therefore we use
the RootGrid, Master, and Meta-Scheduler interchangeably
to describe this approach. The RootGrid to RootGrid com-
munication is in essence a P2P communication between the
Meta-Schedulers. Each RootGrid maintains a table of entries
about the status of the nodes which is updated in real time when
a node joins or leaves the system. Local schedulers work at the
SubGrid level. When a user submits a job, the Meta-Scheduler
at the RootGrid communicates within the SubGrid to find suit-
able resources. If the required resources are not available within
the SubGrid, it contacts the RootGrids of other SubGrids in the
VO which have suitable resources. Therefore, a single machine
within a SubGrid communicates only with the Meta-Scheduler,
which itself communicates with the Meta-Schedulers at other
RootGrids. Consequently, this approach is not just all-to-all
communication.

A RootGrid contains all information about the nodes in its
SubGrid. In case a RootGrid crashes, a standby node in the Sub-
Grid can take over as a RootGrid. The RootGrid replicates its
information to this standby node to avoid information loss. The
RootGrid should always be the machine with the largest avail-
ability within that SubGrid and will have a unique ID, which will
be assigned at the time of its joining the Grid. After joining, a

Fig. 5. Topological Structure.

Peer will check for the existence of the RootGrid. If the Root-
Grid does not exist, it means this is the first Peer joining the
system. That Peer will then create the RootGrid and will join
it. If the RootGrid exists then the Peer will automatically join
that RootGrid and will search for its SubGrids and will join the
nearest SubGrid using the criteria stated earlier. Whenever a site
becomes part of the Grid, a separate SubGrid encompassing the
site resources is created which joins the nearest RootGrid. If the
site is fairly small in terms of the resources, this site may also
join some existing SubGrid. The size of the SubGrid and Root-
Grid and other policy decisions have to be taken by a VO ad-
ministrator and may vary from one Grid deployment to another.
This algorithm will setup the topology, as shown in Fig. 5.

X. QUEUE MANAGEMENT

We propose a multi queue feedback-oriented queue manage-
ment in which jobs are placed in the queues of varying pri-
ority. Each queue will contain jobs having priorities that fall in
its specified priority range. According to our priority calcula-
tion algorithm, the priority of all the jobs will be in the interval

where indicates the lowest priority and 1 indicates
the highest priority. Therefore, the priority ranges for four pro-
posed queues (Q1, Q2, Q3, and Q4) is proposed to be

In the process of selecting a job’s position in the queue, we
place the jobs in the descending order of their priorities i.e., the
job with the highest priority will be placed first in the queue
and a priority order is followed for the rest of jobs. Finally, we
determine all those jobs having the same priority, and arrange
them on a FCFS basis. Job migration between queues is an es-
sential feature of our queue management. On the arrival of each
new job, all the jobs already present in the queues are repriori-
tized. The reprioritization algorithm may result in the migration
of jobs from low priority to high priority queues or from high
priority to low priority queues. The reprioritization technique
militates against aging since jobs are assigned new priorities on
the arrival of each new job and each job gets its appropriate place
in the queues according to the new circumstances. In the case of



3826 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 6, DECEMBER 2006

congestion in the queues, the queue management algorithm will
migrate the jobs to any other remote site where there are fewer
jobs waiting in the queues. However, only low priority jobs are
migrated to remote sites because low priority jobs (e.g., for a
job falling in Q4) will have to wait for a long time in the case of
congestion. Knowing the arrival rate and the service rate of the
jobs, we can decide whether to migrate the job to some other
site or not. The formula to decide whether there is congestion in
the queues or not is

where Thrs is the threshold value configurable by the adminis-
trator. If we increase Thrs, then this has the effect that the arrival
rate may exceed the service rate and we must allow more jobs
in the queues and consequently there is less migration. In any
case, this value lies in the 0, 1 interval. Taking this, we can
now explain the queue management algorithm.

Suppose is the total number of jobs of the user in all job
queues, including any new job. Let the new job require t proces-
sors for the computation and T be the total number of processors
required by all the jobs present in all job queues. We denote the
quota of the user, submitting the new job, by and the sum of
the quotas of all the users, currently having their jobs in the job
queues including , by . So if the new user has already some
jobs in the job queues, will appear just once in the . Let
be the sum of lengths of all job queues, i.e., the total number of
jobs present in all job queues including the new job. Therefore,
if there are already, say, 15 jobs in the job queues when a new
job arrives, then L would be 16. To assign a new job a place
in the job queue, we associate a number to it. This number is
called the “Priority” of the job and has its value in the interval

. The rule is that “the larger the priority, the better the
place will be.” Obviously, if its priority is in the range ,
it will be considered as favored for execution. To attain a good
priority, we must meet the following two constraints:

(IV)

(V)

Combining these two inequalities (IV) and (V), we get

(VI)

We denote by .
represents the threshold and obviously, it is dynamic. For

each job, its value will be different. If a user’s number of jobs
in the queue crosses this threshold then the priority of the jobs
crossing the threshold must be lowered. To calculate the pri-
ority of the new job, we use the following algorithm:

If

Else

Fig. 6. Priority calculation for jobs from different users.

where Pr (n) denotes the priority of the new job. Note also that
the priority will always lie in the interval .

On the arrival of each job, the priorities of all the other jobs
will be recalculated. This technique is known as Reprioritiza-
tion. The reason for doing this is that we want to make sure that
the jobs encounter minimum average wait time and the most
“deserving” job in terms of quota and time is given the highest
priority. Moreover, by using this strategy we need not worry
about the starvation problem and there is no aging since jobs
are reprioritized on the arrival of each new job. The algorithm
to reprioritize the jobs is the same as that aforementioned. The
value of for a particular user’s jobs remains the same, and

remain the same for all the jobs, however, is job specific and
it may vary with each job. Therefore, the value of differs for
each job. By using the aforementioned formula, we can calcu-
late the priority for all the jobs and place them in their respective
queues.

Of course, if more than one job shares the same priority then
the timestamp associated with each job is compared and the
older job, which has spent more time in the queue, is placed
before the new job. Also note that when a job is taken out for
service the rest of the jobs need not be reprioritized.

Let us consider an example scenario where a new job is sub-
mitted by user A and it requires one processor, i.e., . We
assume that the quota q for user A is 1900 and currently there
is no job in the queue, therefore and

and . If we put these values
in the algorithm and the test ‘if’ condition is true, then this job
is placed in Q2. This scenario is shown in Fig. 6.

We assume that the first job has not as yet been serviced and
meanwhile, user A submits his second job demanding five pro-
cessors, i.e., , then

and . Again putting
these values in the algorithm, we find that the ‘if’ condition be-
comes false and and therefore the job is placed
in Q3. Reprioritization then starts and the priority of the job al-
ready present in the queue is recalculated. This time the pri-
ority is set to 0.666666 and this job is migrated from Q2 to Q1
i.e., the highest priority queue as shown in the Fig. 6. This is
of interest because user A has submitted only two jobs and the
threshold has not been exceeded on the second job. The algo-
rithm equally handles all users and jobs and the priorities de-
crease as the number of jobs by a user increases (and it does not
matter that the second job exceeds the threshold).

Now suppose that another user B submits his first job which
requires one processor, i.e., having user quota of 1700,

. Assuming that the two jobs by user A are still in the
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queues, and
. The ‘if’ condition holds true and

and, therefore, the job is placed in Q1. Reprioritization starts and
as the result, the priorities of the previous jobs change and the
first job by user A is migrated from Q1 to Q2 and the second job
by user A is migrated from Q3 to Q4. This is illustrated in Fig. 6.
It is notable that the first job by both user A and B demands one
processor and the quota of user A is greater than user B, even if
the priority of user B’s job is greater than the user A job. This
is because user A has submitted more jobs than user B and the
algorithm handles this while calculating priorities. In this way
the algorithm manages and updates the queues on the arrival of
each new job.

XI. RESULTS AND DISCUSSION

We present here results from a set of tests which have been
conducted with the DIANA Scheduler, using a prototype im-
plementation and MONARC [18] simulations to check the al-
gorithm behavior for bulk scheduling. We compare our exper-
imental results with the EGEE workload management system.
For simplicity, we have used our own test Grid (rather than a
production environment) to obtain results since a production en-
vironment requires the installation of many other Grid compo-
nents that are superfluous for the tests. We have used five sites
for the purpose of this experiment. Site 1 has four nodes and
the remaining four sites have five nodes each. First, we sub-
mitted a number of jobs which exceeded the processing capacity
of the site and observed large queues of jobs which could not be
processed in an optimal manner. The bulk scheduling algorithm
discussed earlier was used to migrate the jobs to other sites. The
results suggest that as the number of jobs increases beyond the
threshold limit, more and more jobs are migrated to other less
loaded sites over time since the site selection is no longer op-
timal. In selecting a single site, we use DIANA so that all the
network, compute-, and data-related details are brought under
consideration before the job placement on the selected site.

DIANA makes use of a P2P network to track the available re-
sources on the Grid. The current implementation makes use of
three software components for resource discovery: Clarens [19],
[24] as a resource provider/consumer, MonALISA [20] as a de-
centralized resource registry, and a peer-to-peer Jini network
provided by MonALISA as the information propagation system.
The DIANA instances can register with any of the MonALISA
peers through the discovery service and different instances can
directly interact with each other. We have employed PingER
[21] to obtain the required network performance information
since it provides detailed historical information about the status
of the networks. It is a mature tool that integrates a number of
other network performance measurement utilities to provide one
stop information for most of the parameters. It does not provide
a P2P architecture but information can be published to a Mon-
ALISA repository to propagate and access it in a decentralized
manner.

Fig. 7 shows the optimization achieved by employing the
DIANA algorithm. We can see that with an increasing number
of jobs the execution performance increases. Here we note that
DIANA is significant since as the number of jobs increases
it finds only those sites for the job execution which are least
loaded, which preferably have the required data and which have
adequate network capacity to transfer the output data towards

Fig. 7. Queue time versus number of jobs.

the client location. It is equally applicable to compute intensive
jobs since it will find a site having the shortest queue so that
when the job is then placed it will get a higher execution pri-
ority than at its current execution site. Moreover, the output data
of the compute operation will be quickly transferred to the sub-
mission site due to the optimal selection of the link between the
submission and execution nodes.

In tests, we initially submitted 25 jobs and observed their
queue time and execution time. Then we submitted the same
job three times and measured the queue and execution times
once again. After this, we increased the number of jobs to 50
and then gradually to 1000, in order to check the capability of
the existing matchmaking and scheduling system. The number
of jobs was increased for two reasons. Firstly, to check how the
queue size increases and secondly to determine in which pro-
portion the Meta-Scheduler submits the jobs (i.e., whether jobs
are submitted to some specific site or to a number of CPUs at
different locations depending on the queue size and the com-
puting capability).

We calculated and plotted the queue time and how it varies
with the number of jobs. We observed that both queue and ex-
ecution time have similar trends; this is due to the fact that
DIANA selected those sites which can most optimally execute
the jobs and where jobs do not have to wait for long times in the
queue to be executed. The queue time is almost proportional to
execution time since if the job is running and taking more time
on the processor, the waiting time of the new job will also in-
crease accordingly.

The queue time of local resource management systems is very
significant in the Grid environment and takes a certain propor-
tion of the job’s overall time (see Fig. 7). Sometimes this is even
greater than the execution time if resources are scarce compared
to the job frequency. We took only a single job queue in the
Scheduler and we assumed that all jobs have the same priority.
In fact, the job allocation algorithm being employed is based on
a FCFS principle. The FCFS queue is the simplest and incurs
almost no system overhead. The queue time here is the sum of
the time in the Meta-Scheduler queue and the time spent in the
queue of the local resource manager.

The graph of the queue times when the number of the jobs
changes is shown in Fig. 7. It shows that the queue grows with
an increasing number of jobs and that the number of jobs waiting
for the allocation of the processors for execution also increases.
The graph shown in Fig. 8 is based on average values of time
for varying number of jobs. Improvements in the queue times
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Fig. 8. Execution time versus number of jobs.

Fig. 9. Jobs execution and migration with Time.

of the jobs due to DIANA Scheduling are also depicted in the
same figure.

Similarly, we monitored the execution times of the jobs. The
execution time is the wall clock time taken for a job that is placed
on the execution node. It does not include queue time or waiting
time. By increasing the number of the jobs, it is evident from
Fig. 8 that the average time to execute a job is increased. More
competing jobs clearly mean more time for a specific job to
complete.

Once jobs at a site exceed the threshold limit, the Bulk sched-
uling algorithm again uses DIANA to select the best alternative
site for execution in terms of computation power, data location,
network capacity and queue length. As the number of jobs in-
crease beyond a threshold, bulk scheduling algorithm employs
policies and priorities to provide the desired quality of service
to all or some preferred users and also restricts certain users
making monopolistic decisions to avoid starvation for certain
users.

In Fig. 9, we can see the effect of jobs exceeding the execu-
tion capacity of a site and that jobs are exported to least loaded
sites to optimize the execution process. Even the fluctuation in
the submission rate is reflected by the corresponding export and
execution rates. If the number of jobs being processed at a site
is less than its execution capacity, then this site can import jobs
from other sites in order to reduce the overall execution and
queue time of jobs as shown in Fig. 9.

Fig. 10. Job Frequency higher than the execution.

If the job submission frequency is much higher than the site
consumption rate, the site keeps on processing the jobs at a con-
stant rate and the rest of the jobs are exported to optimally se-
lected sites. It is even possible for a site to export the jobs which
do not have the required data locally as well as importing other
jobs at the same time which can perform well locally and this is
illustrated in Fig. 10. This figure illustrates that the site is con-
stantly executing the jobs at its peak capacity but at the same
time the scheduler is migrating jobs which cannot perform well
on this site to other optimal sites. Moreover, at the same time
it is also allowing the import of jobs from other sites which ei-
ther have the required data available on this site or can get better
execution priority or there is a shorter queue on this site com-
pared to other sites. We employ the non pre-emptive approach
in our bulk scheduling algorithm and once a job starts execution
we do not move it since check-pointing [22] and restart are very
expensive operations in data-intensive applications.

In conclusion, we present here the results of the scalability
tests for the DIANA scheduling approach. These are simulation
results since it was not feasible to deploy the DIANA system on
such a high number of sites. In these tests, we assumed that there
is a Meta-Scheduler on each node (here, a node corresponds to a
site), and all the nodes work in a P2P way. As shown in Fig. 11,
the number of nodes/sites and the number of jobs scheduled to
the Grid was increased gradually to test which algorithm gives
the steepest increase in time taken. An exponential reveals poor
behavior and shows that the algorithm is not scalable. In this
test, jobs of a processing requirement of 3 MFLOP and a band-
width load of 1 MB are launched to the Grid. The ‘Round Robin
Scheduler’ algorithm has a steep linear curve showing that it
is the most unscalable of the candidates. A FLOP based algo-
rithm could be considered as being completely opposite to the
‘Round Robin Scheduler’ algorithm, since it tries to gain com-
plete knowledge about the current state of resources so that it can
schedule jobs to the most powerful available machine, guaran-
teeing the quickest possible runtime. FLOP shows far too much
variation in this case, although it is more scalable than round
robin. The DIANA P2P approach has the best performance; it
shows a nearly linear increase, and hence it is very scalable. This
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Fig. 11. Scalability Tests.

also demonstrates that DIANA is a suitable approach for large
scale Grids and it can support increasing numbers of Grid nodes.

XII. CONCLUSION

In this paper, we have studied the role of job scheduling in
a data-intensive and network-aware Grid analysis environment
and have proposed a strategy for job scheduling, queuing, and
migration. Our results indicate that a considerable optimization
can be achieved using bulk scheduling and the DIANA sched-
uling algorithms for applications that are data intensive, such as
those in large-scale physics analysis. We presented here a the-
oretical, as well as a mathematical description of the DIANA
Meta-scheduling algorithms and it was shown that a scheduling
cost based approach can significantly optimize the scheduling
process if each job is submitted and executed after taking into
consideration certain associated costs. This paper demonstrated
the bulk scheduling capability of the DIANA Scheduler for data-
intensive jobs; further details can be found in [23] in which the
cost based approach for scheduling is detailed but it does not
cover the bulk-scheduling process.

Queue time and site load, processing time, data transfer time,
executable transfer time, and results transfer time are the key
elements which need to be optimized for optimization of sched-
uling and these elements were represented in the DIANA sched-
uling algorithm. The three key variables which need to be cal-
culated were identified as data transfer cost, compute cost and
network cost and were expressed in the form of mathematical
equations. The same algorithm was extended and it was later
demonstrated that if queue, priority and job migration were in-
cluded in the DIANA scheduling algorithm, the same algorithm
could be used for scheduling of bulk jobs. As a result, a mul-
tiqueue, priority-driven feedback based bulk scheduling algo-
rithm is proposed and results suggest that it can significantly im-
prove and optimize the Grid scheduling and execution process.
This not only reduces the overall execution and queue times of
the jobs but also helps avoid resource starvation.

Our approach is equally applicable to compute– and data-in-
tensive jobs since compute-intensive jobs, for example CMS
simulation operations, also produce a large amount of data
which needs to be transferred to the client location. Moreover,
priority and queue management can significantly reduce the

wait time of the jobs which in most cases is higher than the
execution times. Similarly, the data transfer time of jobs is
reduced due to improved selection of the dataset replica while
scheduling the job and this is further ensured by carefully
evaluating the WAN link between the submission and the
execution nodes. In conclusion, this has helped to optimize the
overall execution and scheduling process when either a single
job is being executed or the bulk scheduling of jobs is being
performed and this approach is equally applicable whether the
jobs are compute or data intensive. The outcome of this paper
is being assessed for use in physics analysis chain of the CMS
project at CERN.
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