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RES: Real-time Video Stream Analytics using
Edge Enhanced Clouds

M Ali, A Anjum, O Rana, A.R Zamani, D Balouek-Thomert, M Parashar

Abstract—With increasing availability and use of Internet of Things (loT) devices such as sensors and video cameras, large amounts
of streaming data is now being produced at high velocity. Applications which require low latency response such as video surveillance,
augmented reality and autonomous vehicles demand a swift and efficient analysis of this data. Existing approaches employ cloud
infrastructure to store and perform machine learning based analytics on this data. This centralized approach has limited ability to
support real-time analysis of large-scale streaming data due to network bandwidth and latency constraints between data source and
cloud. We propose RealEdgeStream (RES) an edge enhanced stream analytics system for large-scale, high performance data
analytics. The proposed approach investigates the problem of video stream analytics by proposing (i) filtration and (ii) identification
phases. The filtration phase reduces the amount of data by filtering low-value stream objects using configurable rules. The identification
phase uses deep learning inference to perform analytics on the streams of interest. The phases consist of stages which are mapped
onto available in-transit and cloud resources using a placement algorithm to satisfy the Quality of Service (QoS) constraints identified

by a user. We demonstrate that for a 10K element data streams, with a frame rate of 15-100 per second, the job completion in the
proposed system takes 49% less time and saves 99% bandwidth compared to a centralized cloud-only based approach.

Index Terms—IoT, edge computing, video stream analytics, real-time analytics, deep learning, software defined networks, big data,

Cloud Computing

1 INTRODUCTION

IDEO cameras are the most versatile form of IoT de-
Vvices. The number of video cameras have grown at an
unprecedented rate to increase public safety and security
around the globe. France and UK have ~1 million and
~6 million CCTV cameras installed respectively. They are
currently being monitored by human personnel who in-
cessantly stare at a grid view screen to monitor actions or
events of interest. Video surveillance has traditionally been
performed by operators watching one or more video feeds,
the limitations of which are well known. About 90% of inci-
dents are missed after 20 minutes [1] as the concentration of
the CCTV operators drops.

Video analytics relieves the operator by automating the
surveillance process and can proactively detect, recognize
and respond to events coming from video streams. How-
ever, performance and accuracy are the two major concerns
in video analytics. The accuracy of the analytics process has
been improving by leaps and bounds by novel approaches
in deep learning models over recent years. Analytics using
deep learning demand powerful compute and storage re-
sources which are offered by many existing cloud platforms.
Therefore, most existing video stream analytics systems [2]
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Fig. 1. Traditional Centralized Video Stream Analytics

[3] [4] employ cloud infrastructure to perform operations
such as object classification and recognition on the incoming
data streams. However, performance is a major concern
for cloud-based stream analytics systems due to network
latency and limited bandwidth.

As shown in Fig. 1, in a “traditional” cloud-based video
stream processing system, video cameras are attached to a
network which forwards video data to a cloud platform. The
software running on the cloud performs basic processing
such as video loading and motion detection in video frames.
After basic processing, video frames are passed on to a
machine learning model to support object classification and
recognition. In such cloud-based video processing systems,
all video streams are first transferred to the cloud platform
where they are stored and analysed — sometimes referred to
as store first, analyze later approach.

With significant increase in the number of IoT devices
and the availability of cameras with high definition (HD),
4K and 360 videos, the load on the cloud has increased sub-
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stantially while the network bandwidth has not kept pace.
Therefore, a need arises to analyze this data in real-time
for applications which require low-latency response such
as video surveillance, autonomous vehicles, robotics and
augmented reality. However, cloud-based stream processing
suffers from latency issues as it takes time to transport the
data to the cloud. It is not feasible to provide low-latency
and real-time analytics using a cloud-only system, due to
large bandwidth requirements for transferring data from
source to the cloud. Edge and Fog computing [5] comple-
ment the cloud platform to provide a viable distributed
mechanism to serve low-latency requirements of many ap-
plications. We propose an edge computing based video
stream analytics approach to overcome these challenges,
with a focus on distributing the video processing pipeline
among available resources from edge to the cloud.

The proposed approach decomposes the stream process-
ing pipeline into two phases: a filtration phase and an iden-
tification phase. The phases consist of stages that are dis-
tributed over in-transit and cloud resources. The filtration
phase filters incoming data streams and the identification
phase performs analysis on the data streams. We will be
using object recognition as a scenario for real-time video
processing. The main contributions of this paper are given
below.

e A novel video analytics pipeline is proposed that
consists of filtration and identification phases, with
three stage types: basic, filter and machine learning.
The filtration phase allows the early discarding of
low-value data to improve performance. The stages
are then distributed across the edge, in-transit and
cloud resources, based on the resource requirements
of each stage. More computationally intensive stages
may continue to execute on cloud resources, whereas
basic and filter stages can be executed closer to the
user on edge and in-transit resources.

e Ahorizontal-vertical (HV) scalable architecture is de-
signed and implemented, which can efficiently scale
with an increase in input data size. This scalability is
achieved by utilizing hardware resources, including
multiple edge, in-transit and cloud nodes, to contin-
uously provide high-performance stream analytics.

e A placement algorithm is proposed and imple-
mented to optimally map the pipeline stages onto
computational resources that are part of the HV
architecture, to achieve real-time Quality of Service
(QoS) performance requirements.

e A configurable rule-based analytics approach is pro-
posed for filtering video streams based on the input
criteria, such as the detected object type and the
inference confidence threshold value.

The rest of this paper is organised as follows. In section 2
we briefly discuss the state of the art in large-scale, high-
performance stream analytics systems. In section 3, the
research approach adopted in this work is outlined using
a two phase filtration-identification approach to accelerate
video processing. In section 4, a generic Horizontal-Vertical
(HV) architecture for stream analytics is proposed which
can scale to a large number of available resources. Section
5 presents a video analysis use case to show the efficacy of
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the proposed approach as compared to a centralized cloud-
only approach. Sections 6 and 7 describe the experimental
setup and results respectively. Finally, section 8 concludes
the paper demonstrating that edge-enhanced video stream
processing is more efficient than a central cloud-only ap-
proach.

2 RELATED WORK

In this section we discuss related work focusing on cloud-
based stream processing. State of the art in edge enhanced
stream analytics is also described to better contextualise the
approach presented in this paper.

2.1 Stream Processing in Clouds

Cloud computing provides scalable compute and storage
resources to meet the demand of large-scale data analysis.
The use of a cloud platform to support stream processing
has been successfully exploited in many systems, e.g. [6] [7]
employ cloud-based compute and storage resources to store
and process streaming data. Processing a large amount of
data became mainstream with the Hadoop [8] [9], especially
with the integration of stream processing tools such as
Apache Kafka [10], Apache Spark [11] and Apache Storm
[12] which enable faster processing on the cloud platform.
Whereas “traditional” Hadoop deployments were mainly
aimed at processing batch (pre-collected) data, Apache
Spark, Kafka & Storm support processing of real time data
streams — focusing on the use of in-memory processing,
stream sharding and dynamic node deployment capability.

Most cloud platforms employ Graphical Processing
Units (GPUs) to accelerate the data analysis pipeline and
reduce the time to perform compute-intensive algorithms.
GPU-based approaches have been reported in [2] [13] [14],
which support deep learning on a cloud platform for
scalable and accurate object detection and classification.
Availability of Vision Processing Units (VPUs) from Intel
further enhance the processing capability of video-based
data analysis. The accuracy of deep learning models can
be further improved by optimization of hyper-parameters
associated with these models using a cloud platform —
where different parameter combinations can be validated
concurrently [15]. VideoStorm [16] is a multi-query based
video analysis system which can process a large number of
live video queries on large computational clusters.

However, these tools and systems can either process
limited sized data streams within a deadline or struggle to
offer high-performance analytics when data rates become
high. These platforms demand data streams to be sent to the
cloud before analysis can be initiated, leading to significant
bandwidth demand and processing delays.

2.2 Edge-Enhanced Clouds

Applications such as video surveillance and autonomous
vehicles demand low-latency processing capabilities which
cloud-only approaches are not able to provide — as the data
movement to cloud incurs a significant delay. To mitigate
this issue, edge computing [17] has been proposed to pro-
vide compute and storage resources near to the source of
the data. Edge computing extends cloud computing for
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latency-sensitive applications. Benefits of edge computing
include a reduced requirement of storage and computa-
tional resources at the cloud, reduction of bandwidth, and
provisioning of optional privacy and location services close
to the edge.

Geographically distributed edge and cloud nodes are the
only feasible solution to meet the real-time requirement for
video surveillance. Decomposition of deep learning pipeline
have been considered in [18] where edge computing was
used to make the system more efficient compared to a cloud-
only approach. Real-time video processing is considered
as a killer application for edge computing [19], however
scalable real-time analytics remains an important challenge
— as considered in this paper.

2.3 Edge Enhanced Stream Processing Systems

Many edge-based stream analytics systems focus on dead-
line driven processing [20], bandwidth limited scheduling
[17] [21] and real-time processing [22] [23]. Authors in [20]
investigated video analytics using edge and in-transit net-
work nodes with a deadline-time for each job and priority-
based scheduling. However, their focus was on getting
more jobs accepted and real-time performance, bandwidth
conservation and analytics using deep learning models were
not discussed.

Gigasight [17] saves bandwidth by running computer
vision algorithms on a cloudlet and sending the resulting
reduced data (recognized objects) to the cloud. Vigil [21]
is an edge-based wireless surveillance system which saves
bandwidth by scheduling techniques to support intelligent
tracking and surveillance. The priority of Vigil and Gi-
gasight is to conserve bandwidth while our priority is to
optimize performance while saving as much bandwidth as
possible.

Authors in [22] employ edge computing to perform
basic processing by rescaling the frame with increasing al-
gorithm complexity to achieve high-performance, however,
their approach comes at the cost of accuracy. Approaches
like EdgeEye [23] and R-Pulsar [24] provide API based
frameworks to make it easier to deploy data and code on
edge devices and are complementary to our approach.

Tetrium [25] is a wide area data processing system with
multiple resources to provide geo-distributed resource al-
location to tasks. In contrast to Tetrium, our data sources
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are located at the edge of the network and data follows a
path from edge resources to a cloud. As such, our approach
to stream analytics poses unique challenges which differ
from Tetrium. Similar to Tetrium, VideoEdge [25] is a stream
processing system which uses a hierarchical computational
cluster to process video queries to improve the accuracy
of results, with limited focus on performance enhancement.
Additionally in VideoEdge, no emphasis is put on filtering
the data, whereas discarding the data at an early stage of
analysis is a core part of our approach to increase system
efficiency.

In contrast to these existing systems and approaches,
our focus is on achieving real-time performance while con-
suming minimum network bandwidth. In RealEdgeStream
(RES), a particular emphasis is put on scalable analytics with
the same level of accuracy as a cloud platform.

3 RESEARCH APPROACH

In traditional stream processing, the analysis process is exe-
cuted on a central cloud without distinction of the individ-
ual parts or components that make up the stream processing
pipeline. The functional partitioning of the analysis pipeline
across the distributed edge to cloud continuum is an impor-
tant challenge [26] to optimize execution performance.

Our approach involves decomposing video stream anal-
ysis into a filtration and an identification phase. The filtra-
tion phase discards low value data by detecting and passing
only objects of interest to the next phase. The identification
phase performs detection and analysis of objects which
have passed the filtration phase. These phases are further
decomposed into: i) basic, ii) filter and iii) machine learning
stages. The two-phase design with three types of stages
allows for convenient and logical functional partitioning of
the stream analysis pipeline. For instance, object recognition
can be decomposed into frame loading, frame enhancement
and recognition stages. The total number of stages depends
on the specific scenario being considered.

The video analysis pipeline for object recognition on the
cloud is shown in Fig. 2a. In this approach, all of the stages
from 1-4 are executed on a central cloud. The proposed de-
composition of the pipeline using edge enhanced approach
is shown in Fig.2b. It consists of two phases and four stages.
The rules 1-3 are configurable rules which represent the filter
stages and are not part of the analysis pipeline. The stages
are mapped onto the available edge and in-transit resources
using a placement algorithm defined in section 4.1 to make
the video analysis process more efficient without a loss of
accuracy.

The filtration phase may consist of basic, machine learn-
ing and filter stages to filter data based on a predefined
criteria such as motion/object detection and object inference
confidence. Normally, the filtration phase resides on the
edge and in-transit resources to reduce the amount of data
that has to be sent to the cloud. The identification phase only
consists of machine learning stages, and can be executed at
the in-transit or cloud nodes to satisfy QoS requirements.
For object recognition, the identification phase consists of a
deep learning model, as explained in section 5.1.

The stages above can be distributed among in-transit
(edge/cloudlet) and cloud resources in many ways which
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TABLE 1

Notations
Symbol | Description
p Video Analytics Problem
Fp Filtration Phase
Ip Identification Phase
B Set of basic stages
F Set of filter stages
M Set of machine learning stages
St Total number of stages
Rt Total number of resources
C; Time cost for a single job
Cr Time cost for all jobs
Gs Percentage efficiency gain

determines the performance of the system. In general when
designing an edge enhanced stream analytics pipeline,
stages should satisfy the following properties to make the
analytics process accurate and reliable.

1) Serialization: Stages can have dependency con-
straints, and need to be executed in order —e.g. stage
2 must execute after stage 1 has been executed.

2) Integrity: The design of stages is a logical process.
Stages should be designed to maintain their concep-
tual integrity based on their execution behaviour
and characteristics. If all the executed stages have
the same behaviour and characteristics as executing
on a single machine, this property is satisfied.

3) Completion: A frame is completed or processed
when all of its stages have been executed success-
fully and satisfies properties (1) and (2) above.

3.1 Stream Analysis Pipeline Model

Video stream processing (P) involved filtration (Fp) fol-
lowed by identification (/p), as outlined below:

P=Fp—Ip 1)

The arrow represents the functional dependency between
the filtration and identification phases. Table 1 shows the
notation used in this section. The filtration phase consists of
a set of basic and filter stages whereas identification phase
consists of machine learning stages given by:

Fp=BUF 2
Ip=M 3)

B is the set of basic stages, F' is the set of filter stages and
M is the set of machine learning stages. The identification
phase is usually the most compute-intensive, as it contains
machine learning stages.

For basic processing stages, a transformation function
can include image smoothing/sharpening, noise reduction,
histogram equalization, image scaling or any other related
function. For the machine learning stages, the transforma-
tion function is a machine learning model.

Filter stages perform filtering of data which is not likely
to be of interest using a set of configurable rules and can
be implemented using a rules engine such as Drools [27]. It
decides whether to forward frames to the next node based
on these rules, e.g. an exact match to an object type or an
inference confidence for an object exceeding a threshold.
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The sum of the total number of stages of all types is
given by St
St = |[B| + |F| + [M] )

The symbols |B|, |F'| and | M| represent the cardinalities of
the basic, filtration and machine learning stages set.
The sum of the total number of resources Rr is given by

Ry = |E|+ 1] +C] ®)

where |E|, |I| and |C| represent the total number of edge,
in-transit and cloud resources respectively. The mapping of
stages to resources is an important criterion which can affect
the performance of the system. One simple but inefficient
way of mapping stages to resources is to simply divide the
total number of stages to resources. However, this approach
suffers from several limitations, e.g. resource waste when
all stages can be successfully executed on a single resource
while satisfying the job deadline requirements. We propose
a heuristic placement algorithm for the intelligent assign-
ment of stages to resources based on the criteria of latency
and deadline time in Algorithm 1.

Now, we derive the formula for the efficiency gain. The
efficiency gain will allow us to compare the performance of
the system with deployment over a cloud platform. Each
frame coming from the video stream is considered as a job
to be processed by the system.

The time cost to process each job with algorithm A is:

Cj=ta+tn (6)

where t 4 is the time to process the job and ¢ is the time to
transfer the job from source to the destination. The total cost
Cr to process all jobs can be specified as:

N
Cr=7) 0, @)
n=1

where nin C;, indicates the cost of the n'" job and the upper
limit of summation N indicates the total number of jobs. A
percentage gain is defined below to show the efficiency of
a configuration (x) in terms of time and cost for a reference
cloud (c) configuration.

Gs = (OT(C) — CT(I)) * IOO/OT(C) (8)

where Cr(x) is the total cost to process all jobs on con-
figuration C and Cr(c) is the cost to process all jobs on
a cloud configuration. The cloud configuration indicates
the traditional approach to video stream analysis with no
edge or in-transit resources in-between the data source and
the cloud. The percentage gain allows us to compare the
traditional cloud approach with one of our configurations
containing one or more edge and in-transit nodes to demon-
strate benefit of the proposed system.
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4 HORIZONTAL-VERTICAL (HV) STREAM ANALYT-
ICS ARCHITECTURE

We propose an architecture consisting of data sources, in-
transit edge and fog nodes and clouds in three tiers namely
edge, cloudlet and cloud as shown in Fig. 3. The first tier
consists of edge resources and the second tier contains
cloudlets, which are in-transit fog resources. The resources
labelled as E:1, E:2 represent edge nodes 1 and 2 respectively
and E:N represents the n'" edge node. Similarly, resources in
the cloudlet tier are labelled as C:1, C:2, C:N which represent
the corresponding cloudlet nodes 1-2 and the n‘" cloudlet
node respectively. The third tier consists of a federation
of multiple clouds. Generally, resources at the same tier
are assumed to reside at the same physical site. However,
different tiers may reside at geographically different phys-
ical locations, and therefore may have varying interaction
latencies.

Video data moves from the data source passing through
the in-transit nodes to reach the destination cloud platform.
Data stream elements are generated at regular intervals,
with these elements being initially processed by the edge
tier followed by the cloudlet and cloud tiers.

As we move from the edge to the cloud tier, the com-
putational power of tiers increases from left to right. The
edge tier has less computational power than the cloudlet
or cloud tiers as edge resources have constrained storage
and computational capacities compared to resources in the
cloudlet or cloud tiers. Similarly, cloud resources have more
storage and compute capacity than cloudlet or edge re-
sources. Latency, which is the time taken by a frame to reach
the computational resource, decreases from cloud to edge
tier. Fig. 3 shows that there is a compromise between latency
and computational capacity of a resource in the proposed
three-tier architecture.

The proposed architecture is scalable to a large number
of streams while still satisfying user QoS requirements. This
is achieved by using multiple resources in each tier. The
architecture can scale in the horizontal and vertical direc-
tion. For example in an edge tier, we can have one or more
edge nodes to process the video streams in parallel which
leads to vertical scalability. Similarly, one or more nodes can
be connected in sequence to process the dependent stages
leading to horizontal scalability.

4.1 Stages to Resource Mapping

The mapping of stages to resources is an important criterion
which can affect the performance of the overall system.
This mapping can be based on several criteria such as

Algorithm 1 Stages to Resources Mapping

Input: Stages, resources, fps and JobdeadlineTime.
Output: Stages assigned to resources
{Sort the resources using their latency}

1: resources.sort(compare_latency)

2: for all stage in stages do

3:  stageAssigned=False

4:  for all res in resources do

5 if (res.isReusable() or res.type=“Cloud”) then

6: parallelResCount=res.getParalle]Resources().size()

7: if (parallelResCount>0) then

8 stagesDivision=FPS/parallelResourcesCount

9: FPS=stagesDivision
10: end if
11: timeReq=res.getExecutionTime(stage,FPS)
12: totalTimeReq=res.getPreviousTime()+timeReq
13: if (totalTimeReq< jobDeadlineTime) then
14: res.assignStage(stage)
15: res.setPreviousTime(totalTimeReq)
16: res.setReusable(True)
17: stageAssigned=True
18: else if (totalTimeRequired=jobDeadlineTime) then
19: res.assignStage(stage)
20: stageAssigned=True
21: res.setReusable(False)
22: else if (totalTimeReq>jobDeadlineTime) then
23: res.setReusable(False)
24: end if
25: if (stageAssigned=False and res.type= “Cloud”)
then
26: res.assignStage(stage)
27: end if
28: end if
29:  end for
30: end for

minimizing the power and latency [28]. It can also be based
on reducing response time [29] or the total system energy
cost [30] while satisfying user-defined QoS requirements.
In contrast to these approaches, our resource allocation is
based on a combination of resource latency and deadline
time to maximize the analytics performance while using the
minimum number of resources.

We propose an algorithm 1 to automatically assign stages
to the number of participating resources in the proposed
three tier architecture. The algorithms prefers low latency
resources such as edge and in-transit resources and uses the
cloud resources as a last resort to reduce the bandwidth and
cost associated with the cloud platform. The algorithm is
based on the two criteria.

o Latency: Resources which are near to the data source
have less latency than resources which are far from
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TABLE 2
Frame Record header

Frame Data
(Variable)

Stage bits
N*8

Size(Bytes)
N

it. Generally, the latency of edge resources is less
than in-transit resources which have less latency
than the cloud resources. Latency order is given by
E < I < C where E, I and C stands for the edge,
in-transit and cloud resources. The intuition behind
latency is that the closer the resource, the less time
it takes for the data to reach the resource, resulting
in early processing in contrast to propagating the
data to (geographically) far resources such as a cloud
platform.

o Deadline Time: Each job has a deadline by which it
must be processed. For streaming applications, the
deadline for real-time processing is often < 1s. If a
stage takes more time to process than the deadline
time on a resource, then it should not be allocated
to that resource. The intuition behind deadline time
is that streaming jobs should be processed before the
next streaming job arrives at the network resource.
Otherwise, more jobs will start accumulating at the
resource queue buffer.

The algorithm 1 intelligently maps the stages to available
resources. The algorithm has two parts. In the first part
(step 1), we find all the available resources and sort them
based on their latency. In the second part (steps 2-30), for
each pipeline stage we find the most suitable resource by
iterating over sorted resources from start to finish. The steps
5, determines if the resource is usable and steps 6-9 finds
parallel resource(s) and divides the frame rate amongst
them. Steps 13-24 have an IF-ELSE block which decides the
assignment of stage to resources using three cases. For the
first case (steps 13-17), if the total time required (TTR) is less
than the job deadline time (JDT), then a stage is assigned and
the resource is set reusable. For the second case (steps 18-21),
if the TTR is equal to the JDT, then the stage is still assigned
to the resource but the resource reusable flag is set to false.
In the third case (steps 22-24), if the TTR is greater than
the JDT, then the resource reusable flag is set to false, so it
cannot be used for any more assignment of stages. The steps
25-27, checks if the stage has not been assigned to any edge
or in-transit resource and assigns the stage to the cloud as a
last resort. By default a resource is reusable. The algorithm
can reuse a resource for multiple stages if the time required
to process them does not exceed the deadline time. In cases
where the frame rate (FPS) of a stage processing exceeds
the deadline, it can make use of the vertical scalability for
parallel processing as given in section 4.

4.2 Stage Tagging and Serialization

The video analytics problem is decomposed into stages
which must be completed in a serial order to maintain
their conceptual integrity and completeness. The dependent
stages should be executed serially while independent stages
can be executed in any order. To complete frame processing,
each resource executes Algorithm 2 for each stage assigned

Algorithm 2 Frame Stages Synchronization

Input: A frame, stage number N
Output: Frame stage completed
Initialization :
Get the frame stage to execute
1: stagePending=stage
get a list of stage dependencies
2: frameDependentStages=getStageDep(stagePending)
Check for any unfinished stage
3: time=0;
4: for each stage in frameDependentStages do
5:  if (frame.isStageCompleted(stage)=False) then
6: time=time+executeStage(stage)
7 if time>=jobDeadlineTime then
8: forwardFrameToNextNode(frame)
9: return

10: end if
11:  end if
12: end for

All dependent stages completed upto this point
13: status=executeStage(stagePending)
if status indicates success, mark the frame stage as completed
14: if (status=True) then
15:  frame.setStageCompleted(stagePending)
16: end if
Forward the frame to the next resource
17: forwardFrameToNextNode(frame)

to it. This algorithm takes a frame and a stage number
N which has to be executed on the frame. In steps 1-2,
it finds all dependent stages which must be completed to
execute the stage IN. In steps 4-12, it attempts to execute
all dependent stages while continuously checking that the
execution time does not exceed the deadline. If the execution
time exceeds the deadline, it saves the current state of the
frame and forwards the frame to the next node. In step 13,
after execution of the dependent stages, it executes stage
N. In steps 14-16 it checks for the execution status, if the
execution is successful it marks the stage as completed and
saves the frame state. In step 17, it forwards the frame to the
next node for further processing (if necessary).

To satisfy the frame completion properties given in
section 3, each frame job is tagged with metadata. Every
frame is prefixed with an octet string, and the size of
this string depends on the number of stages used. The
minimum length of the tag is a single byte (8 bits) which
can accommodate a max of 8 stages; there is no limit to the
max number of stages. As the addition of a metadata tag
to an input frame is an overhead, we designed the tag to
occupy a minimum size. The tag size can be estimated as
the number of total stages divided by eight. For example,
overhead for 5 stages will be represented by an 8-bit string
initialized to zero. As the frame moves across nodes, each
resource node will activate the bit corresponding to its stage
to indicate completeness of the stage. Both independent and
dependent stage completeness is represented by a single bit.
Each resource has access to a stage pipeline graph which
the resource uses to turn on the bits in the tag. For in-
stance, if a node is performing stage 3 then after processing
has completed, and the frame modified, it will add string
00100000 to its header assuming other stages have not yet
been processed. Each frame is prefixed with a frame record
header as shown in Table 2.
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4.3 RealEdgeStream Components

In Fig.4, we show the main components of the system
along with their dataflow and stage types associated with
the components. These components may reside on one or
more resource depending on the specific analytics problem.
The basic processor is the first component which receives
the input and performs the basic stages. It then sends the
data to the Multi Object Detector (MOD) which performs
object detection on the received data. The MOD is a coarse
grained classifier to quickly detect one or more objects in
the input frame using a machine learning model. The MOD
takes video frames as input and detects the type of object
using a You only look once (YOLO) detector [31] — a high
performance classifier which can output an object into 80
classes. We have used YOLO V3 for detection of two classes
namely person and vehicle.

The MOD component then extracts the bounding boxes
of the detected objects and forwards them to the Multi
Object Router (MOR) which decides which objects to send
to the Object Recognizer (OR) based on rules. The purpose
of the MOR is to perform filtration, optimized scheduling
and routing of the detected object to the cloud. It loads
a text file which specifies the type of white-list objects.
The MOR only allows routing of white-listed objects, all
other object type jobs are filtered and deleted at this node.
The white-list can be changed by the administrator at run
time to modify the behaviour of the network for different
applications. The MOR uses a Rules Engine (RE) component
to forward or reject frames in the sink. The MOR component
performs the filter stages using configurables rules — iden-
tifying which types of objects should be forwarded to the
Object Recognizer (OR). All other object types are rejected
by this component. The MOR then forwards the data to the
Object Recognizer (OR) component which has a fine grained
classifier to perform further analysis on the data (using a
deep learning model to recognize the object).

5 VIDEO STREAM ANALYTICS USE CASE

An object recognition scenario is used to demonstrate the
proposed architecture from Section 4, as illustrated in Fig.
5. As video frames move from source to the cloud platform,
they are processed by the edge and in-transit resources. The
edge node executes the basic and filter stages on the video
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frame. Basic stages include frame loading and decoding,
frame resizing, motion detection, and image enhancement.
It also resizes the frame to a 224x224 resolution — the input
resolution required for the deep learning object recognition
model (for person and vehicle). An edge node filtration
stage performs motion detection between frames.

At the cloudlet node, a machine learning stage performs
object detection on the incoming frames and the filtration
stage determines which frames to forward to the cloud
platform. The cloudlet is equipped with a set of rules which
define the behaviour of the filtration stage. If no object is
detected or if the detected object is not in the user white-list
rules, it is forwarded to a sink where it is rejected. For this
case, we have programmed the cloudlet to only forward
frames which contain a detected person or vehicle object.
This can considerably save cloud bandwidth and processing
time on the cloud. Finally, the recognition task is performed
either by a cloud or a cloudlet node depending on the
distribution of the stages by a placement algorithm as given
in section 4.1.

5.1 Object Recognition Training and Inference Dataset

We trained two deep learning models for object recogni-
tion to support vehicle and person recognition. For vehicle
recognition, we used the Stanford vehicle dataset [32]. The
dataset consists of 8144 images of vehicles with manufac-
turer make, model and year and ~4GB in size. We used the
state of the art MobileNet [33] model to train on the dataset.
MobileNet is an open source convolutional neural network
model developed by Google. The MobileNet model is de-
signed to maximize recognition performance while keeping
a high accuracy. This is achieved by a depthwise separable
convolution technique. It has demonstrated an accuracy of
70% on the ImageNet dataset. For our datasets, MobileNet
achieved an accuracy of about ~96% and ~88% for vehicle
and person recognition respectively. The model was fully
trained after 2 hours and 10 mins on a Xeon E5 system with
8 cores and Nvidia GTX 970 GPU. The MobileNet model
was chosen for its small size and low latency.

For person recognition, we used the modified CASIA-
Webface dataset [34]. CASIA-Webface is the second largest
public dataset available for facial recognition. Due to its
large size, we trained the model on a subset of this data. Our
dataset consists of 100 individual faces with an average of
100 training faces for each individual. MobileNet was used
to train this model with parameters shown in Table 4.

For both models, the resolution of the images in the
training data was fixed to 224x224 — the minimum resolution
required by the two models. The fixed resolution for both
models was necessary to reduce the frame size and to
accurately classify incoming frame by the deep learning
models. The image scaling is performed by earlier stages
in the video analysis pipeline.

For inferencing we used the Tiny ImageNet dataset
which consists of 10K images arranged into 200 classes. For
each class, it provides 50 test images. We passed a complete
set of this dataset for generating the experimental results
in section 7. Before feeding the dataset, we replaced 1000
images by the Stanford cars images and 1000 images by the
CASIA-Webface images. We did this to have equal probabil-
ity of detection of each category — person and vehicles.
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TABLE 3
Experimental Configuration

Configuration Symbol | Placement Stages
Cloud-Only C Cloud=1,2,3,4
Edge-Cloud EC Edge=1,2 Cloud=3,4
Edge-Cloudlet-Cloud ECC Edge=1,2 Cloudlet=3,
Cloud=4

Edge-Cloudlet- ECM Edge=1,2 Cloudlet=3,4
MultiResource

TABLE 4

Training Parameters for the MobileNet Model

Parameter Vehicle Recogni- | Person  Recogni-
tion Model tion Model

Dataset Stanford Cars CASIA-Webface

Dataset Size | 3.7 GB 8.8 GB

(Uncom-

pressed)

classes 196 100(Manually

Reduced)

Trained Model | 26.3MB 25MB

Size

Training 8144 14816

Samples

(Images)

Image Resolu- | 224x224 224x224

tion

Training Accu- | 0.9648 0.8841

racy

Loss 0.1148 0.3900

Epochs 50 10

Batch Size 30 30

Time to Train | 2hrs&10mins 1 hour

(GPU)

Table 4 shows the detailed parameters used for the train-
ing of vehicle and person recognition using the MobileNet
model.

6 EXPERIMENTAL SETUP AND CONFIGURATION

The experimental setup consists of a network simulator
using Google Remote Procedure Call (gRPC) — a frame-
work more efficient than using the corresponding REST
API [35]. The gRPC is used to connect the the edge/cloud
implementation with the OMNet discrete event network
simulator. In this way network resources in the simulator
communicate with an actual deployed system to simulate a
virtual network implementation.

A frame rate of 25-30 frames per second is required for
capturing smooth motion from a camera. The video frame
rate is very important for surveillance. If the frame rate is
very high, it will need more storage and processing time
but will not miss any event or action in the video. If the
frame rate is low, processing and storage requirement will
be less but frames may not be able to capture all the events

TABLE 5
FPS Modes
Time(s) Mode FPS
0-50 offpeak 15
50-100 peak 30
After 100 | superpeak | 100

8
TABLE 6
Computational Power and Resource Queue Buffer Size
Name Computational| Buffer
Speed Size(Number of

Jobs)
Edge X 5K
Cloudlet | 13X 100K
Cloud 150x Unbounded

or actions such as a person running or a drone tracking an
object.

The experimental setup as shown in Fig. 6 consists of
two camera nodes as data sources, in-transit nodes and the
destination cloud node. The network nodes are connected
with each other using connections which have a delay and
bandwidth as given in Table 7. The network nodes also have
limited storage and computational capacity as given in Table
6. These parameters are based on realistic values and were
chosen to simulate different experimental conditions and
results.

EdgeSwitch receives data from the two cameras and for-
wards them to the local edge node. CloudletSwitch connects
the edge node switch with the Cloudlet. The Cloudlet is an
intermediate processing device which sits in-between the
cloud and edge nodes. We performed experiments on the
four configurations as given in Table 3. For each experiment,
the stages were distributed based on placement algorithm 1.
The experiments were conducted with varying input load -
namely offpeak (15fps), peak (30 fps) and superpeak (100
fps) as given in Table 5.

In a cloud only configuration, all the stages are executed
on a central cloud. In this configuration, there is no inter-
mediate processing on edge or fog nodes and represents
the traditional centralized analysis scenario. The cloud-
only configuration acts as a benchmark for comparing the
performance and bandwidth with the Edge-Cloud, Edge-
Cloudlet-Cloud and Edge-Cloudlet-MultiResource configu-
rations. As outlined in [18], we show that Edge-Cloudlet-
Cloud with filtration is the most efficient configuration as
compared to Cloud-only, Edge-Cloudlet, or Edge-Cloudlet-
Cloud configurations. It has the advantage of both con-
current processing and low-value data filtration. This is
achieved by utilizing in-transit resources to accelerate video
processing. In Edge-Cloudlet-MultiResource, we filter and
forward the incoming video streams to multiple resources
based on the detected objects to satisfy real-time processing
requirements. In the Edge-Cloudlet-Multi-Resource config-
uration, basic processing stages were executed on the edge
node which was followed by a motion detection filtration
stage. Similarly, the machine learning stages for object detec-
tion were executed on two cloudlets followed by an object
filtration stage. Finally, object recognition is performed on
the cloud platform for the filtered frames. This configuration
uses all the in-transit nodes from the data source to the
destination and routes the data to the cloud platform.
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7 RESULTS AND DISCUSSION
7.1 Experiment 1: Time taken by individual stages

In this experiment, we measure the time taken by individual
pipeline stages to complete frame processing (a job). The
time taken by individual stages is important to efficiently
distribute the stages on the available resources. It can be
used to aggregate stages together or to decompose a stage
into multiple stages. The time taken by stages 1-4 is shown
in Fig. 7 for the incoming streams. The time taken by
each individual stage to complete was plotted against the
experiment elapsed time. The data points illustrated in the
graph are average values for a number of executed jobs.

The time taken by each stage of a job is represented on
the y-axis. The x-axis denotes the time elapsed during the
experiment. Stages 4V and 4P indicate the time taken by the
deep learning models to recognize the vehicle and person
respectively. From the graph, jobs in stages 1 and 2 are
completed in about 1ms, job execution in stages 3 and 4V
varies from 200ms to 270ms. Jobs in Stage 4P take around
150ms on average.

7.2 Experiment 2: Number of Ready-Queue Jobs

Incoming streams are first buffered in a ready-queue at each
resource. In this experiment, we counted the number of
jobs in a ready-queue which are ready to be executed but

TABLE 7
Delay and Bandwidth

Name Average Delay(ms) | Max Uplink Bandwidth
Cam-Edge 1 1 Gbps
Edge-Cloudlet 2 1 Gbps
Cloudlet-Cloud 6 40 Mbps
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Time (ms) taken by Stages
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Time (s)

Fig. 7. Time taken by stages 1-4

are waiting for the resource to be allocated to them. This
experiment shows the load on a particular resource and can
be used to identify the bottleneck resource to satisfy QoS
requirements of a user. A resource with very high ready-
queue jobs means it is not able to process all of the jobs that
were produced per unit time e.g. within 1 second by the data
source. On the other hand, resources with a low number of
ready-queue jobs indicate a resource which is able to process
all of the incoming jobs in its ready-queue.

Fig. 8 shows the number of ready-queue jobs at the
edge, cloudlet and cloud resources for the configurations
given in Table 3. In the figure, a resource is prefixed with
the configuration symbol, to differentiate between the same
resource queues. For the cloudlet resource in the Edge-
Cloudlet-Cloud configuration, we see a constant horizontal
line for 15fps and 30fps indicating that the resource is
able to process all of the jobs produced at that frame rate.
After t=100 seconds when the frame rate equals 100fps, the
cloudlet resource queue rises sharply and continues to show
a steep upwards trend indicating the resource is unable to
process the frame rate in real-time. In this case, the ready-
queue size may exceed the cloudlet buffer limit given in
Table 6 at some point. After this limit has been exceeded, the
default behaviour is to remove the job which has been in the
queue the longest and forward it to the next node without
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Fig. 8. Number of Ready-Queue Jobs

processing, which makes additional room for an incoming
job. This process is repeated for any new jobs where a buffer
is not able to hold more jobs.

It can be seen for other resource queues that the number
of ready-queue jobs is very low, indicating that these re-
sources are able to process all the incoming jobs as soon
as they arrive. From this experiment, we conclude that
none of the configuration namely Cloud, Edge-Cloud, Edge-
Cloudlet-Cloud is able to process the jobs in real time after
t=100 seconds. These configurations are only able to satisfy
QoS constraints when the frame-rate is less than or equal to
30fps.

As proposed in Section 4, the horizontal and vertical
scalability allows us to meet the QoS demand by employing
multiple edge, cloudlet and cloud resources. The complexity
of adding a new resource increases from edge to cloud
tier. Edge and cloudlet being the local resources are easier
to add and deploy than cloud resources. In this case, the
slow performance is a direct result of the cloudlet node
being unable to process all the frames when the frame
rate approaches 100fps. We introduce a new configuration
ECM, which is a variant of ECC and includes two cloudlet
resources. It can be seen from Fig. 9 that after adding a
second cloudlet resource, the cloudlet queue in ECM case
goes down and becomes a constant — indicating the multi-
resource approach is able to process all the streaming data
produced at 100fps. However even if all of the resources are
able to process the data in real-time, the job completion time
is still limited by the uplink cloud bandwidth which in most
cases is insufficient to process the data at 100fps. In case of
ECM configuration with two cloudlet nodes, the placement
algorithm discussed in section 4.1 is able to place both stages
3 and 4 on cloudlet resources. In this case, only the results
from stage 4 were sent to the cloud for statistics and record
keeping purpose.

7.3 Experiment 3: Job Execution Time

In this experiment we measure the time taken for a single job
completion. This is the time difference between job creation
and completion. The job execution time was noted for three
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Fig. 9. Number of Ready-Queue Jobs with ECM

configurations as given in Table 3 with the exclusion of
ECM configuration. We note the difference between the job
creation time and job completion time to plot the curve as
shown in Fig. 10. Ideally, for a real-time requirement, all
the streaming jobs produced per unit time e.g. one second,
should be completed before additional streaming jobs arrive
at the resource. Interestingly, this graph shows that the three
configurations can support real-time completion of jobs for
15 frames per second. Real-time job completion is the time
taken to complete a job in less than 1 second. However after
t=50 seconds when the frame rate becomes 30fps, we can see
a slight divergence from the real-time job completion line for
the three configurations. The time to complete a single job
after t=50 seconds increases rapidly which is shown by a
steep upward curve for a cloud-only configuration.

It can be seen that after t=50 seconds when the frame rate
equals 100fps, none of the three configurations are able to
complete job processing in real time. By employing the ECM
configuration with two cloudlet nodes as in experiment 2, it
can be seen in Fig.11 that the ECM approach shows a linear
curve which remains constant during the full experiment,
indicating this configuration is able to process all the data in
real time for 100fps.

7.4 Experiment 4: Jobs completed in a window time of
10, 60, 120 seconds

In this experiment, we noted the number of jobs completed
in a window time of 10, 60 and 120 seconds on the con-
figurations given in Table 3. We skipped the Edge-Cloud
configuration as it yielded the same result as the central
cloud. We vary the frame rate of cameras from 15-100 frames
per second. A variable frame rate is important to compare
the job completion per unit time for the three configurations.
The results are shown in Fig. 12.

For the 10 seconds window, the Cloud-Only configura-
tion is able to process more jobs than the other configuration.
This is due to only 15 frames per second being produced
in the first 50 seconds which does not exceed the uplink
bandwidth of the cloud. After 50 seconds, the total frame
rate from both cameras is increased to 30 fps and we can
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see that ECC and ECM configurations are able to process
more jobs than the CO configuration due to the limited
bandwidth of the cloud. For the 120 seconds window, when
100 frames are being produced in one second, all the three
configurations are operating in the superpeak mode and we
see a different number of jobs being completed for each
of the configurations. Edge-Cloudlet-MultiResource has the
highest number of jobs completed, whereas the second
highest number of jobs completed is in the Edge-Cloudlet-
Cloud configuration.

7.5 Experiment 5: Time taken to complete all jobs

In this experiment, the time taken to complete all jobs was
noted for the three configurations given in Table 3 and a
graph was plotted as shown in Fig. 13. It can be seen in
the figure that for the offpeak mode which only produces
15 frames for the first 50 seconds, all the configurations
complete the same number of jobs. After 50 seconds, the
camera switches to peak mode and we start to see a diver-
gence in the three curves of the graph. After 100 seconds in
superpeak mode, the divergence becomes more prominent
and steep which increases the frame rate to 100 per second.
The real-time finish line indicates the real-time requirement
for the experiment.

At t=177 seconds, both the cameras have finished trans-
mitting their data. For real-time, all the resources must
complete the data processing in 177 seconds. However,
there is an overhead of 173 seconds for the cloud-only case
and around 58 seconds for the Edge-Cloudlet-Cloud case.
Only Edge-Cloudlet-MultiResource configuration is able to
complete all the jobs within 177 seconds. This means all jobs
were processed by this configuration as soon as they were
produced.

It can be seen that the time taken to complete all
jobs is highest for the cloud only configuration as all the
streaming data produced per unit time is transferred to
the cloud first and then analytics take place. The Edge-
Cloudlet-MultiResource is the most efficient configuration
which is able to complete the processing of all the jobs in
real time. Using percentage gain from equation 8, this ECM
configuration is 49% more efficient in terms of time taken
than the cloud-only configuration.

7.6 Experiment 6: Bandwidth Consumed

In this experiment, we measured the bandwidth consumed
from the data source to cloud for the configurations given in
Table. 3. The bandwidth consumed varies over time due to a
change in frame rate from 15 to 100 frames per second. The
graph in Fig. 14 shows the available bandwidth and con-
sumed bandwidth for all of the configurations. It can be seen
that for the first 50 seconds, the bandwidth consumed by all
configurations is below 20Mbps, however after 50 seconds
when the camera is operating in peak mode, the required
bandwidth rises sharply and approaches the available band-
width for Cloud-only and Edge-Cloudlet case. After 100
seconds, when the camera switches to superpeak mode,
the bandwidth required by the Cloud-Only and Edge-Cloud
configuration exceeds the available bandwidth of 40Mbps.
It can also be seen that the bandwidth required by the
ECC and ECM configurations is significantly less than the
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other configurations. This is due to both ECC and ECM
configurations performing filtering of the low-value data
and only sending the bounding boxes of the detected ob-
jects which reduces the bandwidth. The ECM configuration
further optimizes this by only sending the results of stage 4
to the cloud. In ECM case, both stages 3 and 4 are executed
on the cloudlet.
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Fig. 14. Bandwidth consumed over time

Overall, for our dataset, the ECM configuration saves
99% bandwidth than the cloud-only case.

8 CONCLUSIONS

We investigate an architectural approach for supporting
scalable real-time video stream processing using edge and
in-transit computing. Current approaches to stream analyt-
ics are based on the use of centralized cloud platforms.
With the increase in data volumes and velocity, a centralised
analysis approach of this kind becomes infeasible for high-
performance applications due to limited uplink bandwidth,
variable latency and congestion between the data sources
and the cloud platform.

We propose RealEdgeStream (RES), an edge enhanced
stream analysis system which complements a cloud-based
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platform to enable real-time processing of video streams.
Our approach to video analysis consists of a filtration phase
followed by an identification phase. The filtration phase
allows objects of low-value to be filtered (discarded) by
the edge and in-transit nodes using configurable rules from
a user. The identification phase performs deep learning
inference on the objects of interest. It can be used to perform
further complex analytics such as pattern, object and activity
recognition. The phases consist of three types of stages
namely basic, filter and machine learning to logically an-
alyze and partition the video analysis pipeline. The system
intelligently distributes processing stages on the available
resources using an algorithm to satisfy user Quality of
Service requirements.

Our experimental results show that scalable real-time per-
formance can be achieved by a fair use of multiple resources
in the proposed three-tier architecture. The results show
that the Edge-Cloudlet-MultiResource (ECM) configuration
is able to achieve real-time performance for 100 frames per
second when all the stages are placed on the edge and in-
transit resources as compared to only 15 frames per second
using the cloud-only approach. For the experimental dataset
consisting of 10K data streams, it takes 49% less time to
complete and also saves 99% of the bandwidth consumed as
compared to a centralized cloud based analytics approach.
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